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Myocardial Motion Estimation from Medical
Images Using the Monogenic Signal

Martino Alessandrini, Adrian Basarab, Hervé Liebgott @livier Bernard

Abstract—We present a method for the analysis of heart motion
from medical images. The algorithm exploits monogenic siga
theory, recently introduced as an N-dimensional generaliation
of the analytic signal. The displacement is computed locall by

assuming the conservation of the monogenic phase over time.

A local affine displacement model is considered to account ffo
typical heart motions as contraction/expansion and shearA
coarse-to-fine B-spline scheme allows a robust and effeaticom-
putation of the model's parameters and a pyramidal refinemen
scheme helps handle large motions. Robustness against reis
increased by replacing the standard point-wise computatio of
the monogenic orientation with a robust least-squares orietation
estimate.

Given its general formulation, the algorithm is well suited
for images from different modalities, in particular for tho se
cases where time variant changes of local intensity invalate the
standard brightness constancy assumption. This study evahtes
the method’s feasibility on two emblematic cases: cardiacagged
magnetic resonance and cardiac ultrasound. In order to quatify

the local phase describes the local symmetry or grey value
transition, and the local orientation describes the divecbf

the highest signal variance. Decoupling the local energnfr
the image structure, accounted for by phase and orientation
has made it possible to derive effective solutions to a numbe
of image-processing problems, in particular when the more
traditional pixel intensity cannot be considered as a bégtia
feature.

This situation is often encountered in medical imaging.
In cardiac ultrasound, the local brightness varies oveetim
due to the changes in the angle between the myocardial
fibers and the direction of propagation of the acoustic beam
or due to out-of-plane motions [2]. In magnetic resonance
imaging (MRI), intensity variations stem from magnetic diel
inhomogeneities and scanner-related intensity artifg@gjtsin
tagged-MRI (tMRI) [4], tags fade exponentially over time

the performance of the proposed method, we made use of depending on the T1 relaxation time [5], [6]. Obviously, the

realistic synthetic sequences from both modalities for with the
benchmark motion was known. A comparison is presented with
state-of-the-art methods for cardiac motion analysis. Onlte data
considered, these conventional approaches are outperfoed by
the proposed algorithm. A recent global optical-flow estim&on
algorithm based on the monogenic curvature tensor is also
considered in the comparison. With respect to the latter, tle pro-
posed framework provides, along with higher accuracy, supsor
robustness to noise and a considerably shorter computati@h
time.

Index Terms—optical flow, monogenic signal, illumination
changes, optimal window size, iterative refinement, cardia ul-
trasound, tagged MRI.

. INTRODUCTION
The monogenic signal has been recently introduced

same problems are encountered when contrast agents are used
such as in perfusion MRI [7] or when registration of images
from different modalities, such as computed tomography)(CT
and positron emission tomography (PET), is needed [8], [9].

These considerations explain the rapidly growing interest
in monogenic signal analysis applied to medical imaging
problems over the last few years. For example, one could
cite successful applications of monogenic analysis in daon
detection [10], [11], segmentation [12], multi-modal retga-
tion [8], [9], ultrasound image compounding [13], multiew
image registration [14], wavelet filtering [15] and envedop
detection [16].

In this context, the algorithm presented in this paper, ad-
dresses a further fundamental problem in the field of medical
byiaging,i.e. the estimation of myocardial motion. Assessment

Felsberg [1] as an extension of the analytic signal concegft myocardial elasticity and contractility is indeed edgsn
to multiple dimensions. Like the latter, the monogenic aignin clinical practice to evaluate the degree of ischemia and

provides thelocal amplitudeand local phasesignal features.
Additionally, it also contains information on tHecal orien-

infraction as well as for surgical planning [17], [18].
We compute the displacement estimate locally by assuming

tation. These three local features are pointwise orthogongie conservation of the monogenic phase in lieu of tradition
which means that they represent independent informati@n: {pixel brightness. The general formulation takes insporati
local amplitude represents the local intensity or dynamidsom the work of Felsberg in [19]; nevertheless, the noeslti
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with respect to this study are manifold and substantial:

o Locally, the size of the image window is selected in
order to have the most consistent motion estimate. This
operation is fully automatic and computationally effeetiv
because of an adaptation of the B-spline multiresolution
approach for the image moments computation proposed
by Suihlinget al. in [20], [21]. By doing so, a common
source of error in local techniques, related to an inade-
quate choice of the window size, is avoided.



IEEE TIP 2

« Felsberg’s pure translation model is replaced with &D spherical quadrature filters (SQFs) [1]. The SQFs consist
affine model. The affine model, a part of translation, casf oneevenrotation invariant bandpass(x; Ao ) filter and two
account for rotation, expansion, compression and sheadd bandpass filters,; (x; o) andb,z(x; Ag), where, is the
and provides a realistic description of the motion patterfigter wavelength, defined as the reciprocal of the normdlize
typical of the cardiac muscle [17]. Furthermore, as theenter frequencyj. Note that in the following the dependency
first-order spatial derivatives of the displacement are alsf the filter responses on the center frequency will be oxhitte
computed, it allows the direct computation of the cardidor the sake of simplicity. The odd filters are computed from
strain, with no need for numerical differencing [18].  the Riesz transform of the even filter [1], [19]. In the freqag

« The robustness to noise is improved by employing a leagtmain it is:
squares estimate of the monogenic orientation in place of Jwa
the standard point-wise estimate [22]. Boi(w) = —

« An incrementaloarse-to-fingpyramidal scheme is used , ) "
to refine the precision of the final estimate. where capital letters denote the Fourier transformed dfigmt
ndw = [w;,wy]T is the normalized angular frequency.

