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Myocardial Motion Estimation from Medical
Images Using the Monogenic Signal

Martino Alessandrini, Adrian Basarab, Hervé Liebgott andOlivier Bernard

Abstract—We present a method for the analysis of heart motion
from medical images. The algorithm exploits monogenic signal
theory, recently introduced as an N-dimensional generalization
of the analytic signal. The displacement is computed locally by
assuming the conservation of the monogenic phase over time.
A local affine displacement model is considered to account for
typical heart motions as contraction/expansion and shear.A
coarse-to-fine B-spline scheme allows a robust and effective com-
putation of the model’s parameters and a pyramidal refinement
scheme helps handle large motions. Robustness against noise is
increased by replacing the standard point-wise computation of
the monogenic orientation with a robust least-squares orientation
estimate.

Given its general formulation, the algorithm is well suited
for images from different modalities, in particular for tho se
cases where time variant changes of local intensity invalidate the
standard brightness constancy assumption. This study evaluates
the method’s feasibility on two emblematic cases: cardiac tagged
magnetic resonance and cardiac ultrasound. In order to quantify
the performance of the proposed method, we made use of
realistic synthetic sequences from both modalities for which the
benchmark motion was known. A comparison is presented with
state-of-the-art methods for cardiac motion analysis. On the data
considered, these conventional approaches are outperformed by
the proposed algorithm. A recent global optical-flow estimation
algorithm based on the monogenic curvature tensor is also
considered in the comparison. With respect to the latter, the pro-
posed framework provides, along with higher accuracy, superior
robustness to noise and a considerably shorter computational
time.

Index Terms—optical flow, monogenic signal, illumination
changes, optimal window size, iterative refinement, cardiac ul-
trasound, tagged MRI.

I. I NTRODUCTION

The monogenic signal has been recently introduced by
Felsberg [1] as an extension of the analytic signal concept
to multiple dimensions. Like the latter, the monogenic signal
provides thelocal amplitudeand local phasesignal features.
Additionally, it also contains information on thelocal orien-
tation. These three local features are pointwise orthogonal,
which means that they represent independent information: the
local amplitude represents the local intensity or dynamics,
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the local phase describes the local symmetry or grey value
transition, and the local orientation describes the direction of
the highest signal variance. Decoupling the local energy from
the image structure, accounted for by phase and orientation,
has made it possible to derive effective solutions to a number
of image-processing problems, in particular when the more
traditional pixel intensity cannot be considered as a reliable
feature.

This situation is often encountered in medical imaging.
In cardiac ultrasound, the local brightness varies over time
due to the changes in the angle between the myocardial
fibers and the direction of propagation of the acoustic beam
or due to out-of-plane motions [2]. In magnetic resonance
imaging (MRI), intensity variations stem from magnetic field
inhomogeneities and scanner-related intensity artifacts[3]. In
tagged-MRI (tMRI) [4], tags fade exponentially over time
depending on the T1 relaxation time [5], [6]. Obviously, the
same problems are encountered when contrast agents are used,
such as in perfusion MRI [7] or when registration of images
from different modalities, such as computed tomography (CT)
and positron emission tomography (PET), is needed [8], [9].

These considerations explain the rapidly growing interest
in monogenic signal analysis applied to medical imaging
problems over the last few years. For example, one could
cite successful applications of monogenic analysis in boundary
detection [10], [11], segmentation [12], multi-modal registra-
tion [8], [9], ultrasound image compounding [13], multi-view
image registration [14], wavelet filtering [15] and envelope
detection [16].

In this context, the algorithm presented in this paper, ad-
dresses a further fundamental problem in the field of medical
imaging,i.e. the estimation of myocardial motion. Assessment
of myocardial elasticity and contractility is indeed essential
in clinical practice to evaluate the degree of ischemia and
infraction as well as for surgical planning [17], [18].

We compute the displacement estimate locally by assuming
the conservation of the monogenic phase in lieu of traditional
pixel brightness. The general formulation takes inspiration
from the work of Felsberg in [19]; nevertheless, the novelties
with respect to this study are manifold and substantial:

• Locally, the size of the image window is selected in
order to have the most consistent motion estimate. This
operation is fully automatic and computationally effective
because of an adaptation of the B-spline multiresolution
approach for the image moments computation proposed
by Sühlinget al. in [20], [21]. By doing so, a common
source of error in local techniques, related to an inade-
quate choice of the window size, is avoided.
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• Felsberg’s pure translation model is replaced with an
affine model. The affine model, a part of translation, can
account for rotation, expansion, compression and shear,
and provides a realistic description of the motion patterns
typical of the cardiac muscle [17]. Furthermore, as the
first-order spatial derivatives of the displacement are also
computed, it allows the direct computation of the cardiac
strain, with no need for numerical differencing [18].

• The robustness to noise is improved by employing a least
squares estimate of the monogenic orientation in place of
the standard point-wise estimate [22].

• An incrementalcoarse-to-finepyramidal scheme is used
to refine the precision of the final estimate.

The general formulation makes the algorithm well suited
for images from different modalities. In particular, this pa-
per evaluates its performance on tagged magnetic resonance
imaging (tMRI) [4] and cardiac ultrasound image sequences.
In order to quantify performance, we made use of realistic
synthetic sequences for both modalities, for which the bench-
mark motion was known. In each experiment, a comparison
is presented with state-of-the-art methods in the related field.
They include SinMod [23] for tMRI images and the Sühling
[21] and Felsberg [19] algorithms for ultrasound. In both
cases, the recent algorithm reported in Zanget al. [24] is also
considered in the comparison. Indeed, due to the monogenic
signal formulation at its base, it can be considered a possible
competitor to the algorithm proposed herein.

