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Abstract. Main techniques of probability density estimation on Rie-
mannian manifolds are reviewed in the hyperbolic case. For computa-
tional reasons we chose to focus on the kernel density estimation and we
provide the expression of Pelletier estimator on hyperbolic space. The
method is applied to density estimation of re�ection coe�cients from
radar observations.

1 Introduction

The problem of probability density estimation is a vast topic. Their exists several
standard methods in the Euclidean context, such as histograms, kernel methods,
or the characteristic function method. These methods can sometimes be trans-
posed to the case of Riemannian manifolds. However, the transposition often
introduces additional computational e�orts. This additional e�ort depends on
the method used and the nature of the manifold. The hyperbolic space is one
of the most elementary non-Euclidean spaces. It is one of the three simply con-
nected isotropic manifolds, the two others being the sphere and the Euclidean
space. The speci�city of the hyperbolic space enables to adapt the di�erent den-
sity estimation methods at a reasonable cost. Convergence rates of the density
estimation using kernels and orthogonal series were progressively generalized
to Riemannian manifolds, see [13][14][16]. More recently convergence rates for
the kernel density estimation without the compact assumption have been in-
troduced [7], which enables the use of Gaussian-type kernels [?]. One already
encounters the problem of density estimation in the hyperbolic space for electri-
cal impedance [14] and networks [8]. We are interested here in the estimation of
the density of the re�ection coe�cients extracted from a radar signal [3]. These
coe�cients have a intrinsic hyperbolic structure [4,2]. For computational reasons
we chose to focus our applications on the kernel density estimation. The paper
begins with an introduction to the hyperbolic geometry in Section 2. Section
3 reviews the two main density estimation techniques on the hyperbolic space.
Section 4 presents an application to radar data estimation.



2 The hyperbolic space and the Poincaré disk model

The hyperbolic geometry results of a modi�cation of the �fth Euclid's postulate
on parallel lines. In two dimensions, given a line D and a point p /∈ D, the hy-
perbolic geometry is an example where there are at least two lines going through
p, which do not intersect D. Let us consider the unit disk of the Euclidean plane
endowed with the Riemannian metric:

ds2D = 4
dx2 + dy2

(1− x2 − y2)2
(1)

where x and y are the Cartesian coordinates. The unit disk D endowed with
dsD is called the Poincaré disk and is a model of the two-dimensional hyperbolic
geometry H2. The construction is generalized to higher dimensions. It can be
shown that the obtained Riemannian manifold Hn is homogeneous. In other
words,

∀p, q ∈ Hn,∃ϕ ∈ ISO(Hn), ϕ(p) = q

where ISO(Hn) is the set of isometric transformations of Hn.
In Rn the convolution of a function f by a kernel g consists in the integral of

translated kernel weighted by f in each point p of the support space. The group
law + of Rn is an isometry that enables to transport the kernel in the whole
space. In the Riemannian setting the de�nition of convolution f ∗ g needs some
homogeneity assumption: in an homogeneous space it is possible to transport a
kernel from a reference point to any other point by an isometry. Let the isotropy
group of p be the set of isometries that �x p. The convolution is properly de�ned
for kernels that are invariant under elements of the isotropy group of p, for a p
in Hn. Formally, let Kpref be a function invariant to the isotropy group of pref .
Let Kp = Kpref ◦ ϕp,pref with ϕp,pref an isometry such that ϕp,pref (p) = pref .
When it exists, since Hn is homogeneous, we can de�ne the convolution of a
function f by the kernel Kpref by:

(f ∗Kpref )(q) =

∫
f(p)Kp(q)dvol

where vol is the hyperbolic measure.
Furthermore it can be shown that for any couple of geodesic γ1 and γ2 starting

from p ∈ Hn, there exists ϕ in the isotropy group of p such that ϕ(γ1) = γ2. In
other words, a kernel Kp invariant under the isotropy group of p looks the same
in every directions at point p. For more details on the hyperbolic space, see [6].