The general formulation makes the algorithm well SUItegeveral SQF families have been employed in the literature:

for images from different modalities. In particular, thia-p . : :
. . a comparison of the most popular ones is presented in [27].
per evaluates its performance on tagged magnetic resonance

: : . . Similar study is beyond the scope of this paper. Here, as
imaging (tMRI) [4]. and cardiac ultrasound image Sequen.cerse'commendedyin [25]3,/ [28], the difl?erence opropisson (DoP)
In order to quantify performance, we made use of reaI'Stf(%rnel is adopted:
synthetic sequences for both modalities, for which the henc ’
mark motion was known. In each experiment, a comparison Be(w) = exp (—|wls1) — exp (—|w|s2), 3
is presented with state-of-the-art methods in the relatdd.fi _ i
They include SinMod [23] for tMRI images and the Suhlind\’here |w| is the normalized angular frequency asd and
[21] and Felsberg [19] algorithms for ultrasound. In botfi2 > 51 are.two scale parameters. It can be shown that the
cases, the recent algorithm reported in Zangl. [24] is also Wavelength is related to the two scales by:
considered in the comparison. Indeed, due to the monogenic
signal formulation at its base, it can be considered a plessib
competitor to the algorithm proposed herein.

The paper proceeds as follows. In Section Il the monoge%’(';I
signal theory is briefly summarized and the robust computati

Be(w)v Bo2(w) = _T%T - Be(w), (2)

|l

S1 — S2
n———————.
log(s1) — log(s2)

From the three filter responses, monogenic pha&e),
entationd(x) and amplitudeA(x) of I are obtained as:

Ao =2 (4)

of the orientation is introduced. In Section Il the propdse 6(x) — arctan <QZ(X))
optical flow estimation algorithm is described. Section IV qa(x) /)’
discusses some implementation details. In Section V the lq(x)|
problem of cardiac motion analysis from tMRI and cardiac p(x) = arctan <W) ’ ®)
ultrasound is briefly summarized and the results are predent B v
Concluding remarks are left to Section VI. Al) = vp*(x) +lax)?,
wherep(x) = (I * b.)(x), q1(x) = (I * bo1)(X), g2(x) =
[I. MONOGENIC SIGNAL COMPUTATION (I % b2)(x), q(x) = [q1(x),¢2(x)]" and “” denotes 2D

The most practical aspects of the monogenic signal comgignvolution.
tation will be reviewed here. For further details, we addtte ~ From the filter responses, thecal frequencyfeature, de-
interested reader to [1], [25] and to [22] for a more intugtivfined as the derivative of the phase along can also be
derivation. computed as [19]:

The monogenic signal provides an extension of the standard »V7Tq—q'Vp
analytic signal for multidimensional data. Although theahy fE (V)T -n= NPT
is valid for a general numbeN of dimensions V > 1), P q
we consider here the case at hand of 2D grayscale imagéereV = [9,,9,]”. Dependency o is implied.
I1:Q—R,QcCR Monogenic phase and orientation can be conveniently com-

The image model adopted in phase-based processing is [1dfied in thephase vector(x) = [r(x), r2(x)] = ¢(x)-n(x),

[26]: with n(x) = [cos(6(x)),sin(A(x))]” [1], [19]. The depen-
I(x) = A(x) cos(p(x)), (1) dency onx of all the aforementioned features will be omitted
in the sequel unless necessary.

; (6)

wherex = [z,y] is the spatial coordinate vectod(x) is
the local amplitudeand o(x) is thelocal phase Additionally, ) ) )
monogenic signal theory assumes a local intrinsic dimef: Robust Orientation Computation
sionality one [19], [26],i.e., the local variations ofl are In order to improve the robustness against image noise, in
concentrated along a single direction, defined by ltwal this study we replace the classical point-wise estimate(s),
orientationd(x). with a robust least-squares estimate, inspired by thetsieic
The monogenic signal computes the image features tehsor formalism [29]. The scheme presented was proposed
amplitude, phase and orientation from the responses te thbg Unseret al. in [22].
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The least-squares orientation estimate is obtained by-ma,_, TESTIMAGE oo one Ao

mizing the directional Hilbert transforfiy I (x) averaged over |
a local neighborhood,:

0.5

0(x) = arg max / Vo (X' = x) - [Ho I(X)|?dx', (7)
R2

0’ e[—m,7]

-0.5

wherev,, corresponds here to a Gaussian kernel with varian
o2 and the directional Hilbert transform is defined in the
frequency domain as: N

A\
_ wy cos() + w, sin(0)

8) @ (b)
|w|

ROBUST ESTIMATE

Ho(w)

It is shown in [22] that (7) corresponds to the classic
solution (5) if v,(x) = §(x). The maximization problem
(7) is solved by the eigenvector associated with the larg
eigenvalue of the x 2 matrix T(x), with entries:

[T(X)]nm = /]R2 UU(XI _ X)qn(xl)qm(x/)dxl, (9)

with n,m = {1,2}. The matrixT can be assimilated to a
Riesz-transform counterpart of the standard structursoten !
The new estimate is then given by: © ) @
c
- 1 2|T(x
9(x) = — arctan ( [ ( )]12 ) . (10) Fig. 1. Monogenic orientation estimate in the presence &denqa) noise-
2 T[(x)]22 — T[(x)]11 free test image containing a full 360-degree range of aateots. (b) ideal

; ; ; ; -~ orientation. (c-d) pointwise and robust & 2) estimates in the presence of
Due to the averaging operation in (7)' this altematlv%ﬁage noise (20 dB). Mean square error of the estimate is-2.RE (c) and

estimate is expected to be less sensitive to image NOE:=-4 for (d). Phases are wrapped in fher/2, /2] interval.

than the traditional estimate. An example of this property

is given in Fig. 1. We conclude this section by noting that

this different orientation definition also affects the mganic isn = [cos(6), sin(6)]” [22], [19], this leads to the expression
phase computation. In particular, thg term appearing in the [22], [19]:

second equation of (5) must now be replaced witly) = - cos2(6) sin(8) cos(6)

q1cosd + gz sin 6. J=font =71 [ sin(@) cos(6) sin(6) } - (12

The termr, is computed from the SQFs responses as [19]:

Ill. MULTISCALE OPTICAL FLOW COMPUTATION FROM
THE MONOGENIC PHASE rp = DAL T QDAL an ('ptqt“ — qmt“') (13)

As in [19], the displacement field(x) = [d;(x), d2(x)]T [PeQt+1 = Qepea] PePe1 + af Aot
along z and y between two frames is estimated by replasvhere subscriptst” and “t + 1” denote the time instant.
ing the traditional brightness constancy assumption with t We conclude by noting that (11) represents the monogenic
more robustmonogenic phase constancy assumptidhis phase counterpart of the popular Lucas & Kanade algorithm
is conveniently expressed in terms of the monogenic phd&@], where the matrixJ replaces the image structure tensor.
vector asr(x,t + 1) = r(x — d(x),t). Assuming small
displacements, the first-order Taylor expansion can be uskdAffine model
r(x—d(x),?) = r(x,)—=J(x,1)-d(x), whereJ is the Jacobian  clearly, the simple translation model employed by Felsberg
matrix of r. Then, assuming all points translate of the same too restrictive in a general context. Also, its validity i
quantityd, within a local windoww centered inko = [z0,%0],  heavily dependent on the choice of the sizewofThe solution

the following linear system of equations is obtained: we propose is to replace the constant motion assumption with
3y, do = — (r,),, a more general model, §uch as the affine m_odel [31], [32].

A part of translations, this accounts for rotation, expansi
J(x,t) = re(%,8) Ty (%) , (11) compression and shear. In the context of this paper, thesaffin

rae(X,1)  2y(%,1) model is of major interest because it provides a realistic

wherer;(x,t) = [r1:(x,t), r2:(x,t)] denotes the time deriva- description of the motion patterns of the cardiac musclé.[17

tive of r, approximated as(x, ¢+ 1) — r(x, t), (v),, denotes A further relevant point is that, as the first-order spatiziih-

the weighted averagg, w(x — xo)v(x)dx andry, = 9r;. tives of the displacement are also computed, the Lagrangian

Dependency orix, t) will be omitted in the following. strain tensor can be directly obtained from the latter, with
Assuming a 1D structure [19]J must have rank one. It need for further numerical differencing. The local anadysi

can be shown that its only eigenvalue corresponds to tberdiac contractility is indeed fundamental in the diagso$

monogenic frequency in (6) while the associated eigenvectopathological situations such as ischemia [18], [33].
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Considering for simplicity a windoww centered at C. lterative displacement refinement

(z0,¥0) = (0,0), the affine model is written: The hypothesis of small displacements employed in differ-
0 ential techniques may be inadequate whenever the displace-
d(x) = Ax)u, A 1 . (14) mentis substantial or the image intensity profile is noedin
A possible way to deal with this limitation is to implement
whereu = [dyo, dao, d1s, d1y, oz, day]” is the new unknown a form of Gauss-Newton optimization: the current estimate i
vector:d; o anddsy correspond to the translation of the window:Sed to undo the motion, and then the estimator is reapplied t
center andi,;, = 9xd;. the warped images to find the residual displacement [24], [31
Plugging (14) into (11) leads to an underdetermined systdap]- When applied iteratively, this procedure can impréve

of equations. The solution is obtained by pre-multiplyingtb €Stimation accuracy considerably. . .
terms byA7”, hence: We employed the aforementioned refinement scheme in

the algorithm presented. In particular, we found it to be
M), ,u=(b),, M=A"JA, b=-A"r,. (15) particularly effective when the degree of detail in the mono
genic phase image progressively increases between sidrgequ
Equation (15) represents the proposed monogenic phase y@kations. In practice, this is established by suitabhyjirig the
sion of the Lucas & Kanade algorithm with affine parametriz%enter frequencfo of the SQF bank. By doing so, the coarsest
tion of the displacement [21]. image is first employed to determine a rough estimate of the
It can be shown that the entries M andb are the local displacement. This estimate is then adjusted on the finaildet

moments of orders zero to two of the spatial and temporgéta, obtained from an higher value of center frequency.
derivatives ofr; andrs:

|1 z y 0 0
|0 0 0 =z y

P Ty @Te Y. X1, YTl Algorithm 1: Multiscale Monogenic Optical Flow

. . e . Input : two subsequent framesgi, I
R e " parameters, 4y, .. Ny b o
M = * y * 5 y 5 Y Output: displacement betweeh and I2: d
Yriz Yriy TYTiz Y Tixz TYTly YTy
TToy  TToy 229y TYTos .7:27’2y TYT2y d=0; % initial displacenment
Yres  Yray TYrag ?/271% TYray g/2r2y for i =1: N, do % pyr am dal refinement
b=—[ry ra xry Try yrie yra . (16) [Be.Bo1, Boz] = SQ:(.)\O); % see (2) and (3)
[p1,a1] = MonogenSi gnal ( I1,Be,Bo1,Bo2)
[p2,q2] = MonogenSi gnal ( I2,Bc,Bo1,Bo2)
Note that, according to (12), it i8;, = cos?(f), re, = f = MonogenFr eq( p1,q1) ; % see (6)
sin?(#) andry, = r1,, = sin(f) cos(d). 6 = MonogenOri ent (qi1,0) ; % see (10)
J = Jacobi anMatri x( f,0); % see (12)
. . . . r; = Ti meDer ( p1,p2,41,92) ; % see (13)
B. Multiscale choice of window size. Ad = Mil ti scal eNbnogeni ¢OF(J.ried;) :
The choice of the window size is a tedious issue connected | d =d + Ad: % add i ncr ement
with local techniques: the assumed motion model (trarmsiati L =Interp(lx+Ad); %warp second frane

or affine) may not hold when the window is too big, otherwise, Xo = Ao/
the adoption of an excessively small window may result in_—

the well knownaperture problem[34]. To circumvent this

issue, in [20], [21] Suhlingt al. proposed a multiscale strategy

for locally choosing the most consistent window size. This i IV. IMPLEMENTATION DETAILS

based on the possibility of computing the image momeér&s,  The pseudo-code of the proposed algorithm is presented
the entries of the system matrd and the vectob in (16), in Algorithm 1. The pyramidal refinement scheme of Section
at multiple scales, by using an efficient B-splec@arse-to-fine |11-C was implemented by decreasing the filter wavelenkh
strategy. by a factork = 1.5 at each iteration. The number of iterations
In particular, they are obtained from window functioms N, and the starting wavelength value have been optimized in
that are progressively scaled and subsampled by a factoeath of the experiments described in the next session.
in each dimension. More precisely, at scglethe window  The multiscale window choice was implemented by consid-
w’(x — x¢) = w((x — 27x¢)/27) is employed, wherev is ering fifth-order B-splines and scalgs= {2, 3,4,5}. We note
written as the separable product of two B-spline functions. that at scalg the motion is computed on square windows with
By doing so, at each scalg < j < J. (J; > 0) a solution sides5-27 —1, with a spacing o2’ pixels between neighboring
u’/ can be computed. Among the scales considered,uthe estimates. A value = 2 was used for the robust computation
producing the smallest residual erfigMu’ — b||s2/|w|¢ is  of the monogenic orientation.
retained as the final displacement estimate. Whenever necThe proposed algorithm has been implemented in MAT-
essary, bi-cubic interpolation is employed to obtain a densAB (R2011b, The Math-Works, Natick, MA). The code
motion field. With this strategy, the scale providing the moss made freely available at http://www.creatis.insa-lydos-
consistent motion estimate is selected. tagging/code.

% decr ease wavel ength
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(b)

(CY (b)

Fig. 2. (a) Vertical, (b) horizontal and (c) grid tags. Imageom [6].

V. RESULTS

The algorithm was tested on realistic simulated cardi
ultrasound and tagged cardiac MRI (tMRI) image sequences
. . (d) (e) ®
for which the benchmark motion was known. In each case, a
comparison will be presented with state-of-the art alpong Fig. 3. Tags fading effect on a real tMRI sequence (a)-(c)amd simulated
for cardiac motion estimation and with the algorithm of Zang"® (d)=(0).
et al. [24], which, to the best of our knowledge, is the most

;lgﬁmériﬁiﬁ?nvivsg(rite(%thsu?;ﬁgnz r;;?:fd '2;2:)5( Kapee. Tn1e responses of a set of bandpass directional filters tunied a
ancgrn'n erformgnce assessment R]F; most 'Commoc?rdingly towo. More specifically, while HARP [39] employs
Ing p . . ) }Shase—based disparity measure similar to the one by Fleet
used measurement in the literature is the angular error [3 Ld Jepson [40], SinMod estimates the displacement based on

Nevertheless, this metric has several shortcomings. At fir . .
. ; ] n analytical expression for the cross-power spectrum of tw
due to the arbitrary scaling constant (1.0) used to avoid the

divide-by-zero problem, it penalizes small displacemembse stbsequent frames [23]

than large ones. Second, symmetrical deviations of estiinat It is interesting to _observe (18) in r_elation Wit_h _the work
vectors from the true vall,Je result in different error values presented here. At first, that model directly satisfies the as

. umption of 1D local structures, at the base of the monogenic
For these reasons, we employ here the less conventional

: . Hhal analysis. This makes the monogenic signal a promisin
more appropriate endpoint error (EE) [37], [38]: tool for the study of tMRI sequences. To our knowledge, this

EE = ||d —d|]s, (17) is the first s_tudy inyestigating this ppssibi!ity. Secc_)ndi8)(
can be readily obtained from (1) by including the first-order
whered denotes the estimated displacement drttie bench- phase expression used in Section Ill. This reveals that on
mark displacement. tMRI images the assumption of small displacements is no
longer required. The upper-limit for the displacement isvno
. given by one-half of the tag spacing, beyond which the motion
A. MRI Tagging estimation problem becomes undetermined.

1) Background:Tagged MRI is currently the gold-standard 2) Motion Estimation Results:The proposed algorithm
technique for quantification of myocardial contractilityvivo is compared with SinMod, available in the InTag plugin
[39], [23]. With this technique, cardiac tissue is markedhwi for OsiriX!. The evaluation was made on synthetic tMRI
magnetically saturated tagging lines or grids (cf. Fig.l#3tt sequences, generated with the ASSESS software [41]. The
deform with the underlying tissue during the cardiac cyclgynthetic motion is established on the basis of a 2D ana-
thus providing details on the myocardial motion. With timéytical model taking typical contraction, relaxation, $@n
elapsing, the grid loses contrast and sharpness (cf. Fig=-3(and thickening of the cardiac muscle into account [42]. The
(c)). This is the reason why state-of-the-art techniques foharacteristic tag-fading effect, not considered in ASSES
the estimation of myocardial motion from tMRI sequencegas also taken into account in this study, as shown in Fig.
exploit the image phase rather than the less trustworthgl pi8(d)—(f). The effect was obtained by adjusting the image’s
intensity. The popular algorithms HARP (harmonic phas8] [3histogram limits on each frame so as to match those of a real
and SinMod (sine-wave modeling) [23] belong to this familgequence taken as a template. The algorithm of Zsangl.
of methods. In particular, the latter was shown to outpenfor[24] was also considered in the comparison.

HARP in [23]. The results obtained on nine simulated sequences are sum-

Both the aforementioned algorithms are derived from moeharized in Table I. For each algorithm the parameters were
eling the tMRI image as the superposition of monochromatiptimized to return the smallest average error on the seguen
plane waves: D30R20TO1P0OF20. For the proposed algorithm, these values

I(x) ~ A(x) cos(wOTx), (18) were Ao = 4 for the initial wavelength andv, = 5 for
the number of refinement steps. For the Zang algorithm,
where wy is fixed given tags direction and spacing. The
displacement is then computed in the Fourier domain fromthttp:/mwww.creatis.insa-lyon.fr/inTag/
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TABLE |
ENDPOINTERROR(x & ) IN PIXELS ON 9 SIMULATED SEQUENCES R20F20
g s SINMOD
SEQUENCE ALGORITHM x 1 = ZANG §
i s PROPOSED
Proposed SinMod Zang = +
D30 0.152+ 0.121 0.2154 0.145  0.163+ 0.137 S o5t H + + + 1
D30F20 0.082+ 0.072 0.128+ 0.112  0.087+ 0.079 5 *w * * ﬁ + !
D30R10TO1PO 0.264+ 0.149 0.3634 0.199  0.303+ 0.202 w # + # j' H.* ﬁ ﬁ ﬁ M' ¥ o
D30R20T01PO 0.462+ 0.239 0.9704 1.129  0.531+ 0.328 4 2325678 910111213141516171819
D30R20TO1POF20 0.209+ 0.139 0.344+ 0.224  0.2244 0.174 FRAME NUMBER
D30R20TO1P3 0.419+ 0.228 0.9114 1.099  0.461+ 0.301
R20F20 0244+ 0164 0.416+ 0264 0.247+ 0.191 (@)
R10 0.161+ 0.087 0.2204 0.090  0.164+ 0.104
R20 0.104+ 0.072 0.1744 0.122  0.124+ 0.079 D30F20
r 08 ]
o
T 06 |
. AN)
the values werex = 0.2 for the weight between the data 04 |
and the smoothness term, = 0.1 for the weight between o ’
the monogenic signal and the monogenic curvature and a g o.2
variancep? of 2 pixels for the Gaussian localizing window Y # ) .A
(see Appendix A for a clearer understanding of the pararsieter 1234567 8910111213141516171819
meaning). A multi-resolution refinement scheme was also FRAME NUMBER

employed [24] with four levels. SinMod required the tagsayp )

(grid), direction (48) and spacing (six pixels). The name of

each sequence reflects the values of the parameters usedifor. Boxplot of the errors for R20F20 in (a) and D30F20 ). (Bhe

its generation name|y. contraction/expansion (D) 'rota([R) center of each box represents the median while the body axtéfom the
. . ' ) ' >, . 25-th to the 75-th percentile.

thickening (T), frame-rate (F) and healthy (PO) or pathadab

(P3) state. Greater detail on their meaning can be found in

[42]. first case (first row in the Figure) the angular velocity dases

These results show that the proposed algorithm systepfrearly, passing from the endocardial to the epicardiataor;
atically returns the estimate with the smallest mean valiigthe second (second row in the figure) the radial contractio
and variance, which is a proof of precision and reliabilitys null on the epicardium and maximal on the endocardium.
While the improvement with respect to SinMod is evident, From the comparison between Fig. 5(c)—(g) and Fig. 5(d)—
the improvement with respect to the Zang algorithm is legR) it is clear how the Zang algorithm suffers more from these
pronounced. Nevertheless, the differences among all g algradients of velocity than the proposed algorithm. This is a
rithms were found to be statistically significant € 0.0001) consequence of its global nature. Indeed, this method iegpos
for all sequences using the Friedman rank test=(0.05) in  a constraint on the gradient of the motion field that turns
conjunction with thepost-hoctest proposed by Daniel [43], out to be inadequate when the entity of the displacement
as suggested in [44]. In order to avoid correlations amoR@ries rapidly inside the image. At this point, it is imparta
samples, we suitably subsample the error images prior to faeremember that these results correspond to the optimal
statistical analysis. parameters’ configuration. In particular, smaller valuéshe

A clearer understanding of the algorithm’s performance &moothness weight, which could tentatively be employed
provided by Fig. 4 where the error dispersion on two of thig order to avoid over-regularization effects, lead indtéa
simulated sequences is represented for the three algaritharger errors. For example, a reductioncofrom the optimal
considered. The sequences were considered in order taprese2 to 0.05 leads to an increase in the endpoint error frof 0.4
two different kinds of motions, specifically pure rotatios) ( to 0.68 pixels. As shown by the previous results, SinMod is
and pure contraction/expansion (b). In both cases, theogep outperformed by both methods.
algorithm and Zang's algorithm outperform SinMod. It isals More generally, Zang’s algorithm appears to involve exces-
clear how the proposed algorithm provides better estimatsigely rigid priors on the displacement model, which makes i
than Zang's in the first part of the sequence, when the unsuitable to dealing with more complex and inhomogeneous
displacements are greater, while, in the final part, the twnotion patterns. In contrast, the proposed algorithm dags n
estimates are almost equivalent. imply any hypothesis on the motion field, and therefore it can

To better appreciate the difference in performance, it landle similar situations with superior flexibility.
useful to analyze the local behavior of each algorithm. This The sensitivity to noise was also evaluated. To this end, we
represented in Fig. 5, where the error images obtained on ttwmtaminated the frames of sequence R20F20 with additive
4-th frame of the two sequences considered above is dighlayRician noise [5]. Fig. 6 reports the endpoint error variatio
At that instant, the displacement reaches the maximum geeraue to noisej.e. the value|EE,, — EE,.f|, whereEE, . iS
value and the greatest spatial variation in both cases:@an the average endpoint error measured in the noise-free case (
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Fig. 5. Error map for the 4-th frame of R20F20 (first row) andOB20 (second row). The green arrows in (a) and (e) denoteehehimark field.
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Fig. 4), while EE,, is the value in the presence of noise. Tha the proposed method.
results are based on 15 independent noise realizationde Whi a ¢,rther fundamental point concerns computational time.

the performance of the Zang algorithm decreases consigerab, ihe optimal parameters’ configuration, it was 0.55 sfjena
especially for large motions, the performance of the prefos;,, ihe proposed algorithm (image size, 25656 pixel?) and
algorithm remains virtually unchanged. The good robusines; gjimage for zang's algorithm. Both these values refer to
against noise stems from two factors: the multiscale windowar| AB implementations executed on a desktop PC with
choice of Section 11I-B and the robust monogenic orientatio, 3 47 GHz Intel Xeon X5690 processor, 12 Gb of RAM
of Section II-A. The first guarantees that the integraticalesc running Windows 7. Although unoptimized for definition,

is optimized locally so as to minimize the noise effect on thgy e that MATLAB was used, these results give a clear vision
velocity determination, while the second ensures a morestob | the relation between the complexity of the two algorithms

computation of the monogenic features. We also note thate increased computational burden of the Zang algorithm
sensitivity to noise is a known drawback of global techn&jugs (eadily explained by its global formulation, demanding t
as compared to local techniques [45]. SinMod also Shows,soyment of iterative optimization routines, cf. Appénd
better noise ro_bustness as compared to the Zang algorithin.q " the contrary, the proposed algorithm reaches a sub-
Nevertheless, it should be noted that SinMod also retumngd.,ng speed with its efficient B-spline formalism (even in
the worst results in terms of accuracy. this unoptimized version). It is worth pointing out that tfas

Here we note that the computation of the monogenic sigr{égmputation is primal as far as medical imaging is concerned
involves pre-filtering the data, and this can produce someFinally, the feasibility of the algorithm presented in a
noise suppression. Nevertheless, this fact does not exjilai clinical setting was qualitatively assessed by considgetivo
superiority with respect to Zang'’s algorithm given that theeal acquisitions. The first came from a healthy subject
latter makes use of the same set of SQF filters that we empl(&emens MAGNETOM Avanto 1.5T, 6 mm tag-spacing, 0
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further studies.