The paper proceeds as follows. In Section II the monogenic
signal theory is briefly summarized and the robust computation
of the orientation is introduced. In Section III the proposed
optical flow estimation algorithm is described. Section IV
discusses some implementation details. In Section V the
problem of cardiac motion analysis from tMRI and cardiac
ultrasound is briefly summarized and the results are presented.
Concluding remarks are left to Section VI.

II. M ONOGENIC SIGNAL COMPUTATION

The most practical aspects of the monogenic signal compu-
tation will be reviewed here. For further details, we address the
interested reader to [1], [25] and to [22] for a more intuitive
derivation.

The monogenic signal provides an extension of the standard
analytic signal for multidimensional data. Although the theory
is valid for a general numberN of dimensions (N > 1),
we consider here the case at hand of 2D grayscale images
I : Ω → R, Ω ⊂ R

2.
The image model adopted in phase-based processing is [19],

[26]:
I(x) = A(x) cos(ϕ(x)), (1)

where x = [x, y] is the spatial coordinate vector,A(x) is
the local amplitudeandϕ(x) is the local phase. Additionally,
monogenic signal theory assumes a local intrinsic dimen-
sionality one [19], [26], i.e., the local variations ofI are
concentrated along a single direction, defined by thelocal
orientationθ(x).

The monogenic signal computes the image features of
amplitude, phase and orientation from the responses to three

2D spherical quadrature filters (SQFs) [1]. The SQFs consist
of oneevenrotation invariant bandpassbe(x;λ0) filter and two
oddbandpass filtersbo1(x;λ0) andbo2(x;λ0), whereλ0 is the
filter wavelength, defined as the reciprocal of the normalized
center frequencyf0. Note that in the following the dependency
of the filter responses on the center frequency will be omitted
for the sake of simplicity. The odd filters are computed from
the Riesz transform of the even filter [1], [19]. In the frequency
domain it is:

Bo1(ω) = −
jωx

|ω|
·Be(ω), Bo2(ω) = −

jωy

|ω|
· Be(ω), (2)

where capital letters denote the Fourier transformed quantities
and ω = [ωx, ωy]

T is the normalized angular frequency.
Several SQF families have been employed in the literature:
a comparison of the most popular ones is presented in [27].
A similar study is beyond the scope of this paper. Here, as
recommended in [25], [28], the difference of Poisson (DoP)
kernel is adopted:

Be(ω) = exp (−|ω|s1)− exp (−|ω|s2), (3)

where |ω| is the normalized angular frequency ands1 and
s2 > s1 are two scale parameters. It can be shown that the
wavelength is related to the two scales by:

λ0 = 2π
s1 − s2

log(s1)− log(s2)
. (4)

From the three filter responses, monogenic phaseϕ(x),
orientationθ(x) and amplitudeA(x) of I are obtained as:

θ(x) = arctan

(

q2(x)

q1(x)

)

,

ϕ(x) = arctan

(

|q(x)|

p(x)

)

, (5)

A(x) =
√

p2(x) + |q(x)|2,

where p(x) = (I ∗ be)(x), q1(x) = (I ∗ bo1)(x), q2(x) =
(I ∗ bo2)(x), q(x) = [q1(x), q2(x)]

T and “∗” denotes 2D
convolution.

From the filter responses, thelocal frequencyfeature, de-
fined as the derivative of the phase alongn, can also be
computed as [19]:

f , (∇ϕ)T · n =
p∇Tq− qT∇p

p2 + |q|2
, (6)

where∇ = [∂x, ∂y]
T . Dependency onx is implied.

Monogenic phase and orientation can be conveniently com-
bined in thephase vectorr(x) = [r1(x), r2(x)] = ϕ(x)·n(x),
with n(x) = [cos(θ(x)), sin(θ(x))]T [1], [19]. The depen-
dency onx of all the aforementioned features will be omitted
in the sequel unless necessary.

A. Robust Orientation Computation

In order to improve the robustness against image noise, in
this study we replace the classical point-wise estimate ofθ (5),
with a robust least-squares estimate, inspired by the structure
tensor formalism [29]. The scheme presented was proposed
by Unseret al. in [22].
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The least-squares orientation estimate is obtained by maxi-
mizing the directional Hilbert transformHθI(x) averaged over
a local neighborhoodvσ:

θ̄(x) = arg max
θ′∈[−π,π]

∫

R2

vσ(x
′ − x) · |Hθ′I(x′)|2dx′, (7)

wherevσ corresponds here to a Gaussian kernel with variance
σ2 and the directional Hilbert transform is defined in the
frequency domain as:

Hθ(ω) =
ωx cos(θ) + ωy sin(θ)

|ω|
. (8)

It is shown in [22] that (7) corresponds to the classical
solution (5) if vσ(x) = δ(x). The maximization problem
(7) is solved by the eigenvector associated with the largest
eigenvalue of the2× 2 matrix T(x), with entries:

[T(x)]nm =

∫

R2

vσ(x
′ − x)qn(x

′)qm(x′)dx′, (9)

with n,m = {1, 2}. The matrixT can be assimilated to a
Riesz-transform counterpart of the standard structure tensor.
The new estimate is then given by:

θ̄(x) =
1

2
arctan

(

2[T(x)]12
T[(x)]22 −T[(x)]11

)

. (10)

Due to the averaging operation in (7), this alternative
estimate is expected to be less sensitive to image noise
than the traditional estimate. An example of this property
is given in Fig. 1. We conclude this section by noting that
this different orientation definition also affects the monogenic
phase computation. In particular, the|q| term appearing in the
second equation of (5) must now be replaced withs(x) =
q1 cos θ̄ + q2 sin θ̄.