3 Non-parametric probability density estimation

Let Ω be a space endowed with a probability measure. Let X be a random
variable Ω → Hn. The measure on Hn induced by X is noted µX . We assume
that µX has a density, noted f , with respect to vol, and that the support of X
is a compact set noted Supp(X). Let (x1, .., xk) ∈ (Hn)k be a set of draws of X.



Let µk = 1
k

∑
i δxi

denote the empirical measure of the set of draws. This section
presents the main techniques of estimation of f from the set of draws (x1, .., xk).

The estimated density at x ∈ Hn is noted f̂k(x) = f̂k(x, x1, ..., xk). Observe that

f̂k(x) can be seen as a random variable. The relevance of density estimation
technique depends on several aspects. Recall that Hn is isotropic, every points
and directions are indiscernible. In absence of prior information on the density,
the estimation technique should not privilege speci�c directions or locations.
This results in a homogeneity and an isotropy condition. The convergence of the
di�erent estimation techniques is widely studied. Results were �rst obtained in
the Euclidean case, and are progressively extended to the probability densities
on manifold [16][13][14][7]. The last aspect, is computational. Each estimation
technique has its own computational framework, which presents pro and cons
given the di�erent applications. For instance, the estimation by orthogonal series
presents an initial pre-processing, but provides a fast evaluation of the estimated
density in compact manifolds. These aspects are studied for the main techniques
of density estimation in the remaining of the paper.

Every standard density estimation technique involves a scaling parameter.
This scaling factor controls the in�uence of the observation xi on the estimated
density at x, depending on the distance between x and xi. In the experiments,
the scaling factor is chosen following the framework proposed in [9]: a cross
validation of the likelihood of the estimator.

3.1 Characteristic function, or orthogonal series

Let U ∈ Hn be such that Supp ⊂ U . Let the functions (ej) be the eigenfunctions
(ej) of the Laplace operator on L

2(U). Recall that

〈ei, ej〉 =
∫
U

eiejdvol,

where x denotes the complex conjugate of x. Eigenfunctions of the Laplace op-
erator in Hn behave similarly to the eigenfunctions in the real case. Thus, if the
density f lays in L2(U) the Fourier-Helgason transform gives:

f =
∑
j

〈f, ej〉 ej , or f =

∫
B
〈f, ej〉 ejdej ,

respectively when U is compact and non compact. See [11] for an expression of
dej and B when U = Hn. By the law of large number, one has

〈f, ei〉 =
∫
fejdvol = E (ej(X)) ≈ 1

k

k∑
j=1

ej (xi) .

Given T > 0, let BT ⊂ B. The density estimator becomes:

f̂k =
1

k

∑
ej∈BT

[
k∑
i=1

ej (xi)

]
ej , or f̂k =

1

k

∫
BT

[
k∑
i=1

ej (xi)

]
ejdej .



For a suitable choice of BT , see [14][13], the parameter T plays the role of the
inverse of the scaling parameter. In the Euclidean context, this is equivalent to
the characteristic function density estimator. The choice of the basis is motivated
by the regularity of the eigenfunctions of the Laplace operator. Let IT be the
indicator function of BT in B. For a right BT , FH−1(IT ) is invariant under the
isotropy group of a p ∈ Hn. Then, the estimation is a convolution [12] written
as

f̂k = µk ∗ FH−1(IT ),

where FH is the Fourier Helgason transform. In other words, the estimation does
not privileges speci�c locations or directions. Convergence rates are provided in
[14]. When U is compact, the estimation f̂ is made through the estimation
of N scalar product, that is to say kN summation operation. However, the
evaluation at x ∈ Hn involves only a sum of N terms. On the other hand, when
U is not compact, the evaluation of the integral requires signi�cantly higher
computational cost. Unfortunately, the eigenfunction of the Laplacian for U ⊂
Hn are only known for U = Hn. See [15] and [13] for more details on orthogonal
series density estimation on Riemannian manifolds.