We conclude this section by noting that, even though the
model (18) is adequate for line-tags, otherwise, in the case
of grid-tags, a second wave roughly perpendicular to thé firs
should be included in the image model. This would suggest
investigating the use of 2D extensions of the monogenicaign
In particular the signal multi-vector [28] shows excellditt
with the grid-tag image model. Similar considerations dese
to be investigated more in depth in future studies. Nonetisel
the results presented here show that, even in the grid-tg ca
the monogenic-phase-based algorithm presented stillugexd
relevant estimates.

|
o T REE R TN

(b) diastole healthy

B. Cardiac Ultrasound

1) Background:Quantitative analysis of cardiac ultrasound
sequences can provide important mechanical measurements
such as muscle strain and twist, wall thickness and ejection
fraction [18]. Compared to MRI, medical ultrasound has a
higher spatio-temporal resolution, requires no infragtrces,
low budgets and involves no discomfort for the patients. For
these reasons it is currently the most widespread medical
Fig. 7. Color encoding of the radial component of the estmatisplacement. imaging exam [46]. These factors explain the high clinical
(F;ed tcolor enCCt{deS Tif;lvga(;(iis T;%iﬁeﬁpsamgeiscg)l(oief;itgvﬁi Qﬂ?égb;ﬁz interest in the development of tools for the determinatién o
(t?)ngrgsprr‘gs?n%gnt'he resultg on a systolic and digstolme‘ran Il;nn healthy Cardlac fl‘_mCtlon from cardiac ultrasound |mages [18].
subject. In (c) and (d) are presented the results on a sysdali diastolic While tissue Doppler offers a powerful instrument to eval-
frame on a post-infarction subject. uate cardiac deformation [47], it suffers from the major

limitation that only the velocity component in the directio

of the ultrasound beam can be determined. This has motivated
tag-orientation), the second from a patient who underwegtgrowing interest in the development of non-Doppler tech-
inferior cardiac infarction due to the occlusion of the |efﬁiques. They include speckle-tracking [48], frame-tafea
anterior descending artery (LAD). This latter acquisitiefers [49] or group-wise elastic registration [33] and opticaiflo
to two days after reperfusion (Siemens MAGNETOM Avantp1]. |n particular, the algorithm of Suhlingt al.[21] achieves
1.5T, 6mm tag-spacing, 45tag-orientation). A qualitative an excellent compromise between accuracy and computhtiona
representation of the results is given in Fig. 7. The col@omplexity. Moreover, its clinical feasibility has beetested
map superimposed on the tMRI image encodes the raq'ﬁllthorough studies [17].
component of the estimated displacement computed with re-The Siihling algorithm improves the Lucas & Kanade
spect to the center of the myocardium, represented by a whit@] formalism by including the multiscale window choice
cross. Red and blue denote inward and outward displacemeftategy of Section I1I-B. As in [30], motion is computed on
respectively. the basis of the brightness conservation between subsequen

The first line of figures corresponds to a systolic and diagames. Nevertheless, as mentioned in the introductias, th
tolic frame on the healthy subject: the estimated displ@&®m can be a misleading assumption as far as cardiac ultrasound
reflects the physiological contraction and dilatation @f teft js concerned. This is also proved by the increasing inténest
ventricle in these two phases of the heart cycle. In contraghase-based solutions [11], [14].
on the post-infarct patient, the color notation reflects the The following compares the proposed multiscale monogenic
reduced mobility of the heart regions involved in the infane. optical-flow algorithm presented in this paper, the Sidlin
More than that, Fig. 7(c) demonstrates a dyskinetic bemavigigorithm, the Zang algorithm and the Felsberg algorithm,
represented by an non physiological outward motion durighich has been recently applied to medical ultrasound i [50
systole [21]. 2) Motion Estimation Resultstn order to provide a quan-

In the experiments illustrated in Fig. 7, the heart mask wagative evaluation of the algorithms considered, we use- sy
drawn manually by a cardiologist and the center point walsetic echocardiographic sequences. The simulation frame
computed as its center of mass. Several ways for automgtizimork is described in [51]. The simulated sequences along
myocardium tracking on tMRI sequences have been proposgith the benchmark fields are available for download at
in the literature and could be employed here in lieu of manuladtp://www.creatis.insa-lyon.fr/us-tagging/news. hist study,
contouring. Reviewing them is beyond the scope of this papafe assessed two simulated sequences: one Short Axis (SAX)

Clearly, the evaluation proposed above is far from beirand one Apical 4 Chambers (A4C). These are two of the most
an exhaustive clinical evaluation of the proposed algorith frequently adopted orientations in the clinical proced®d.

Still, it gives insights into the meaningfulness of theresties A representation of the estimated motion fields with the
it returns. A deeper evaluation on diagnostic cases is teft proposed algorithm is given in Fig. 8. These fields show how

(c) systole post infarct (d) diastole post infarct
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the estimates are qualitatively consistent with physiicialg
cardiac motion: indeed the motion vectors point inward migiri Fi?- 9. E"%fs foréhedfgw_mgori”;)m on the synthetic A4C sexoce: mean
systole and outward during diastole. value (a) and standard deviation (b).

