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Probability density estimation on the hyperbolic space applied to radar processing

Main techniques of probability density estimation on Riemannian manifolds are reviewed in the hyperbolic case. For computational reasons we chose to focus on the kernel density estimation and we provide the expression of Pelletier estimator on hyperbolic space. The method is applied to density estimation of reection coecients from radar observations.

Introduction

The problem of probability density estimation is a vast topic. Their exists several standard methods in the Euclidean context, such as histograms, kernel methods, or the characteristic function method. These methods can sometimes be transposed to the case of Riemannian manifolds. However, the transposition often introduces additional computational eorts. This additional eort depends on the method used and the nature of the manifold. The hyperbolic space is one of the most elementary non-Euclidean spaces. It is one of the three simply connected isotropic manifolds, the two others being the sphere and the Euclidean space. The specicity of the hyperbolic space enables to adapt the dierent density estimation methods at a reasonable cost. Convergence rates of the density estimation using kernels and orthogonal series were progressively generalized to Riemannian manifolds, see [START_REF] Hendriks | Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions[END_REF][14] [START_REF] Pelletier | Kernel density estimation on Riemannian manifolds[END_REF]. More recently convergence rates for the kernel density estimation without the compact assumption have been introduced [START_REF] Asta | Kernel Density Estimation on Symmetric Spaces[END_REF], which enables the use of Gaussian-type kernels [?]. One already encounters the problem of density estimation in the hyperbolic space for electrical impedance [START_REF] Huckeman | Mobius deconvolution on the hyperbolic plan with application to impedance density estimation[END_REF] and networks [START_REF] Asta | Geometric network comparison[END_REF]. We are interested here in the estimation of the density of the reection coecients extracted from a radar signal [START_REF] Barbaresco | Super resolution spectrum analysis regularization: Burg, capon and ago antagonistic algorithms[END_REF]. These coecients have a intrinsic hyperbolic structure [START_REF] Barbaresco | Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet Median[END_REF][START_REF] Arnaudon | Riemannian Medians and Means With Applications to Radar Signal Processing[END_REF]. For computational reasons we chose to focus our applications on the kernel density estimation. The paper begins with an introduction to the hyperbolic geometry in Section 2. Section 3 reviews the two main density estimation techniques on the hyperbolic space. Section 4 presents an application to radar data estimation.

The hyperbolic space and the Poincaré disk model

The hyperbolic geometry results of a modication of the fth Euclid's postulate on parallel lines. In two dimensions, given a line D and a point p / ∈ D, the hyperbolic geometry is an example where there are at least two lines going through p, which do not intersect D. Let us consider the unit disk of the Euclidean plane endowed with the Riemannian metric:

ds 2 D = 4 dx 2 + dy 2 (1 -x 2 -y 2 ) 2 (1) 
where x and y are the Cartesian coordinates. The unit disk D endowed with ds D is called the Poincaré disk and is a model of the two-dimensional hyperbolic geometry H 2 . The construction is generalized to higher dimensions. It can be shown that the obtained Riemannian manifold H n is homogeneous. In other words,

∀p, q ∈ H n , ∃ϕ ∈ ISO(H n ), ϕ(p) = q
where ISO(H n ) is the set of isometric transformations of H n . In R n the convolution of a function f by a kernel g consists in the integral of translated kernel weighted by f in each point p of the support space. The group law + of R n is an isometry that enables to transport the kernel in the whole space. In the Riemannian setting the denition of convolution f * g needs some homogeneity assumption: in an homogeneous space it is possible to transport a kernel from a reference point to any other point by an isometry. Let the isotropy group of p be the set of isometries that x p. 

(f * K p ref )(q) = f (p)K p (q)dvol
where vol is the hyperbolic measure.

Furthermore it can be shown that for any couple of geodesic γ 1 and γ 2 starting from p ∈ H n , there exists ϕ in the isotropy group of p such that ϕ(γ 1 ) = γ 2 . In other words, a kernel K p invariant under the isotropy group of p looks the same in every directions at point p. For more details on the hyperbolic space, see [START_REF] Cannon | Hyperbolic Geometry. Flavors of Geometry[END_REF]. Non-parametric probability density estimation

Let Ω be a space endowed with a probability measure. Let X be a random variable Ω → H n . The measure on H n induced by X is noted µ X . We assume that µ X has a density, noted f , with respect to vol, and that the support of X is a compact set noted Supp(X). Let (x 1 , .., x k ) ∈ (H n ) k be a set of draws of X.

