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Quantization of hyperspectral image manifold using probabilistic distances
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A technique of spatial-spectral quantization of hyperspectral images is introduced. Thus a quantized hyperspectral image is just summarized by K spectra which represent the spatial and spectral structures of the image. The proposed technique is based on α-connected components on a region adjacency graph. The main ingredient is a dissimilarity metric. In order to choose the metric that best fit the hyperspectral data manifold, a comparison of different probabilistic dissimilarity measures is achieved.

Introduction

Gray-level images are pictures where each pixel is a scalar value which usually is quantized between 0 and 255. Color and hyperspectral images are images where each pixel can be considered as a vector, such that each coordinate of the vector corresponds to the intensity of the pixel at a certain wavelength. In addition, pixels values on spectral images are most of the time different. Quantization of images can be seen as a way to remove this excess of variability by reducing the number of (spectral) vectors and therefore to address the curse of dimensionality [START_REF] Bellman | Adaptive control processes[END_REF]. The problem can be addressed using dictionary learning techniques [START_REF] Tosic | Dictionary learning[END_REF]. In these learning methods, a dictionary composed of k atoms is learned on a set of vectors. Then each vector is represented by a (low) number of atoms of the dictionary. Among these methods, VQ [START_REF] Schmid-Saugeon | Dictionary design for matching pursuit and application to motion-compensated video coding[END_REF] is a well known technique that quantizes a set of vectors, since each vector is represented by just one atom of the dictionary. We consider in this paper a vector quantization method for hyperspectral images, halfway between manifold learning and dictionary learning methods, since we explore a quantization of the image manifold. First, we review existing similarity metrics on hyperspectral imaging and consider some probabilistic distance less known on this domain. Finally we quantize hyperspectral images using the best distances.

Quantization of hyperspectral images

Background on hyperspectral images. Let us consider a hyperspectral image where each pixel value v i is a spectral vector of dimension d ∈ N, such that v i ∈ R d . Because of the curse of dimensionality [START_REF] Bellman | Adaptive control processes[END_REF], spectral variability is added to the vectors. First, let us consider a simple case where v i ∈ [0, 1] d and d = 1; in this case it is easy to calculate that with 100 points, one get an interval between points of around 10 -2 . However, if we consider a space of dimension d = 10 and if one wants the points to be separated by a ball of radius 10 -2 , we can see that this time we need 10 20 points. Indeed, in the case of hyperspectral images, d is usually about one or two hundred, which shows how sparse the sampled manifold is (or how empty the whole space is), and how crucial is the question about similarity between spectra. Moreover one can see a hyperspectral image as a set of spectral classes. If we consider for instance three classes: "road", "water", or "forest", then each pixel belongs to one of these three classes. Due to the high dimensional space, each class has a high variability with respect to the Euclidean distance, and thus this distance will not be discriminative enough to separate objects from different classes. A solution could be to reduce the dimension of the manifold or to find another low-dimensional space to embed data, and then to use Euclidean distance in this space. Actually, we do not focus here on this kind of classical approach. We assess the interest of metrics on the original manifold on the d-dimensional space that are more invariant to spectral variability [START_REF] Chang | Hyperspectral imaging: techniques for spectral detection and classification[END_REF][START_REF] Robila | An investigation of spectral metrics in hyperspectral image preprocessing for classification[END_REF][START_REF] Paclik | Dissimilarity-based classification of spectra: computational issues[END_REF]. Thanks to this kind of similarities we can expect to improve hyperspectral image quantization.

Spectral/spatial image quantization. Quantization is the process which allows to approach a signal with large set of values by a signal on a smaller set. Images are signals on a spatial domain, so their quantization should takes into account the expected spatial coherence. To achieve this goal, we choose to use α-connected components representation [START_REF] Meyer | Nonlinear scale-space representation with morphological levelings[END_REF][START_REF] Soille | Constrained connectivity for hierarchical image partitioning and simplification[END_REF][START_REF] Gueguen | Local mutual information for dissimilarity-based image segmentation[END_REF], that produces an image partition into homogenous spatial classes. Two pixels belongs to the same α-connected component if there is a path linking these pixels such that the similarity between successive pixels of this path is lower than α. However, α-connected components algorithm often produces inadequate image partitions, since it fails to respect image contours. A solution is to first use an initial partition algorithm that would produce "superpixels" on our image and that must follows main image contours. Then, the superpixels are connected between then by their region adjacency graph (RAG). It is a graph where each node is a superpixel, and edges represent the dissimilarity between superpixels. Here edges are weighted by the dissimilarity between centroids of superpixels. In our case, the superpixels are obtained by computing the classical watershed on the image. Then the notion of α-connected components can be extended to RAG [START_REF] Gueguen | Local mutual information for dissimilarity-based image segmentation[END_REF]. Moreover, by comparing nodes and thus regions, our quantization is more robust to noise. For this purpose on each superpixel SP i the value of the original pixels is replaced by the value of its centroid C i . Finally the choice of α is done in order to have a fixed number of centroids, and thus of different spectra.

Assessment of image quantization. Our quantization depends on the RAG and therefore, on the choice of distance. We focus on the potential interest of probabilistic distances on spectral pixels. In this context, our assessment is separated into two steps.

Step 1: Evaluation of the probabilistic distances.

We consider that a good probabilistic distance is a dissimilarity measure that has an invariant behaviour on each spectral class in a high dimension space. During the process of assessment, hyperspectral images with a ground truth spectral classification are used. Thus the class of each pixel is known. Moreover for each class the centroid for a dissimilarity measure can be computed: it corresponds to the vector which minimizes the cumulated distance to the other vectors of the class. The centroid represents the class. Figure 2 represents two scatter-plots from a three-classes hyperspectral image. These scatter-plots depict the distance of each spectrum to the centroids of each class. A good dissimilarity measure should concentrates the data of each class around its centroid. In this example, Kullback-Leibler divergence performs better than L 2 norm from this viewpoint.

To quantitatively assess such property, the image is classified by calculating the distance of each image spectrum to the class centroids. Then, the class of the nearest centroid is given to each spectrum. After having classified the image, we evaluate the Overall Accuracy (OA), and the Average Accuracy (AA), that are two measures commonly used in hyperspectral imaging [START_REF] Fauvel | Spectral and spatial methods for the classification of urban remote sensing data[END_REF]. In addition, the rank of classification is also computed for each pixel. For example, let us consider that we have a spectrum X and three classes C 1 , C 2 , C 3 , and the spectrum X belongs to cluster C 1 . After computing the distance of X to each class centroid, denoted receptively D1, D2, D3, we obtain D1 > D3 > D2. Obviously the classifier would consider that the class of X is C 2 . Since in this case D1 is the highest distance, the classification mistake is very significant. The rank of good classification is in the present case 3. Hence, the rank of classification (Rank) is obtained as the mean of rank of good classification over all the pixels, divided by the number of classes. The more the rank of classification is near to one, the worst a dissimilarity measure is. Step 2: Evaluation of the quantization results. Quantization is a simplification operation that can destroy some relevant information. This introduces an error between the quantized signal and the original signal. This error is generally called quantization noise (or distortion). Let us consider an image f , and its quantized version f . The distortion is measured as: f -f 2 . Thus this distortion is measured by the L 2 norm and this point can be problematic for use since we compare different measures of dissimilarity. To overcome this problem, we used as measure the SNR that is also used on signal quantization. Nevertheless, this metric might not be adapted to images since the spatial distortion is not taken into account. We propose to introduce an additional measure of distortion adapted to structured signals. The pattern spectrum (PS) [START_REF] Maragos | Pattern spectrum and multiscale shape representation[END_REF] corresponds to the probability density function (pdf) of the granulometric decomposition, a multi-scale morphological image decomposition. We consider in fact the cumulative distribution function of the difference image |f -f |. A good quantization schema filters out small spatial structures and keeps most of the large spatial objects of the image |f -f |. A quantized image fA is better than a quantized image fB if the cumulative pattern spectrum of image |f -fA | stochastically dominates [START_REF] Saporta | Probabilits, analyse des donnes et statistique[END_REF] the one of |f -fB |.

Probabilistic distances on hyperspectral images

We focus on spectral metrics which model the data uncertainty as resulting from randomness. Thus we consider each pixel as a random variable with the probability distribution obtained by normalizing the vector. Given two vectors X = (x 1 , . . . L p Minkowski norms. Given a real number p ≥ 1, we can define the L p norm on the pdf of vectors (X, Y ) ∈ R d as follows:

N p (X, Y ) = ( i |X i -Y i | p ) 1 p . Moreover the L ∞ norm is defined by: N ∞ (X, Y ) = X-Y ∞ = max (|X 1 -Y 1 | , . . . , |X 2 -Y 2 |
). One has to choose carefully the p-norm to be used. It is possible to notice that when the value of p increases, the distance gives more weight to the dimension of high dissimilarity. On the contrary, if one decrease the value of p, the distance tends to average dissimilarities. The p-norms are particularly used in hyperspectral imaging, because of their simplicity of use. However, the higher the dimension of the spectra, the more there is a data concentration effect. Thus it is impossible to discriminate data when the dimension increases. If we consider a set of data

{X i ∈ R d } then: max i =j ( X i -X j p )) / min i =j ( X i -X j p )) → 1 when d → ∞
Spectral Angle Mapper (SAM). Let us consider a spectrum X ∈ R d of an hyperspectral image. It can be considered as a set of n random tests, where n = i X i , and each event X i is independent and provides a binary outcome. Thus, each image spectrum can be seen as following a multinomial distribution of parameter P x . It is then possible to define a Fisher-Rao distance between X and Y , represented by their pdf P x , P y . This notion corresponds to the spherical distance [START_REF] Bengtsson | Geometry of quantum states: an introduction to quantum entanglement[END_REF]:

D Spher (X, Y ) = 2 arccos( P x,i P y,i ). ( 1 
)
It is called the spherical distance since it represents the geodesic distance between distributions that are embedded on a (d -1)-unit sphere of equation:

d i=1
P x,i P x,i = 1. A distance classically used on hyperspectral images is the spectral angle mapper (SAM) [START_REF] Chang | Hyperspectral imaging: techniques for spectral detection and classification[END_REF], which for X, Y is defined between as:

D SAM (X, Y ) = arccos( X i Y i X i X i Y i Y i ) = 1 2 D Spherical (X 2 , Y 2 ). ( 2 
)
This metric is invariant to spectral multiplication since

D SAM (αX, Y ) = D SAM (X, Y ), ∀α ∈ R * .
Hellinger distance. We considered above the geodesic distance between two vector of the(d -1)-unit sphere of equation. Indde, one can consider on the unit sphere the chordal distance too, which is the distance between the points in the flat embedding space, and happens to be the Hellinger distance [START_REF] Bengtsson | Geometry of quantum states: an introduction to quantum entanglement[END_REF]:

D Helli (X, Y ) = (1/ √ 2) d i=1 ( P x,i -P y,i ) 2 1/2 , (3) 
which is commonly used to quantify the similarity between two probability distributions.

χ 2 distance. The χ 2 distance is a similarity measure obtained from a statistical test that takes as input two distributions P x , P Y . This distance is defined as

D χ 2 (X, Y ) = d i=1 (P x,i -m i ) 2 m i (4) 
with

m i = P x,i + P y,i 2 , (5) 
and measures the level of "adequacy" of pair P x , P Y [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF]. More precisely, it corresponds to the probability that data of P x follows the law P y .

Kullback-Leibler divergence. The Kullback-Leibler divergence [START_REF] Bengtsson | Geometry of quantum states: an introduction to quantum entanglement[END_REF] is a distinguishability measure between two distributions P x and P y . Divergence S(P x P y ) tells us how much the expected lengths of a code change, when the coding is optimal but made under the assumption that X follows P y . It is defined as:

S(P x P y ) = i P x,i log P x,i P y,i (6) 
However, this Bregmann divergence [START_REF] Schwander | Mthodes de gomtrie de l'information pour les modles de mlange[END_REF] is not a metric distance since it is not symmetric. Moreover this dissimilarity is related to Fisher-Rao metric, since if we consider two distributions P x and P x + dP x , that are close each other, their relative entropy is given by

S(P x P x + dP x ) = i P x,i log P x,i P x,i + dP x,i ≃ (1/2) i dP x,i dP x,i P x,i (7) 
≃ D F isher-Rao (P x , P x + dP x ). ( 8 
)
The use of an asymmetric divergence may be problematic for some applications. This is why we try to symmetrize the Kullback-Leibler divergence. There are different ways to do it. The most commonly used in hyperspectral imaging is the Jeffreys approach [START_REF] Schwander | Mthodes de gomtrie de l'information pour les modles de mlange[END_REF], which leads to a divergence called in the information theory community the Jeffreys-Bregman Divergence, or in the hyperspectral community the Spectral Information Divergence (SID): SID(P x P y ) = S(P x P y ) + S(P y P x ). ( 9)

Rényi divergences. The Shannon entropy is a function that corresponds to the amount of information contained or send by a source of information. Somehow, the more the source emits different information, the more the entropy is large. Let us consider a pdf P x with d possible outputs. Then, Shannon defined that the amount of information produced by knowing that an event of probability P x,i took place can be approximate by [START_REF] Bengtsson | Geometry of quantum states: an introduction to quantum entanglement[END_REF][START_REF] Renyi | On measures of entropy and information[END_REF]: I(P x,i ) =log(P x,i ). The Shannon entropy is a mean of amount of information over P x . It checks the postulate of additivity of information, which states that the information of two independent events is the sum of each information. However more general measures can be defined. Rényi [START_REF] Renyi | On measures of entropy and information[END_REF] proved that to be able to verify the postulate of additivity of information, it is necessary to have entropy of the form:

H(P x ) = g -1 d i=1 P x,i g(I(P x,i )) , (10) 
with g(x) = cx or g(x) = c2 (1-α)x . The first case leads to the Shannon entropy, whereas the second leads to other functional class called the Rényi entropy, which is defined by:

H α (P x ) = 1 1 -α log d i=1 P α x,i , (11) 
Thus the Rényi entropy is a more flexible measure of uncertainty, where the parameter α allows different notions of information. The case α = 1 leads to the Shannon entropy. Similarly to the Shannon entropy, it is possible to introduce divergence, that are called the Rényi divergence of order α, α > 0 of a distribution P x from a distribution P y :

S α (P Q) = 1 α -1 log i P α x,i P 1-α y,i . (12) 
Parameter α involves a family divergences, where S α→1 (P x P y ) = S(P x P y ).

There are two other special cases: α = 1/2, which is: S α=1/2 (P x P y ) = -2 log(1-D Hellinger (X, Y )/2); and α = 2 which leads to the quadratic Rényi divergence, that is a function mostly used on finance that check S α=2 (P

x P y ) = log 1 + D χ 2 (X, Y ) .
Mahalanobis distance. We have considered above that each spectrum follows a multinomial distribution. It might be possible to consider alternatively that the spectra follow normal distributions. This model is often used on hyperspectral imaging. In our case, we assume that each spectrum X follows a multivariate normal of mean itself and with a fixed covariance for all the spectra. Hence we have that X ∼ N (X, Σ). It turns out that the Fisher-Rao distance between X, Y corresponds to the Mahalanobis distance [START_REF] Mahalanobis | On the generalized distance in statistics[END_REF][START_REF] Strapasson | On bounds for the Fisher-Rao distance between multivariate normal distributions[END_REF] defined as:

D Mahal (X, Y ) = (X -Y ) T Σ -1 (X -Y ). (13) 
Endowed with this distance, the hyperspectral space is a submanifold of the manifold of multivariate normal distributions [START_REF] Strapasson | On bounds for the Fisher-Rao distance between multivariate normal distributions[END_REF]. Moreover this kind of metric depends on the estimation of the covariance matrix. We have considered two ways to estimate the covariance matrix. The first one is the biased empirical covariance estimator:

Σ = 1 d d i=1 (X i -X)(X i -X) T , (14) 
where X = 1 d d i=1 X i is the empirical mean. The second one is inspired from the work [START_REF] Gueguen | Local mutual information for dissimilarity-based image segmentation[END_REF][START_REF] Velasco-Forero | Random projection depth for multivariate mathematical morphology[END_REF][START_REF] Zuo | Projection-based depth functions and associated medians[END_REF], where thanks to random projections they succeed to have a good estimator of the Mahalanobis distance. We will denote respectively the corresponding distance D Mahal1 and D Mahal2 .

Kolmogorov distance. Spectra X of a hyperspectral image can be represented by a pdf, but they can also be represented by their cumulative distribution function (cdf), denoted C X , where C x,i = i k=1 P x,k . This function is smoother and less subject to high noise variation. Then, on can define the Kolmogorov-Smirnov distance [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] for two spectra X and Y as the maximal difference between their cumulative distribution functions:

D Kolmo = max (|P x,1 -P y,1 |, . . . , |P x,2 -P y,2 |) . (15) 
This distance happens to be the L ∞ norm applied to the cdf's.

Earth Mover's distance. Let us consider two spectra X and Y represented by their respective pdf P x and P y . Their Earth Mover's Distance [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] can be defined as

D EMD = min αi,j ∈M   d i=1 d j=1 α i,j C(i, j)   , (16) 
where M = {α i,j ≥ 0; d i=1 α i,j = P y,j ; d j=1 α i,j == P x,i } and C is the cost function. Different choices of cost functions have been considered. We adopt here two different cost functions. The first one can be defined as:

C 1 (i, j) = 1 d |i -j|. (17) 
In such a case, the Earth Mover's Distance is given by [START_REF] Pele | Fast and robust earth mover's distances[END_REF]:

D EMD1 = 1 d C x -C y 1 (18) 
One can also use a thresholded version of the cost function [START_REF] Pele | Fast and robust earth mover's distances[END_REF] to increase the computation speed:

C 2 (i, j) = |i -j| if |i -j| ≤ s s otherwise ( 19 
)
where s is the value of the threshold. We will write this distance D EMD2 .

Results on hyperspectral images

The question of the evaluation of the metrics is crucial. We first use two images conventionally used in hyperspectral image processing: i) the Pavia image, which represents the campus of Pavia university (urban scene), of size 610 × 340 pixels and d = 103 spectral bands, and is composed of 9 classes; ii) the Indian Pines image, test site in North-western Indiana composed for two thirds of agriculture, and one-third of forest, of 145 × 145 pixels and d = 224 spectral bands, and is composed of 16 classes. On theses images, we calculate on Table 1, the evaluation measures introduced in section 2. We also plotted the cumulative pattern spectra, on Fig. 2, and example of quantized Indian Pines image on Fig. 3. From this study we can deduce that Mahalanobis distance may have good results, however the quality of the results of Mahalanobis distance depends on the estimation of the covariance matrix. We can also deduce that χ 2 distance can have excellent results, and seems to be quite robust to the curse of dimensionality, using this distance in dimensionality reduction [START_REF] Noyel | Morphological segmentation of hyperspectral images[END_REF] might improve the extracted feature. 

Conclusion

We have done a systematic study to compare and assess different probabilistic distances in the context of hyperspectral image quantization. Our results are consistent to those previously published [START_REF] Chang | Hyperspectral imaging: techniques for spectral detection and classification[END_REF][START_REF] Robila | An investigation of spectral metrics in hyperspectral image preprocessing for classification[END_REF][START_REF] Paclik | Dissimilarity-based classification of spectra: computational issues[END_REF] for some of the distances. We infer from our study the importance of using appropriate distances to address the curse of dimensionality in hyperspectral imaging. A distance that seems to be rather efficient is the χ 2 distance. However, each dissimilarity measure has its disadvantages and benefits. A potentially interesting approach would be to take a dissimilarity measure as a linear combination of dissimilarity measures, taking advantage of the discriminatory power of each of them. This kind of approach is link with the multiple kernel learning [START_REF] Bach | Multiple kernel learning, conic duality, and the SMO algorithm[END_REF]. For the particular problem of image quantization, which involves computation of centroids, advanced methods to compute centroid from divergences [START_REF] Nielsen | Sided and symmetrized Bregman centroids. Information Theory[END_REF] can improve the results.
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 1 Fig.1. Scatter plot of distances of pixels (of Pavia image) of cluster 1 (in blue) to the centroid of cluster 1 in X, to to the centroid of cluster 2 in Y, to the centroid of cluster 3 in Z. Similarly, in red for cluster 2, and in green for cluster 3. In (a) we use the L2 norm as dissimilarity measure, in (b) we used the Kullback-Leibler divergence.

  , x d ) ∈ R d , and Y = (y 1 , . . . , y d ) ∈ R d , they are represented respectively by their probability distribution function (pdf) as P x = ( x1 i xi , . . . , x d i xi ) ∈ R d and P y = ( y1 i yi , . . . , y d i yi ) ∈ R d . One can represent the data by their pdf or by their cumulative distribution function (cdf), or by their characteristic function. All these representations of the data and the different possible dissimilarities involves many ways to compare data.
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 23 Fig. 2. Representation of the cumulative Pattern Spectrum of Pavia images for different similarity measures.
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 1 Comparison of probabilistic distances on hyperspectral images.
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