TABLE 1|
ENDPOINTERROR (1 + 0) due to their more sophisticated formulation. As in the tMRI
case, the improvement with respect to the Zang algorithm is
ALGORITHM SEQUENCE less pronounced than with respect to the other two algosthm
Apical 4 Chambers Short Axis Nevertheless, in this case as well, the differences weredou
Siihling 0.395+ 0.338 0.396+ 0.346 to be statistically significant according to a Friedman reest
Felsberg 0.315+ 0.257 0.3644 0.293 (p < 0.0001, @ = 0.05).
Zang 0.294+ 0.217 0.324+ 0.256 A more detailed performance analysis is illustrated in Fig.
Proposed 0.264+ 0.190 0.313+ 0.242 9, where the four algorithms are compared on the A4C

sequence. The four curves represent the mean value (a) and
Table Il reports the average errors obtained on the entgtandard deviation (b) of the endpoint error on each frame
simulated sequences. For all the algorithms, the parametek the sequence. As in the tMRI case, the improvement of
have been optimized to obtain the smallest average errdreon @ur algorithm with respect to the Zang algorithm is more
SAXx sequence. For the proposed algorithm thesegre- 2  relevant for large displacements. In particular, they occu
and N, = 5. For the Zang algorithm they are instead= 0.2, during the diastolic expansion, roughly comprised between
a = 0.2, p =2 and five pyramidal refinement$he Felsberg frame 10 and frame 22 of the simulated sequence. Again, this
algorithm employed a fixed window given by the tensor Superiority can be explained by the major flexibility invetv
product of two B-spline functions of order 5 at scale= 4, by the proposed formalism, which makes it more suitable for
while the optimal wavelength for the SQF was 3 pixels. Thigllowing complex motion patterns. The frames between 22
Siihling algorithm employed the multiscale window choica@nd 44 instead represent the end of diastole. In this interva
by testing the same scalgs= {2,3,4,5} as the proposed the displacement is minimal and the Fesberg, Zang and the
algorithm. Neither Felsberg’s nor Siihling’s algorithnphied proposed algorithm return close results. Finally, thefi@shes
any refinement scheme like the one in Section I1I-C (cf. [19gorrespond to the systolic contraction. Here the Zang #tgor
[21]). and the one proposed herein still give close estimatesgewhil
From Table Il all the three monogenic phase-based algte error for the Felsberg algorithm increases. This flawltes
rithms considered perform better than Siihling’s alganith from the absence in the latter of any strategy to account for
This confirms that the monogenic phase is a more reliad&fge displacements, as the pyramidal refinement adopted in
feature than pixel intensity as far as medical ultrasound tike Zang algorithm and the proposed algorithm.
concerned [8], [11], [14]. Also, both the Zang algorithm and Finally, Fig. 10 shows the benefits derived from the mul-
the proposed algorithm outperform the Felbsberg algorithtiscale window choice of Section IlI-B. The color display
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ERROR = 0.5262 ERROR = 0.4489 ERROR = 0.4233 . . .
considerably less computation-demanding than anothentec

algorithm based on the monogenic signal [24].

A potentially valuable application is motion compensation
of myocardial perfusion MRI images [7]. Indeed, the major
challenge in correcting the motion problem is that the local
tissue contrast in the image sequence changes locally with
time, especially in the region of interest, the left ventlar
myocardium. Due to the low sensitivity to alterations in the
brightness profile, we believe the application of the pregos
algorithm to this problem could lead to beneficial results.

(b)

Fig. 10. Color map illustrating the multiscale window choice. Pixelre
colored according to the scale determining their veloditythe initial step (a)
only scaleJ=5 is used, then scalg=4 is tested (b) and and the displacements VIlI. ACKNOWLEDGMENTS

are updated where requested by the error criterion. The amindhoice . . .
procedure ends at scalé=3. The title of each figure reports the endpoint This work was partially supported by the US-Tagging grant

error at that step. financed by ANR (Agence Nationale de la Recherche).

APPENDIXA
represents the scale retained in the velocity computatigfye ZANG ALGORITHM FOR OPTICAL ELOW COMPUTATION
while the_ title reports thg corresponding endpoint errdreT_ The Zang algorithm is based on an extension of the mono-
progressive error reduction shows how the window selectigu,ic signal for intrinsically 2D structures, callesbnogenic
procedure allows the computation of more consistent VBIOCk, - atre tensar The motion estimate is then obtained by

estimates. The block-lik_e appearance of the color mapiges']ﬁlugging this new feature in the popular non-linear energy
from the estimate stopping at scgle- 3, so that one velocity function of Bruhnet al. [36]:

is computed everg3 pixels. A pixel-wise map is then obtained
by nearest-neighbor interpolation.

With respect to Fig. 10, it is also interesting to note that, £(w) = / (1 (WTJ, (Vs +V3®) w)) dedy +
while the scalej = 2 was also considered, it was never £

selected in the velocity computation. This reveals that the _|_a/ ¥ (le|2) dxdy. (19)
automatic window selection procedure makes the algorithm Q
almost independent on the chosen rahge J.|. wherew = [di,d2, 1], V3 = [0,,0,,0:, J,(V3f) =

Again, besides being more precise, the proposed algorittiiy « (Vs fVsf71), 1i(z) = 28i/1+ 2/Bi, o, v and § are
is somewhat more computationally effective than the Zamgnstant parameters aiig, is a Gaussian kernel with standard
algorithm. As an example, the computation time for one A4@eviationp. The two termsp and® are the monogenic signal
image (size, 274333 pixel$) with the optimal parameters and monogenic curvature phases, respectively.
was 0.68 s while it was 18.6 s for the Zang algorithm. This The minimization of (19) is carried out as in [36] with two
point is even more important here than with MRI. Indeedhested iterative procedures. An outer fixed point cycleyin
although off-line processing is considered acceptableh@ ti), to remove the non-linearity and an innuccessive over-
latter case, it would not be for ultrasound, where the rima&t relaxation methodSOR) to solve the resulting linear problem.
aspect is one of the major attractions. A pyramidal refinement scheme is also employed, as in [36].
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