Let µ k = 1 k i δ xi denote the empirical measure of the set of draws. This section presents the main techniques of estimation of f from the set of draws (x 1 , .., x k ). The estimated density at x ∈ H n is noted fk (x) = fk (x, x 1 , ..., x k ). Observe that fk (x) can be seen as a random variable. The relevance of density estimation technique depends on several aspects. Recall that H n is isotropic, every points and directions are indiscernible. In absence of prior information on the density, the estimation technique should not privilege specic directions or locations. This results in a homogeneity and an isotropy condition. The convergence of the dierent estimation techniques is widely studied. Results were rst obtained in the Euclidean case, and are progressively extended to the probability densities on manifold [START_REF] Pelletier | Kernel density estimation on Riemannian manifolds[END_REF][13][14] [START_REF] Asta | Kernel Density Estimation on Symmetric Spaces[END_REF]. The last aspect, is computational. Each estimation technique has its own computational framework, which presents pro and cons given the dierent applications. For instance, the estimation by orthogonal series presents an initial pre-processing, but provides a fast evaluation of the estimated density in compact manifolds. These aspects are studied for the main techniques of density estimation in the remaining of the paper.

Every standard density estimation technique involves a scaling parameter. This scaling factor controls the inuence of the observation x i on the estimated density at x, depending on the distance between x and x i . In the experiments, the scaling factor is chosen following the framework proposed in [START_REF] Duin | On the choice of smoothing parameters for Parzen estimators of probability density functions[END_REF]: a cross validation of the likelihood of the estimator.

Characteristic function, or orthogonal series

Let U ∈ H n be such that Supp ⊂ U . Let the functions (e j ) be the eigenfunctions (e j ) of the Laplace operator on L 2 (U ). Recall that e i , e j = U e i e j dvol, where x denotes the complex conjugate of x. Eigenfunctions of the Laplace operator in H n behave similarly to the eigenfunctions in the real case. Thus, if the density f lays in L 2 (U ) the Fourier-Helgason transform gives:

f = j f, e j e j , or f = B
f, e j e j de j , respectively when U is compact and non compact. See [START_REF] Helgason | Non-Euclidean Analysis[END_REF] for an expression of de j and B when U = H n . By the law of large number, one has

f, e i = f e j dvol = E (e j (X)) ≈ 1 k k j=1 e j (x i ) .
Given T > 0, let B T ⊂ B. The density estimator becomes:

fk = 1 k ej ∈B T k i=1 e j (x i ) e j , or fk = 1 k B T k i=1
e j (x i ) e j de j .

For a suitable choice of B T , see [START_REF] Huckeman | Mobius deconvolution on the hyperbolic plan with application to impedance density estimation[END_REF][13], the parameter T plays the role of the inverse of the scaling parameter. In the Euclidean context, this is equivalent to the characteristic function density estimator. The choice of the basis is motivated by the regularity of the eigenfunctions of the Laplace operator. Let I T be the indicator function of B T in B. For a right B T , FH -1 (I T ) is invariant under the isotropy group of a p ∈ H n . Then, the estimation is a convolution [START_REF] Helgason | The Abel, Fourier and Radon transform on symmetric spaces[END_REF] written

as fk = µ k * F H -1 (I T ),
where FH is the Fourier Helgason transform. In other words, the estimation does not privileges specic locations or directions. Convergence rates are provided in [START_REF] Huckeman | Mobius deconvolution on the hyperbolic plan with application to impedance density estimation[END_REF]. When U is compact, the estimation f is made through the estimation of N scalar product, that is to say kN summation operation. However, the evaluation at x ∈ H n involves only a sum of N terms. On the other hand, when U is not compact, the evaluation of the integral requires signicantly higher computational cost. Unfortunately, the eigenfunction of the Laplacian for U ⊂ H n are only known for U = H n . See [START_REF] Kim | Deconvolution density estimation on the space of positive denite symmetric matrices[END_REF] and [START_REF] Hendriks | Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions[END_REF] for more details on orthogonal series density estimation on Riemannian manifolds.