3.2 Kernel density estimation

LetK : R+ → R+ be a map which veri�es the following properties:
∫
Rn K(||x||)dx =

1,
∫
Rn xK(||x||)dx = 0,K(x > 1) = 0, sup(K(x)) = K(0). Given a point p ∈ Hn,

expp de�nes a new injective parametrization of Hn. The Lebesgue measure of
the tangent space is noted Lebp. The function θp : Hn → R+ de�ned by:

θp : q 7→ θp(q) =
dvol

dexp∗(Lebp)
(q), (2)

is the density of the Riemannian measure with respect to the image of the
Lebesgue measure of TpHn by expp. Given K and a scaling parameter λ, the
estimator of f proposed by Pelletier in [16] is de�ned by:

f̂k =
1

k

∑
i

1

λn
1

θxi
(x)

K

(
d(x, xi)

λ

)
. (3)

It can be noted that this estimator is the usual kernel estimator is the case of
Euclidean space. Convergence rates are provided in [16]. These rates are similar
to those of the orthogonal series. In [16] is furthermore shown that xi is the
intrinsic mean of 1

θxi
(.)K(d(., xi)/λ). Under reasonable assumptions on the true

density f , the shape of the kernel does not have a signi�cant impact on the
quality of the estimation in the Euclidean context [17]. Fig.3.2 experimentally
con�rms the result in H2.

Given a reference point pref ∈ Hn, let

K̃(q) =
1

kλn
1

θpref (q)
K

(
d(pref , q)

λ

)
. (4)



Note �rst that if φ is an isometry of Hn, θp(q) = θφ(p)(φ(q)). After noticing that

K̃ is invariant under is isotropy group of pref , a few calculations lead to:

f̂k = µk ∗ K̃. (5)

As the density estimator based on the eigenfunction of the Laplacian opera-
tor, the kernel density estimator is a convolution and does not privileges speci�c
locations or directions. In order to evaluate the estimated density at x ∈ Hn, one
�rst need to determine the observations xi such that d(x, xi) < λ, and perform
a sum over the selected observations.

One still needs to obtain an explicit expression of θp. Given a reference point
p, the point of polar coordinates (r, α) of the hyperbolic space is de�ned as the
point at distance r of p on the geodesic with initial direction α ∈ Sn−1. Since the
Hn is isotropic the expression the length element in polar coordinates depends
only on r. Expressed in polar coordinates the hyperbolic metric expression is
[1,10]:

gHn
= dr2 + sinh(r)2gSn−1 .

The polar coordinates are a polar expression of the exponential map at p. In
an adapted orthonormal basis of the tangent plane the metric takes then the
following form:

G =

(
1 0
0 sinh(r)2 1

r2 In−1

)
(6)

where In−1 is the identity matrix of size n − 1. Thus, using (6), the volume
element dµexp∗p is given by

dvol =
√
G.dexp∗p(Lebp) = ( 1r sinh(r))

n−1dexp∗p(Lebp). (7)

where r = d(p, q). From (2) and (7), one obtains

θp(q) = ( 1r sinh(r))
n−1 . (8)

Finally, plugging (8) into (3) gives

f̂k =
1

k

∑
i

1

λn
d(x, xi)

n−1

sinh(d(x, xi))n−1
K

(
d(x, xi)

λ

)
. (9)

4 Application to radar estimation

4.1 From radar observations to re�ection coe�cients µk ∈ D

Let us discuss brie�y how radar data is related to hyperbolic space via re�ec-
tion coe�cients, for more details see [2]. Each radar cell is a complex vector
z = (z0, · · · , zn−1) considered as a realization of a centered stationary Gaussian
process Z = (Z0, · · · , Zn−1) of covariance matrix Rn = E[ZZ∗]. The matrix Rn
has a Toeplitz structure. For 1 ≤ k ≤ l ≤ n − 1, the k-th order autoregressive



Fig. 1. Consider a law X whose density in the tangent plane at (0, 0) is a centered
hemisphere. From a set of draws, the density is estimated using two standard kernels,
K(x) = (1 − x2)21x<1 and K(x) = (1 − x3)31x<1. The L1 distance between the
estimated and the true density is plotted depending on the number of draws.

estimate of Zl is given by Ẑl = −
∑k
j=1 a

(k)
j Zl−j , where the autoregressive coef-

�cients a
(k)
1 · · · a

(k)
k are chosen such that the mean squared error E(|Zl − Ẑl|2) is

minimized. In practice, re�ection coe�cients are estimated by regularized Burg

algorithm [3]. The last autoregressive coe�cient a
(k)
k is called the k-th re�ection

coe�cient, denoted by µk and which has the property |µk| < 1. The coe�cient
for k = 0 corresponds to the power, denoted P0 ∈ R∗+. The re�ection coe�cients
induce a (di�eomorphic) map ϕ between the Toeplitz Hermitian positive de�nite
(HPD) matrices of order n, T n, and re�ection coe�cients:

ϕ : T n → R∗+ × Dn−1, Rn 7→ (P0, µ1, · · · , µn−1)

where D = {ζ ∈ C : |ζ| < 1} is the open unit disk of the complex plane.
Di�eomorphism ϕ is very closely related to theorems of Trench [18].

The Riemannian geometry of the space of re�ection coe�cients has been
explored in [4] through the Hessian of Kähler potential, whose metric is

ds2 = n
dP 2

0

P 2
0

+

n−1∑
k=1

(n− k) |dµk|2

(1− µk|2)2
. (10)

According to the metric (10) the space T n can be seen as a product of the Rie-
mannian manifold

(
R∗+, ds20

)
, with ds20 = n(dP 2

0 /P
2
0 ) (logarithmic metric mul-

tiplied by n), and (n − 1) copies of
(
D, ds2k

)
1≤k≤n−1, with ds2k = (n − k)ds2D.(

R∗+ × Dn−1, ds2
)
is a Cartan�Hadamard manifold whose sectional curvatures

are bounded, i.e., −4 ≤ K ≤ 0. This metric is related information geometry and
divergence functions [5]. From the product metric, closed forms of the Rieman-
nian distance, arc-length parameterized geodesic, etc. can be obtained [4,2].

The next paragraph presents the estimations of the marginal densities coef-
�cients µk.



4.2 Experimental results

Data used in the experimental tests are radar observations from THALES X-
band Radar, recorded during 2014 �eld trials campaign at Toulouse Blagnac
Airport for European FP7 UFO study (Ultra-Fast wind sensOrs for wake-vortex
hazards mitigation). Data are representative of Turbulent atmosphere monitored
by radar in rainy conditions. Fig. 2 illustrates the density estimation of the six
re�ection coe�cients on the Poincaré unit disk. For each coe�cient the dataset
is composed of 120 draws.

µ1 µ2 µ3 µ4 µ5 µ6

Fig. 2. Estimation of the density of the three �rst coe�cients µk under rainy conditions.
The expression of the used kernel is K(x) = 3

π
(1− x2)21x<1

5 Conclusion and perspectives

We have discussed the problem of density estimation on the hyperbolic space.
After having computed the volume change factor, we have adopted the approach
based on kernel density estimation by Pelletier [16]. The method has been used to
estimate the density of re�ection coe�cients from radar signals. According to the
di�eomorphism between Toeplitz HPD matrices and re�ection coe�cients [18],
densities estimated on a product of Poincaré disk can be interpreted as a proba-
bility density on the space of Toeplitz HPD matrces. Other symmetric homoge-
nous spaces such as the Siegel disk can be addressed using similar methods.
The link between the Siegel disk and the space of Toeplitz-Block-Toeplitz HPD
matrices makes of it an other interesting study case.

Alternative approaches of density estimation can be considered in future re-
search. For data lying in a known compact symmetric subspace of the hyperbolic
space, it is possible to use the orthogonal series technique, where the eigen-
functions of Laplace operator are numerically estimated. From an application
viewpoint, densities from radar re�ection coe�cients can be used as basic ingre-
dient in radar detection algorithms (�nding modes of density and segmenting
the density).
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