III. M ULTISCALE OPTICAL FLOW COMPUTATION FROM

THE MONOGENICPHASE

As in [19], the displacement fieldd(x) = [d1(x), d2(x)]
T

along x and y between two frames is estimated by replac-
ing the traditional brightness constancy assumption with the
more robustmonogenic phase constancy assumption. This
is conveniently expressed in terms of the monogenic phase
vector asr(x, t + 1) = r(x − d(x), t). Assuming small
displacements, the first-order Taylor expansion can be used
r(x−d(x), t) ≈ r(x, t)−J(x, t)·d(x), whereJ is the Jacobian
matrix of r. Then, assuming all points translate of the same
quantityd0 within a local windoww centered inx0 = [x0, y0],
the following linear system of equations is obtained:

〈J〉w d0 = −〈rt〉w ,

J(x, t) =

[

r1x(x, t) r1y(x, t)
r2x(x, t) r2y(x, t)

]

, (11)

wherert(x, t) = [r1t(x, t), r2t(x, t)] denotes the time deriva-
tive of r, approximated asr(x, t+ 1)− r(x, t), 〈v〉w denotes
the weighted average

∫

Ωw(x − x0)v(x)dx and rik = ∂kri.
Dependency on(x, t) will be omitted in the following.

Assuming a 1D structure [19],J must have rank one. It
can be shown that its only eigenvalue corresponds to the
monogenic frequencyf in (6) while the associated eigenvector
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Fig. 1. Monogenic orientation estimate in the presence of noise. (a) noise-
free test image containing a full 360-degree range of orientations. (b) ideal
orientation. (c-d) pointwise and robust (σ = 2) estimates in the presence of
image noise (20 dB). Mean square error of the estimate is 1.2E-2 for (c) and
2.7E-4 for (d). Phases are wrapped in the[−π/2, π/2] interval.

is n = [cos(θ), sin(θ)]T [22], [19], this leads to the expression
[22], [19]:

J = fnnT = f

[

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

]

. (12)

The termrt is computed from the SQFs responses as [19]:

rt =
ptqt+1 − qtpt+1

|ptqt+1 − qtpt+1|
arctan

(

|ptqt+1 − qtpt+1|

ptpt+1 + qT
t qt+1

)

(13)

where subscripts “t” and “t + 1” denote the time instant.
We conclude by noting that (11) represents the monogenic

phase counterpart of the popular Lucas & Kanade algorithm
[30], where the matrixJ replaces the image structure tensor.

A. Affine model

Clearly, the simple translation model employed by Felsberg
is too restrictive in a general context. Also, its validity is
heavily dependent on the choice of the size ofw. The solution
we propose is to replace the constant motion assumption with
a more general model, such as the affine model [31], [32].
A part of translations, this accounts for rotation, expansion,
compression and shear. In the context of this paper, the affine
model is of major interest because it provides a realistic
description of the motion patterns of the cardiac muscle [17].
A further relevant point is that, as the first-order spatial deriva-
tives of the displacement are also computed, the Lagrangian
strain tensor can be directly obtained from the latter, withno
need for further numerical differencing. The local analysis of
cardiac contractility is indeed fundamental in the diagnosis of
pathological situations such as ischemia [18], [33].
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Considering for simplicity a windoww centered at
(x0, y0) = (0, 0), the affine model is written:

d(x) = A(x)u, A =

[

1 0 x y 0 0
0 1 0 0 x y

]

, (14)

whereu = [d10, d20, d1x, d1y, d2x, d2y]
T is the new unknown

vector:d10 andd20 correspond to the translation of the window
center anddik = ∂kdi.

Plugging (14) into (11) leads to an underdetermined system
of equations. The solution is obtained by pre-multiplying both
terms byAT , hence:

〈M〉w u = 〈b〉w , M = ATJA, b = −AT rt. (15)

Equation (15) represents the proposed monogenic phase ver-
sion of the Lucas & Kanade algorithm with affine parametriza-
tion of the displacement [21].

It can be shown that the entries ofM andb are the local
moments of orders zero to two of the spatial and temporal
derivatives ofr1 andr2:

M =

















r1x r1y xr1x yr1x xr1y yr1y
r2x r2y xr2x yr2x xr2y yr2y
xr1x xr1y x2r1x xyr1x x2r1y xyr1y
yr1x yr1y xyr1x y2r1x xyr1y y2r1y
xr2x xr2y x2r2x xyr2x x2r2y xyr2y
yr2x yr2y xyr2x y2r2x xyr2y y2r2y

















,

b = −
[

r1t r2t xr1t xr2t yr1t yr2t
]

. (16)

Note that, according to (12), it isr1x = cos2(θ), r2y =
sin2(θ) andr2x = r1y = sin(θ) cos(θ).

B. Multiscale choice of window size.

The choice of the window size is a tedious issue connected
with local techniques: the assumed motion model (translational
or affine) may not hold when the window is too big, otherwise,
the adoption of an excessively small window may result in
the well knownaperture problem[34]. To circumvent this
issue, in [20], [21] Sühlinget al.proposed a multiscale strategy
for locally choosing the most consistent window size. This is
based on the possibility of computing the image moments,i.e.,
the entries of the system matrixM and the vectorb in (16),
at multiple scales, by using an efficient B-splinecoarse-to-fine
strategy.

In particular, they are obtained from window functionsw
that are progressively scaled and subsampled by a factor 2
in each dimension. More precisely, at scalej, the window
wj(x − x0) = w((x − 2jx0)/2

j) is employed, wherew is
written as the separable product of two B-spline functions.

By doing so, at each scaleJf ≤ j ≤ Jc (Jf ≥ 0) a solution
uj can be computed. Among the scales considered, theuj

producing the smallest residual error||Muj − b||ℓ2/|w|ℓ1 is
retained as the final displacement estimate. Whenever nec-
essary, bi-cubic interpolation is employed to obtain a dense
motion field. With this strategy, the scale providing the most
consistent motion estimate is selected.

C. Iterative displacement refinement

The hypothesis of small displacements employed in differ-
ential techniques may be inadequate whenever the displace-
ment is substantial or the image intensity profile is non-linear.
A possible way to deal with this limitation is to implement
a form of Gauss-Newton optimization: the current estimate is
used to undo the motion, and then the estimator is reapplied to
the warped images to find the residual displacement [24], [31],
[35]. When applied iteratively, this procedure can improvethe
estimation accuracy considerably.

We employed the aforementioned refinement scheme in
the algorithm presented. In particular, we found it to be
particularly effective when the degree of detail in the mono-
genic phase image progressively increases between subsequent
iterations. In practice, this is established by suitably tuning the
center frequencyf0 of the SQF bank. By doing so, the coarsest
image is first employed to determine a rough estimate of the
displacement. This estimate is then adjusted on the finer detail
data, obtained from an higher value of center frequency.

Algorithm 1: Multiscale Monogenic Optical Flow
Input : two subsequent frames:I1, I2

parameters:λ0, Jf , Jc, Np, k, σ.
Output : displacement betweenI1 andI2: d

d = 0; % initial displacement
for i = 1 : Np do % pyramidal refinement

[Be,Bo1,Bo2] = SQF(λ0); % see (2) and (3)

[p1,q1] = MonogenSignal(I1,Be,Bo1,Bo2)

[p2,q2] = MonogenSignal(I2,Be,Bo1,Bo2)

f = MonogenFreq(p1,q1); % see (6)

θ = MonogenOrient(q1,σ); % see (10)

J = JacobianMatrix(f ,θ); % see (12)

rt = TimeDer(p1,p2,q1,q2); % see (13)

∆d = MultiscaleMonogenicOF(J,rt,Jc,Jf);

d = d+∆d; % add increment

I2 = Interp(I2,x+∆d); % warp second frame

λ0 = λ0/k; % decrease wavelength

IV. I MPLEMENTATION DETAILS

The pseudo-code of the proposed algorithm is presented
in Algorithm 1. The pyramidal refinement scheme of Section
III-C was implemented by decreasing the filter wavelengthλ0
by a factork = 1.5 at each iteration. The number of iterations
Np and the starting wavelength value have been optimized in
each of the experiments described in the next session.

The multiscale window choice was implemented by consid-
ering fifth-order B-splines and scalesj = {2, 3, 4, 5}. We note
that at scalej the motion is computed on square windows with
sides5·2j−1, with a spacing of2j pixels between neighboring
estimates. A valueσ = 2 was used for the robust computation
of the monogenic orientation.

The proposed algorithm has been implemented in MAT-
LAB (R2011b, The Math-Works, Natick, MA). The code
is made freely available at http://www.creatis.insa-lyon.fr/us-
tagging/code.
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(a) (b) (c)

Fig. 2. (a) Vertical, (b) horizontal and (c) grid tags. Images from [6].

V. RESULTS

The algorithm was tested on realistic simulated cardiac
ultrasound and tagged cardiac MRI (tMRI) image sequences
for which the benchmark motion was known. In each case, a
comparison will be presented with state-of-the art algorithms
for cardiac motion estimation and with the algorithm of Zang
et al. [24], which, to the best of our knowledge, is the most
closely related work to the study presented in this paper. The
Zang algorithm is briefly summarized in Appendix A.

Concerning performance assessment, the most commonly
used measurement in the literature is the angular error [36].
Nevertheless, this metric has several shortcomings. At first,
due to the arbitrary scaling constant (1.0) used to avoid the
divide-by-zero problem, it penalizes small displacementsmore
than large ones. Second, symmetrical deviations of estimated
vectors from the true value result in different error values.

For these reasons, we employ here the less conventional but
more appropriate endpoint error (EE) [37], [38]:

EE = ||d− d̄||2, (17)

whered denotes the estimated displacement andd̄ the bench-
mark displacement.

A. MRI Tagging

1) Background:Tagged MRI is currently the gold-standard
technique for quantification of myocardial contractilityin vivo
[39], [23]. With this technique, cardiac tissue is marked with
magnetically saturated tagging lines or grids (cf. Fig. 2) that
deform with the underlying tissue during the cardiac cycle,
thus providing details on the myocardial motion. With time
elapsing, the grid loses contrast and sharpness (cf. Fig. 3(a)–
(c)). This is the reason why state-of-the-art techniques for
the estimation of myocardial motion from tMRI sequences
exploit the image phase rather than the less trustworthy pixel
intensity. The popular algorithms HARP (harmonic phase) [39]
and SinMod (sine-wave modeling) [23] belong to this family
of methods. In particular, the latter was shown to outperform
HARP in [23].