Kernel density estimation

Let K : R + → R + be a map which veries the following properties:

R n K(||x||)dx = 1, R n xK(||x||)dx = 0, K(x > 1) = 0, sup(K(x)) = K(0)
. Given a point p ∈ H n , exp p denes a new injective parametrization of H n . The Lebesgue measure of the tangent space is noted Leb p . The function θ p : H n → R + dened by:

θ p : q → θ p (q) = dvol dexp * (Leb p ) (q), (2) 
is the density of the Riemannian measure with respect to the image of the Lebesgue measure of T p H n by exp p . Given K and a scaling parameter λ, the estimator of f proposed by Pelletier in [START_REF] Pelletier | Kernel density estimation on Riemannian manifolds[END_REF] is dened by:

fk = 1 k i 1 λ n 1 θ xi (x) K d(x, x i ) λ . (3) 
It can be noted that this estimator is the usual kernel estimator is the case of Euclidean space. Convergence rates are provided in [START_REF] Pelletier | Kernel density estimation on Riemannian manifolds[END_REF]. These rates are similar to those of the orthogonal series. In [START_REF] Pelletier | Kernel density estimation on Riemannian manifolds[END_REF] is furthermore shown that x i is the intrinsic mean of 1 θx i (.) K(d(., x i )/λ). Under reasonable assumptions on the true density f , the shape of the kernel does not have a signicant impact on the quality of the estimation in the Euclidean context [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]. Fig. 3.2 experimentally conrms the result in H 2 .

Given a reference point p ref ∈ H n , let

K(q) = 1 kλ n 1 θ p ref (q) K d(p ref , q) λ . (4) 
Note rst that if φ is an isometry of H n , θ p (q) = θ φ(p) (φ(q)). After noticing that K is invariant under is isotropy group of p ref , a few calculations lead to:

fk = µ k * K. ( 5 
)
As the density estimator based on the eigenfunction of the Laplacian operator, the kernel density estimator is a convolution and does not privileges specic locations or directions. In order to evaluate the estimated density at x ∈ H n , one rst need to determine the observations x i such that d(x, x i ) < λ, and perform a sum over the selected observations.

One still needs to obtain an explicit expression of θ p . Given a reference point p, the point of polar coordinates (r, α) of the hyperbolic space is dened as the point at distance r of p on the geodesic with initial direction α ∈ S n-1 . Since the H n is isotropic the expression the length element in polar coordinates depends only on r. Expressed in polar coordinates the hyperbolic metric expression is [START_REF] Anker | The heat kernel on noncompact symmetric spaces. In Lie groups and symmetric spaces[END_REF][START_REF] Grigor'yan | Heat kernel and analysis on manifolds[END_REF]:

g Hn = dr 2 + sinh(r) 2 g S n-1 .
The polar coordinates are a polar expression of the exponential map at p. In an adapted orthonormal basis of the tangent plane the metric takes then the following form:

G = 1 0 0 sinh(r) 2 1 r 2 I n-1 (6) 
where I n-1 is the identity matrix of size n -1. Thus, using ( 6), the volume element dµ exp * p is given by

dvol = √ G.dexp * p (Leb p ) = ( 1 r sinh(r)) n-1 dexp * p (Leb p ). (7) 
where r = d(p, q). From ( 2) and ( 7), one obtains

θ p (q) = ( 1 r sinh(r)) n-1 . (8) 
Finally, plugging (8) into (3) gives

fk = 1 k i 1 λ n d(x, x i ) n-1 sinh(d(x, x i )) n-1 K d(x, x i ) λ . (9) 
4 Application to radar estimation 4.1 From radar observations to reection coecients µ k ∈ D Let us discuss briey how radar data is related to hyperbolic space via reection coecients, for more details see [START_REF] Arnaudon | Riemannian Medians and Means With Applications to Radar Signal Processing[END_REF]. Each radar cell is a complex vector z = (z 0 , • • • , z n-1 ) considered as a realization of a centered stationary Gaussian process

Z = (Z 0 , • • • , Z n-1 ) of covariance matrix R n = E[ZZ * ].
The matrix R n has a Toeplitz structure. For 1 ≤ k ≤ l ≤ n -1, the k-th order autoregressive Fig. 1. Consider a law X whose density in the tangent plane at (0, 0) is a centered hemisphere. From a set of draws, the density is estimated using two standard kernels, K(x) = (1 -x 2 ) 2 1x<1 and K(x) = (1 -x 3 ) 3 1x<1. The L1 distance between the estimated and the true density is plotted depending on the number of draws.