Both the aforementioned algorithms are derived from mod-
eling the tMRI image as the superposition of monochromatic
plane waves:

I(x) ≈ A(x) cos(ωT
0 x), (18)

where ω0 is fixed given tags direction and spacing. The
displacement is then computed in the Fourier domain from

(a) (b) (c)

(d) (e) (f)

Fig. 3. Tags fading effect on a real tMRI sequence (a)–(c) andon a simulated
one (d)–(f).

the responses of a set of bandpass directional filters tuned ac-
cordingly toω0. More specifically, while HARP [39] employs
a phase-based disparity measure similar to the one by Fleet
and Jepson [40], SinMod estimates the displacement based on
an analytical expression for the cross-power spectrum of two
subsequent frames [23].

It is interesting to observe (18) in relation with the work
presented here. At first, that model directly satisfies the as-
sumption of 1D local structures, at the base of the monogenic
signal analysis. This makes the monogenic signal a promising
tool for the study of tMRI sequences. To our knowledge, this
is the first study investigating this possibility. Second, (18)
can be readily obtained from (1) by including the first-order
phase expression used in Section III. This reveals that on
tMRI images the assumption of small displacements is no
longer required. The upper-limit for the displacement is now
given by one-half of the tag spacing, beyond which the motion
estimation problem becomes undetermined.

2) Motion Estimation Results:The proposed algorithm
is compared with SinMod, available in the InTag plugin
for OsiriX1. The evaluation was made on synthetic tMRI
sequences, generated with the ASSESS software [41]. The
synthetic motion is established on the basis of a 2D ana-
lytical model taking typical contraction, relaxation, torsion
and thickening of the cardiac muscle into account [42]. The
characteristic tag-fading effect, not considered in ASSESS,
was also taken into account in this study, as shown in Fig.
3(d)–(f). The effect was obtained by adjusting the image’s
histogram limits on each frame so as to match those of a real
sequence taken as a template. The algorithm of Zanget al.
[24] was also considered in the comparison.

The results obtained on nine simulated sequences are sum-
marized in Table I. For each algorithm the parameters were
optimized to return the smallest average error on the sequence
D30R20T01P0F20. For the proposed algorithm, these values
were λ0 = 4 for the initial wavelength andNp = 5 for
the number of refinement steps. For the Zang algorithm,

1http://www.creatis.insa-lyon.fr/inTag/
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TABLE I
ENDPOINT ERROR(µ± σ) IN PIXELS ON 9 SIMULATED SEQUENCES.

SEQUENCE ALGORITHM

Proposed SinMod Zang

D30 0.152± 0.121 0.215± 0.145 0.163± 0.137

D30F20 0.082± 0.072 0.128± 0.112 0.087± 0.079

D30R10T01P0 0.264± 0.149 0.363± 0.199 0.303± 0.202

D30R20T01P0 0.462± 0.239 0.970± 1.129 0.531± 0.328

D30R20T01P0F20 0.209± 0.139 0.344± 0.224 0.224± 0.174

D30R20T01P3 0.419± 0.228 0.911± 1.099 0.461± 0.301

R20F20 0.244± 0.164 0.416± 0.264 0.247± 0.191

R10 0.161± 0.087 0.220± 0.090 0.164± 0.104

R20 0.104± 0.072 0.174± 0.122 0.124± 0.079

the values wereα = 0.2 for the weight between the data
and the smoothness term,γ = 0.1 for the weight between
the monogenic signal and the monogenic curvature and a
varianceρ2 of 2 pixels for the Gaussian localizing window
(see Appendix A for a clearer understanding of the parameters’
meaning). A multi-resolution refinement scheme was also
employed [24] with four levels. SinMod required the tags type
(grid), direction (45◦) and spacing (six pixels). The name of
each sequence reflects the values of the parameters used for
its generation, namely: contraction/expansion (D), rotation (R),
thickening (T), frame-rate (F) and healthy (P0) or pathological
(P3) state. Greater detail on their meaning can be found in
[42].

These results show that the proposed algorithm system-
atically returns the estimate with the smallest mean value
and variance, which is a proof of precision and reliability.
While the improvement with respect to SinMod is evident,
the improvement with respect to the Zang algorithm is less
pronounced. Nevertheless, the differences among all the algo-
rithms were found to be statistically significant (p < 0.0001)
for all sequences using the Friedman rank test (α = 0.05) in
conjunction with thepost-hoctest proposed by Daniel [43],
as suggested in [44]. In order to avoid correlations among
samples, we suitably subsample the error images prior to the
statistical analysis.

A clearer understanding of the algorithm’s performance is
provided by Fig. 4 where the error dispersion on two of the
simulated sequences is represented for the three algorithms
considered. The sequences were considered in order to present
two different kinds of motions, specifically pure rotation (a)
and pure contraction/expansion (b). In both cases, the proposed
algorithm and Zang’s algorithm outperform SinMod. It is also
clear how the proposed algorithm provides better estimates
than Zang’s in the first part of the sequence,i.e. when the
displacements are greater, while, in the final part, the two
estimates are almost equivalent.

To better appreciate the difference in performance, it is
useful to analyze the local behavior of each algorithm. Thisis
represented in Fig. 5, where the error images obtained on the
4-th frame of the two sequences considered above is displayed.
At that instant, the displacement reaches the maximum average
value and the greatest spatial variation in both cases: in the
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Fig. 4. Boxplot of the errors for R20F20 in (a) and D30F20 in (b). The
center of each box represents the median while the body extends from the
25-th to the 75-th percentile.

first case (first row in the Figure) the angular velocity decreases
linearly, passing from the endocardial to the epicardial contour;
in the second (second row in the figure) the radial contraction
is null on the epicardium and maximal on the endocardium.

From the comparison between Fig. 5(c)–(g) and Fig. 5(d)–
(h) it is clear how the Zang algorithm suffers more from these
gradients of velocity than the proposed algorithm. This is a
consequence of its global nature. Indeed, this method imposes
a constraint on the gradient of the motion field that turns
out to be inadequate when the entity of the displacement
varies rapidly inside the image. At this point, it is important
to remember that these results correspond to the optimal
parameters’ configuration. In particular, smaller values of the
smoothness weightα, which could tentatively be employed
in order to avoid over-regularization effects, lead instead to
larger errors. For example, a reduction ofα from the optimal
0.2 to 0.05 leads to an increase in the endpoint error from 0.45
to 0.68 pixels. As shown by the previous results, SinMod is
outperformed by both methods.

More generally, Zang’s algorithm appears to involve exces-
sively rigid priors on the displacement model, which makes it
unsuitable to dealing with more complex and inhomogeneous
motion patterns. In contrast, the proposed algorithm does not
imply any hypothesis on the motion field, and therefore it can
handle similar situations with superior flexibility.

The sensitivity to noise was also evaluated. To this end, we
contaminated the frames of sequence R20F20 with additive
Rician noise [5]. Fig. 6 reports the endpoint error variation
due to noise,i.e. the value|EEn −EEref |, whereEEref is
the average endpoint error measured in the noise-free case (cf.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Error map for the 4-th frame of R20F20 (first row) and D30F20 (second row). The green arrows in (a) and (e) denote the benchmark field.
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Fig. 6. Sensitivity to noise of proposed algorithm in (a), Zang’s algorithm in (b), SinMod in (c)

Fig. 4), whileEEn is the value in the presence of noise. The
results are based on 15 independent noise realizations. While
the performance of the Zang algorithm decreases considerably,
especially for large motions, the performance of the proposed
algorithm remains virtually unchanged. The good robustness
against noise stems from two factors: the multiscale window
choice of Section III-B and the robust monogenic orientation
of Section II-A. The first guarantees that the integration scale
is optimized locally so as to minimize the noise effect on the
velocity determination, while the second ensures a more robust
computation of the monogenic features. We also note that
sensitivity to noise is a known drawback of global techniques
as compared to local techniques [45]. SinMod also shows
better noise robustness as compared to the Zang algorithm.
Nevertheless, it should be noted that SinMod also returned
the worst results in terms of accuracy.

Here we note that the computation of the monogenic signal
involves pre-filtering the data, and this can produce some
noise suppression. Nevertheless, this fact does not explain the
superiority with respect to Zang’s algorithm given that the
latter makes use of the same set of SQF filters that we employ

in the proposed method.

A further fundamental point concerns computational time.
For the optimal parameters’ configuration, it was 0.55 s/image
for the proposed algorithm (image size, 256×256 pixels2) and
17 s/image for Zang’s algorithm. Both these values refer to
MATLAB implementations executed on a desktop PC with
a 3.47 GHz Intel Xeon X5690 processor, 12 Gb of RAM
and running Windows 7. Although unoptimized for definition,
given that MATLAB was used, these results give a clear vision
on the relation between the complexity of the two algorithms.
The increased computational burden of the Zang algorithm
is readily explained by its global formulation, demanding the
employment of iterative optimization routines, cf. Appendix
A. On the contrary, the proposed algorithm reaches a sub-
second speed with its efficient B-spline formalism (even in
this unoptimized version). It is worth pointing out that fast
computation is primal as far as medical imaging is concerned.

Finally, the feasibility of the algorithm presented in a
clinical setting was qualitatively assessed by considering two
real acquisitions. The first came from a healthy subject
(Siemens MAGNETOM Avanto 1.5T, 6 mm tag-spacing, 0◦
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(a) systole healthy (b) diastole healthy

(c) systole post infarct (d) diastole post infarct

Fig. 7. Color encoding of the radial component of the estimated displacement.
Red color encodes inward motion and blue color outward one. No color
denotes no motion. The displacement value is expressed in pixel. In (a) and
(b) are presented the results on a systolic and diastolic frame on an healthy
subject. In (c) and (d) are presented the results on a systolic and diastolic
frame on a post-infarction subject.

tag-orientation), the second from a patient who underwent
inferior cardiac infarction due to the occlusion of the left
anterior descending artery (LAD). This latter acquisitionrefers
to two days after reperfusion (Siemens MAGNETOM Avanto
1.5T, 6mm tag-spacing, 45◦ tag-orientation). A qualitative
representation of the results is given in Fig. 7. The color
map superimposed on the tMRI image encodes the radial
component of the estimated displacement computed with re-
spect to the center of the myocardium, represented by a white
cross. Red and blue denote inward and outward displacement,
respectively.

The first line of figures corresponds to a systolic and dias-
tolic frame on the healthy subject: the estimated displacement
reflects the physiological contraction and dilatation of the left
ventricle in these two phases of the heart cycle. In contrast,
on the post-infarct patient, the color notation reflects the
reduced mobility of the heart regions involved in the infarction.
More than that, Fig. 7(c) demonstrates a dyskinetic behavior,
represented by an non physiological outward motion during
systole [21].

In the experiments illustrated in Fig. 7, the heart mask was
drawn manually by a cardiologist and the center point was
computed as its center of mass. Several ways for automatizing
myocardium tracking on tMRI sequences have been proposed
in the literature and could be employed here in lieu of manual
contouring. Reviewing them is beyond the scope of this paper.

Clearly, the evaluation proposed above is far from being
an exhaustive clinical evaluation of the proposed algorithm.
Still, it gives insights into the meaningfulness of the estimates
it returns. A deeper evaluation on diagnostic cases is left to

further studies.
We conclude this section by noting that, even though the

model (18) is adequate for line-tags, otherwise, in the case
of grid-tags, a second wave roughly perpendicular to the first
should be included in the image model. This would suggest
investigating the use of 2D extensions of the monogenic signal.
In particular the signal multi-vector [28] shows excellentfit
with the grid-tag image model. Similar considerations deserve
to be investigated more in depth in future studies. Nonetheless,
the results presented here show that, even in the grid-tag case,
the monogenic-phase-based algorithm presented still produces
relevant estimates.

B. Cardiac Ultrasound

1) Background:Quantitative analysis of cardiac ultrasound
sequences can provide important mechanical measurements
such as muscle strain and twist, wall thickness and ejection
fraction [18]. Compared to MRI, medical ultrasound has a
higher spatio-temporal resolution, requires no infrastructures,
low budgets and involves no discomfort for the patients. For
these reasons it is currently the most widespread medical
imaging exam [46]. These factors explain the high clinical
interest in the development of tools for the determination of
cardiac function from cardiac ultrasound images [18].

While tissue Doppler offers a powerful instrument to eval-
uate cardiac deformation [47], it suffers from the major
limitation that only the velocity component in the direction
of the ultrasound beam can be determined. This has motivated
a growing interest in the development of non-Doppler tech-
niques. They include speckle-tracking [48], frame-to-frame
[49] or group-wise elastic registration [33] and optical flow
[21]. In particular, the algorithm of Sühlinget al. [21] achieves
an excellent compromise between accuracy and computational
complexity. Moreover, its clinical feasibility has been attested
in thorough studies [17].

The Sühling algorithm improves the Lucas & Kanade
[30] formalism by including the multiscale window choice
strategy of Section III-B. As in [30], motion is computed on
the basis of the brightness conservation between subsequent
frames. Nevertheless, as mentioned in the introduction, this
can be a misleading assumption as far as cardiac ultrasound
is concerned. This is also proved by the increasing interestin
phase-based solutions [11], [14].

The following compares the proposed multiscale monogenic
optical-flow algorithm presented in this paper, the Sühling
algorithm, the Zang algorithm and the Felsberg algorithm,
which has been recently applied to medical ultrasound in [50].

2) Motion Estimation Results:In order to provide a quan-
titative evaluation of the algorithms considered, we use syn-
thetic echocardiographic sequences. The simulation frame-
work is described in [51]. The simulated sequences along
with the benchmark fields are available for download at
http://www.creatis.insa-lyon.fr/us-tagging/news. In this study,
we assessed two simulated sequences: one Short Axis (SAx)
and one Apical 4 Chambers (A4C). These are two of the most
frequently adopted orientations in the clinical procedure[52].

A representation of the estimated motion fields with the
proposed algorithm is given in Fig. 8. These fields show how



IEEE TIP 9

(a) (b)

(c) (d)

Fig. 8. (a),(b) Diastolic and systolic frames from a synthetic short axis
sequence. The motion estimated with the proposed algorithmis superimposed
as green arrows. (c),(d) Diastolic and systolic frames froma synthetic apical
four chambers sequence.

the estimates are qualitatively consistent with physiological
cardiac motion: indeed the motion vectors point inward during
systole and outward during diastole.

TABLE II
ENDPOINT ERROR(µ± σ)

ALGORITHM SEQUENCE

Apical 4 Chambers Short Axis

Sühling 0.395± 0.338 0.396± 0.346

Felsberg 0.315± 0.257 0.364± 0.293

Zang 0.294± 0.217 0.324± 0.256

Proposed 0.264± 0.190 0.313± 0.242

Table II reports the average errors obtained on the entire
simulated sequences. For all the algorithms, the parameters
have been optimized to obtain the smallest average error on the
SAx sequence. For the proposed algorithm these areλ0 = 2
andNp = 5. For the Zang algorithm they are insteadγ = 0.2,
α = 0.2, ρ = 2 and five pyramidal refinements.The Felsberg
algorithm employed a fixed windoww given by the tensor
product of two B-spline functions of order 5 at scaleJ = 4,
while the optimal wavelength for the SQF was 3 pixels. The
Sühling algorithm employed the multiscale window choice
by testing the same scalesj = {2, 3, 4, 5} as the proposed
algorithm. Neither Felsberg’s nor Sühling’s algorithm applied
any refinement scheme like the one in Section III-C (cf. [19],
[21]).

From Table II all the three monogenic phase-based algo-
rithms considered perform better than Sühling’s algorithm.
This confirms that the monogenic phase is a more reliable
feature than pixel intensity as far as medical ultrasound is
concerned [8], [11], [14]. Also, both the Zang algorithm and
the proposed algorithm outperform the Felbsberg algorithm

10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

FRAME NUMBER

E
N

D
 P

O
IN

T
 E

R
R

O
R

A4C SEQUENCE − MEAN VALUE

 

 

Proposed

Zang

Felsberg

Suhling

(a)

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

FRAME NUMBER

E
N

D
 P

O
IN

T
 E

R
R

O
R

A4C SEQUENCE − STANDARD DEVIATION

(b)

Fig. 9. Errors for the four algorithm on the synthetic A4C sequence: mean
value (a) and standard deviation (b).

due to their more sophisticated formulation. As in the tMRI
case, the improvement with respect to the Zang algorithm is
less pronounced than with respect to the other two algorithms.
Nevertheless, in this case as well, the differences were found
to be statistically significant according to a Friedman ranktest
(p < 0.0001, α = 0.05).

A more detailed performance analysis is illustrated in Fig.
9, where the four algorithms are compared on the A4C
sequence. The four curves represent the mean value (a) and
standard deviation (b) of the endpoint error on each frame
of the sequence. As in the tMRI case, the improvement of
our algorithm with respect to the Zang algorithm is more
relevant for large displacements. In particular, they occur
during the diastolic expansion, roughly comprised between
frame 10 and frame 22 of the simulated sequence. Again, this
superiority can be explained by the major flexibility involved
by the proposed formalism, which makes it more suitable for
following complex motion patterns. The frames between 22
and 44 instead represent the end of diastole. In this interval,
the displacement is minimal and the Fesberg, Zang and the
proposed algorithm return close results. Finally, the lastframes
correspond to the systolic contraction. Here the Zang algorithm
and the one proposed herein still give close estimates, while
the error for the Felsberg algorithm increases. This flaw results
from the absence in the latter of any strategy to account for
large displacements, as the pyramidal refinement adopted in
the Zang algorithm and the proposed algorithm.

Finally, Fig. 10 shows the benefits derived from the mul-
tiscale window choice of Section III-B. The color display
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(a) (b) (c)

Fig. 10. Color map illustrating the multiscale window choice. Pixels are
colored according to the scale determining their velocity.At the initial step (a)
only scaleJ=5 is used, then scaleJ=4 is tested (b) and and the displacements
are updated where requested by the error criterion. The window choice
procedure ends at scaleJ=3. The title of each figure reports the endpoint
error at that step.

represents the scale retained in the velocity computation
while the title reports the corresponding endpoint error. The
progressive error reduction shows how the window selection
procedure allows the computation of more consistent velocity
estimates. The block-like appearance of the color maps results
from the estimate stopping at scalej = 3, so that one velocity
is computed every23 pixels. A pixel-wise map is then obtained
by nearest-neighbor interpolation.

With respect to Fig. 10, it is also interesting to note that,
while the scalej = 2 was also considered, it was never
selected in the velocity computation. This reveals that the
automatic window selection procedure makes the algorithm
almost independent on the chosen range[Jf , Jc].

Again, besides being more precise, the proposed algorithm
is somewhat more computationally effective than the Zang
algorithm. As an example, the computation time for one A4C
image (size, 271×333 pixels2) with the optimal parameters
was 0.68 s while it was 18.6 s for the Zang algorithm. This
point is even more important here than with MRI. Indeed,
although off-line processing is considered acceptable in the
latter case, it would not be for ultrasound, where the real-time
aspect is one of the major attractions.

VI. CONCLUSION

We have described a novel algorithm for the analysis
of heart motion from medical images. The displacement is
estimated from the monogenic phase and is therefore robust
to possible variations of the local image energy. A local affine
model accounts for the typical contraction, torsion and shear
of myocardial fibers. An effective B-spline multiresolution
strategy automatically selects the scale returning the most con-
sistent velocity estimate. The multiresolution strategy together
with a least-squares estimate of the monogenic orientation
make the algorithm robust under image noise.

Due to its general formulation, the proposed algorithm is
well suited for measuring myocardial motion from images
from different modalities. In particular, we have presented
an evaluation on cardiac tagged MRI and echocardiographic
sequences. The results have shown that the proposed algorithm
is a valid alternative to state-of-the-art techniques in the two
fields. Moreover, it was shown to be more accurate and

considerably less computation-demanding than another recent
algorithm based on the monogenic signal [24].

A potentially valuable application is motion compensation
of myocardial perfusion MRI images [7]. Indeed, the major
challenge in correcting the motion problem is that the local
tissue contrast in the image sequence changes locally with
time, especially in the region of interest, the left ventricular
myocardium. Due to the low sensitivity to alterations in the
brightness profile, we believe the application of the proposed
algorithm to this problem could lead to beneficial results.
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APPENDIX A
THE ZANG ALGORITHM FOR OPTICAL FLOW COMPUTATION

The Zang algorithm is based on an extension of the mono-
genic signal for intrinsically 2D structures, calledmonogenic
curvature tensor. The motion estimate is then obtained by
plugging this new feature in the popular non-linear energy
function of Bruhnet al. [36]:

E(w) =

∫

Ω

(

ψ1

(

wTJρ (∇3ϕ+ γ∇3Φ)w
))

dxdy +

+α

∫

Ω

ψ2

(

|∇w|
2
)

dxdy. (19)

where w = [d1, d2, 1], ∇3 = [∂x, ∂y, ∂t], Jρ (∇3f) =
Kρ ∗

(

∇3f∇3f
T
)

, ψi(z) = 2βi
√

1 + z/βi, α, γ andβ are
constant parameters andKρ is a Gaussian kernel with standard
deviationρ. The two termsϕ andΦ are the monogenic signal
and monogenic curvature phases, respectively.

The minimization of (19) is carried out as in [36] with two
nested iterative procedures. An outer fixed point cycle inψ1,
ψ2 to remove the non-linearity and an innersuccessive over-
relaxation method(SOR) to solve the resulting linear problem.
A pyramidal refinement scheme is also employed, as in [36].
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