estimate of Z l is given by Ẑl = -k j=1 a

(k) j Z l-j , where the autoregressive coefcients a

(k) 1 • • • a (k)
k are chosen such that the mean squared error E(|Z l -Ẑl | 2 ) is minimized. In practice, reection coecients are estimated by regularized Burg algorithm [START_REF] Barbaresco | Super resolution spectrum analysis regularization: Burg, capon and ago antagonistic algorithms[END_REF]. The last autoregressive coecient a (k) k is called the k-th reection coecient, denoted by µ k and which has the property |µ k | < 1. The coecient for k = 0 corresponds to the power, denoted P 0 ∈ R * + . The reection coecients induce a (dieomorphic) map ϕ between the Toeplitz Hermitian positive denite (HPD) matrices of order n, T n , and reection coecients:

ϕ : T n → R * + × D n-1 , R n → (P 0 , µ 1 , • • • , µ n-1 )
where D = {ζ ∈ C : |ζ| < 1} is the open unit disk of the complex plane. Dieomorphism ϕ is very closely related to theorems of Trench [START_REF] Trench | An algorithm for the inversion of nite Toeplitz matrices[END_REF]. The Riemannian geometry of the space of reection coecients has been explored in [START_REF] Barbaresco | Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet Median[END_REF] through the Hessian of Kähler potential, whose metric is

ds 2 = n dP 2 0 P 2 0 + n-1 k=1 (n -k) |dµ k | 2 (1 -µ k | 2 ) 2 . (10) 
According to the metric (10) the space T n can be seen as a product of the Riemannian manifold R * + , ds 2 0 , with ds 2 0 = n(dP 2 0 /P 2 0 ) (logarithmic metric multiplied by n), and (n -1) copies of D,

ds 2 k 1≤k≤n-1 , with ds 2 k = (n -k)ds 2 D . R * + × D n-1
, ds 2 is a CartanHadamard manifold whose sectional curvatures are bounded, i.e., -4 ≤ K ≤ 0. This metric is related information geometry and divergence functions [START_REF] Barbaresco | Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics[END_REF]. From the product metric, closed forms of the Riemannian distance, arc-length parameterized geodesic, etc. can be obtained [START_REF] Barbaresco | Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet Median[END_REF][START_REF] Arnaudon | Riemannian Medians and Means With Applications to Radar Signal Processing[END_REF].

The next paragraph presents the estimations of the marginal densities coefcients µ k .

Experimental results

Data used in the experimental tests are radar observations from THALES Xband Radar, recorded during 2014 eld trials campaign at Toulouse Blagnac Airport for European FP7 UFO study (Ultra-Fast wind sensOrs for wake-vortex hazards mitigation). Data are representative of Turbulent atmosphere monitored by radar in rainy conditions. Fig. 2 illustrates the density estimation of the six reection coecients on the Poincaré unit disk. For each coecient the dataset is composed of 120 draws. We have discussed the problem of density estimation on the hyperbolic space. After having computed the volume change factor, we have adopted the approach based on kernel density estimation by Pelletier [START_REF] Pelletier | Kernel density estimation on Riemannian manifolds[END_REF]. The method has been used to estimate the density of reection coecients from radar signals. According to the dieomorphism between Toeplitz HPD matrices and reection coecients [START_REF] Trench | An algorithm for the inversion of nite Toeplitz matrices[END_REF], densities estimated on a product of Poincaré disk can be interpreted as a probability density on the space of Toeplitz HPD matrces. Other symmetric homogenous spaces such as the Siegel disk can be addressed using similar methods. The link between the Siegel disk and the space of Toeplitz-Block-Toeplitz HPD matrices makes of it an other interesting study case.

Alternative approaches of density estimation can be considered in future research. For data lying in a known compact symmetric subspace of the hyperbolic space, it is possible to use the orthogonal series technique, where the eigenfunctions of Laplace operator are numerically estimated. From an application viewpoint, densities from radar reection coecients can be used as basic ingredient in radar detection algorithms (nding modes of density and segmenting the density).
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 2 Fig. 2. Estimation of the density of the three rst coecients µ k under rainy conditions. The expression of the used kernel is K(x) = 3 π (1 -x 2 ) 2 1x<1

  The convolution is properly dened for kernels that are invariant under elements of the isotropy group of p, for a p in H n . Formally, let K p ref be a function invariant to the isotropy group of p ref . Let K p = K p ref • ϕ p,p ref with ϕ p,p ref an isometry such that ϕ p,p ref (p) = p ref . When it exists, since H n is homogeneous, we can dene the convolution of a function f by the kernel K p ref by: