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Motion Planning and Irreducible Trajectories

Andreas Orthey', Olivier Stasse!, Florent Lamiraux

Abstract— We introduce a novel notion for lowering the
dimensionality of motion planning problems: Irreducibility.
Irreducibility of a configuration space trajectory 7 means: We
cannot find another configuration space trajectory 7', such that
the swept volume of 7’ is included in the swept volume of 7.
The main contribution of our work is twofold: First, we show
that motion planning in the space of irreducible trajectories
is complete. Second, we show that we can construct reducible
subspaces by reasoning about the inherent hierarchical struc-
ture of open kinematic chains. Using those theoretical results,
we proceed by analytically defining a 7-dimensional irreducible
configuration subspace for the humanoid robot HRP-2 under
some assumptions. To show its practical importance, we solve a
high-dimensional pin-hole problem for HRP-2 from the scratch.

I. INTRODUCTION

Generating movements for arbitrary mechanical system
is a first basic requirement for higher cognitive functions.
Motion planning is the systematic study of how we can
generate movements from an algorithmic perspective. While
successful applications have already emerged, we know that
general motion planning is NP-hard [1]. Complex scenarios
with humanoid robots require extensive computational time,
where solutions require the prespecification of waypoints,
and even then require for instance 1 hour to crouch through
a tunnel [2] or 2 hours to walk through a wall [3]. This
prespecification and long computational time are a severe
restriction for reactive movements, and constitute therefore a
bottleneck for the longterm-goal of understanding intelligent
behavior. Our goal in this paper is to show directions of how
we can possibly overcome this bottleneck.

As a starting point, let us point out that the high com-
putational time of motion planning is mainly caused by the
dimensionality of the configuration space. Large parts of the
configuration space are searched, even though they do not
increase our knowledge about the feasibility of the problem
at hand. From our perspective, it is clear that we need
to precompute the parts of the configuration space which
are important and those which are not important. Such a
precomputation will be called a motion prior.

An important motion prior can be obtained by analyzing
the mechanical system of the planning problem. In particular,
we want to show that the prior knowledge of the mechanical
system can reduce the configuration space dimensionality.
Our contribution is to 1) introduce the concept of an ir-
reducible trajectory, which states that there is no other
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trajectory with a smaller swept volume. 2) We show that
planning in the space of irreducible trajectories is complete.
3) We show a practical, but non-complete way to construct
the space of irreducible trajectories by using the cross section
of the workspace volume of configurations. 4) We show how
one can take advantage of the hierarchical decomposition of
the kinematic chain of a robot to create reducible subspaces,
5) we use our theoretical results to define an irreducible
configuration subspace for the humanoid robot HRP-2, and
6) we use this irreducible configuration subspace to plan a
feasible motion for HRP-2 in a highly restricted environment,
where the solution trajectory needs to traverse a pin-hole in
the configuration space.

II. RELATED WORK

Humanoid motion planning is important for industrial
applications and likewise for further understanding the al-
gorithmic study of how to generate motions. Research for
the general problem in arbitrary environments has focused
on multi-contact planning [2], with applications for example
for climbing robots [4].

Our approach tries to establish a link between workspace
and configuration space, similar to [5], but with the main
idea that we can reduce the planning dimensionality by
precomputation. Precomputation in motion planning can be
classified into three categories: Robot, Environment and
Behavior. Most ideas have concentrated on both robot and
environment simultaneously, either for a single or multiple
environments.

Precomputation in a single environment was addressed
by Manocha et al. [6], who learned a mapping between
configuration space and feasiblity, and by Likhachev et al. [7]
who precomputed RRT nodes, storing the graph structure for
later reuse. Both approaches need time to learn the mapping,
but work well once the environment is sufficiently sam-
pled. Complementary to this, we projected the configuration
space onto a lower dimensional subspace, such that both
approaches can be used without modifications.

In multiple environments, Jetchev et al. [8] learned a map-
ping from environment to configuration space trajectories.
Hauser et al. [9] stored configuration space trajectories and
used a similiarity metric to reuse them in a new environment.
And Berenson et al. [10] store configuration space trajecto-
ries and use the distance of start and goal configuration for
choosing a stored trajectory in a new environment. Again,
our approach could be used here to reduce the database
of motions by storing only the nodes in the irreducible
subspace.
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Fig. 1: Explanatory example of irreducible trajectories for a 2-link, 2-dof
robot, which can move along the y-axis, and which has one rotational
joint between its two links, such that its configuration space is C =
R x [*%7 %] Left. Three configuration space trajectories 71, 72, 73 with
71(0) = 72(0) = 73(0) = qr, 1 (1) = 72(1) = 73(1) = g¢. Right.
The workspace volume of the starting configurations g7, g, and the swept
volume of the three trajectories, whereby we have that SV(m1) C SV(72)
and SV(71) C SV(73), i.e. 72 and 73 are reducible by 71, and 71 is in
fact irreducible.

Finally, if the robot, the environment and the behavior are
known, attractor based models can be learned for efficiently
storing motions, examples are funnel databases [11] and
dynamical motion primitives (DMP) [12].

III. MOTION PLANNING PRELIMINARIES

We restate relevant motion planning definitions, following
the classical formulation by [13, Chapter 4]

Definition 1 (Motion Planning Problem). Let A =
{a1,9¢, R,E} be a motion planning problem, with R the
robotic system, qr the initial configuration, qc the goal
configuration, and E the environment.

Definition 2 (Configuration Space Trajectory). Let A be
given. Then we denote by F(qr,qc) = C'([0,1],C) the
set of continuously differentiable functions from [0,1] to
the configuration space C, with the property that if T €
Flar,qc) = 7(0) = qr,7(1) = gc-

Definition 3 (Swept Volume). The workspace volume swept
by the trajectory T € F(qr,qc) will be denoted by SV(T).

Definition 4 (Feasible Trajectory). A trajectory T €
F(q1,qc) is called feasible in an environment E, if SV(1)N
E=0.

Definition 5 (Feasible Configuration Space Trajectory). Let
S C F(qr1,q¢) be a set of Configuration space trajectories.
Let A be a specific motion planning problem. If there exist
T € S such that T solves A, then S is said to be feasible
wrt. A.

We will not consider here physical feasibility of the robot,
like joint limits or self collision. We will postpone this
discussion until Section

IV. IRREDUCIBLE TRAJECTORIES

We denote by C the proper subset. Let A = {q1,q9c, R, E}
be given, and let 7 = F(qr, q¢).

Definition 6. A frajectory 7 € F is called reducible, if
there exist T € F such that SV (1) C SV(1'). Otherwise 7'
is called irreducible.

Fig. [I] provides a visualization of the irreducible defini-
tion for trajectories. One can see three configuration space
trajectories T, 7o, T3, and its swept volumes in workspace.
Applying the definition, we have that 7o and 73 are reducible
by 71. We will now show why irreducibility is important for
motion planning.

Theorem 1. Let 7,7 € F be such that SV(t) C SV(7'),
i.e. 7' is reduced by T.

If T is infeasible = 7' is infeasible
If ' is feasible = T is feasible

Proof in Appendix.

Definition 7 (Irreducible Trajectories). Let the set of all
irreducible configuration space trajectories be defined as

T = {7 € F|r is irreducible} (D

Lemma 1. Ler 7 € F \ Z. Then there exist 7' € I, with
Sy(r') c SV(7).

Proof in Appendix.

Theorem 2. If T is infeasible = F is infeasible
Proof in Appendix.

Corollary 1. Motion planning is complete in T

Proof in Appendix.

Going back to the example in Fig. [IL we can now make
the statement, that trajectories 7o and 73 can be ignored for
motion planning, while still being complete.

V. IRREDUCIBLE CONFIGURATIONS

In the preceding section, we showed completeness in the
irreducible trajectory space. However, we haven’t provided
an exact practical method to construct this space. To develop
a construction method, we approximate the swept volume
by its cross section onto the movement direction. The next
sections will study the irreducible property for those cross
sections, i.e. how to formally define the irreducible configu-
ration space based on cross sections, and how the knowledge
of hierarchies of kinematic chains can provide a tool to
practically construct a subspace.

Definition 8 (Cross Section Operator). Let the workspace
volume of a configuration q € C be SV(q). Let us assume
w.l.o.g. that the robot is moving into the y-axis direction of
the workspace. Let Y = {(xg,x1,22)T € R3|z; = 0} be
the x-z plane. We define the cross section operator V (q) as
the orthogonal projection of SV(q) onto the x-z plane:
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Since computing the complete swept volume for a robot
involves computationally expensive operations [14], we do
the following assumption: The swept volume of a robot is
approximated by its cross section operator, i.e. ¢ € C :
SV(q) ~ V(q), i.e. the swept volume is collapsed onto its
cross section in movement direction.

Definition 9 (Reducible Configuration). A configuration ¢' €
C is called reducible, if there exist q € C,such that V(q) C
V(q'). Otherwise, ¢’ is called irreducible.

Definition 10 (Feasible Configuration). A configuration q €
C is called feasible in an environment E, if for all v € V(q),
we have v N E = .

Theorem 3. Let ¢’ € C be reducible by q € C. Then we have
If q is infeasible = ¢’ is infeasible
If ¢ is feasible = q is feasible
Proof in Appendix.
Definition 11 (Irreducible Configuration Set). We define the
set of irreducible configurations as
Q = {q € C|q is irreducible}
={¢eCl-3¢d €C:V({) CV(g)}
with C denoting the proper subset.

Theorem 4. Let (Q C C be the irreducible set of C. Then we
have:

3)

If Q is infeasible = C is infeasible

Proof in Appendix.

As a note, Theorem E] is valid only, because we defined
feasibility by its cross section volume. Therefore, in general
we cannot guarantee that motion planning is complete for
irreducible configurations.

VI. HIERARCHICAL IRREDUCIBILITY THEOREMS

This section studies how the hierarchy of kinematic chains
can be used to construct () analytically. It requires us
to restrict our analysis to robotic systems, which can be
represented by an open kinematic chain.

Assumption 1. R is representable by an open kinematic
chain.

Lemma 2 (Translation Invariance). Let q,p € C, and T
being the translation operator.

Vip) € Vig) < TV (p) ¢ T(V(g)

Proof in Appendix.

Lemma 3 (Movement Direction Invariance). Let ¢,p € C,
and Ry being the rotation around the y axis.

V(p) CV(g) & Ry(V(p)) C Ry(V(q))

Proof in Appendix.

Definition 12 (Joint J;). Let J; be a joint in the kinematic
chain of R, x; € RS the position of joint Jj in the world
frame, and H; the transformation from the world frame to
Jj.

Definition 13. Let C,(J;) be the subspace of parent configu-
rations of J;, including joint J;. Let C.(J;) be the subspace
of configurations of child joints of J;, excluding joint J;, i.e.
such that we have a decomposition C = C, U C,.

Let us assume w.l.o.g. that the rotational component of
Hj;, named R(Hj;), is equal to the rotational component of
the world coordinate frame o, i.e. the transformation is in
fact a translation H; = T}. Meaning, that V' projects onto
the -z plane, as desired.

Definition 14. Let x; denote a specific workspace position
of the joint J;. Let T be the xyz translation operator, and
Ry the rotational operator around the y-axis. Let us define
the set of inverse kinematic configurations of x; as

P(zj,J;) = {q € Cp(J;)|H;(q) = z;}
Pr(x;,J;5) = {q € Cp(J;)|H;(q) = T(z;)}
Pry (75, J;) = {q € Cp(J;)|H;(q) = Ry (z;)}

Theorem 5. Let x;,.J; be given. ¥p € P(x,J;):
if 3¢ € Co(J;) with V(') C V(p)
= Ve e C(N;): V(dUp) CV(cUp), ie

cUp is reducible by ¢/ Up

Proof in Appendix.

Theorem 6. Theorem 5| holds Vp € Py(xj,J;)
Proof in Appendix.

Theorem 7. Theorem [5| holds Vp € Pr., (z;,J;)

Proof in Appendix.

We will illustrate Theorems [3] [6] and [7] by a simple robot
in the plane.

Example 1. Let R = {{Ll, LQ,Lg}, {Jo, Ji, JQ}}, with Jy
the free flyer of Ly, and choose Jy as the root joint. Then
Cp(Jo) = {z € R2,0 € [-m, 7|} and C.(Jo) = {q1,q2 €
[—7, 7|} The robot is shown in Fig. [2| in configuration q =
{@ps qc} with ¢, = (0,1,0) and g. = (0,0). Theorem@states
that configuration q. of C. reduces all other configurations
of Ce, since V(qe) C V(qp). Theorem [f| states that we
can translate the workspace structure arbitrarily without
changing the inclusion property. And Theorem [7] states that
we can rotate the workspace structure around the xi-axis
without changing the inclusion property.



Fig. 2: 2-dof robot with free flyer in configuration ¢ = (z1 = 1,22 =
1,6 = 0,1 = 0,g2 = 0). The cross section volume is given by V(q),
and q1, g2 are chosen such that Theorem E] applies, meaning that g1, g2 are
reducible.

VII. CONSTRAINT MANIFOLD

Irreducibility provides a possible way to lower the di-
mensionality of the motion planning problem. However,
even in the space of irreducible configurations, we have
configurations which are physically feasible and ones who
are not. Let us define the physical constraints in our case:

Definition 15 (Forward movement constraint manifold). Let
v be the movement direction of COM(q). A configuration
q € C belongs to the forward movement constraint manifold
Crm, if it is (1) physically feasible, i.e. the following
constraints are fulfilled:

e qr. < q < qu (Joint Limits)

e Ygi,q; € q:d(qgi,q5) > 0, j (Self-Collision)

o COM(q) € SupportPolygon(q) (Static Stability)
and (2) the robot can be moved along v with infinitesimal
small movements without violating physically feasible con-
straints.

This manifold is used as in classical motion planning:
Once we sampled an irreducible configuration, we project
this configuration down onto the constraint manifold [3].
This is schematically visualized in Fig. [3] where a random
configuration on @ is projected onto Q@ N Cpypy.

q2

q1

Fig. 3: Schema of a Configuration Space C, with Constraint Manifold
Crp C C, and the irreducible manifold Q). A random sample p € Q
is projected onto @ N Crps to make it physically feasible.

VIII. USE CASE: ROBOT HRP-2

The HRP-2 Robot is represented by an open kinematic
chain, whereby we have chosen N = 35 moveable DOFs
(Chest: 2, Head: 2, Left Leg: 6, Right Leg: 6, Left Arm:

Joint Fixed Value  Anatomical Name Range
HEAD_JOINTO 0
HEAD_JOINTI - Neck [-0.52,0.79]
CHEST_JOINTO 0
CHEST_JOINT1 - Waist [—0.09,1.05]
RARM_JOINT (0,-%,0,0,0,0)T
LARM_JOINT (0,%,0,0,0,0)7
LLEG.JOINTO 0
LLEG_JOINT1 0
LLEG_JOINT2 - Hip [—2.18,0.73]
LLEG_JOINT3 - Knee [—0.03, 2.62]
LLEG_JOINT4 - Ankle [-1.31,0.73]
LLEG_JOINTS 0
RLEG_JOINTO 0
RLEG_JOINTI 0
RLEG_JOINT2 LLEG_JOINT2 Hip
RLEG_JOINT3 LLEG_JOINT3 Knee
RLEG_JOINT4 LLEG_JOINT4 Ankle
RLEG_OINTS 0
LSOLE_JOINT_X - Left Foot [-0.5,0.5]
LSOLE_JOINT-Y - Left Foot [-3.0,3.0]

TABLE I: Variable Joints of Humanoid Robot HRP-2, and the correspond-
ing range. All joints without a range have fixed values, which are chosen
according to Theorem [6] and [7] respectively. The left foot range was chosen
specifically for the wall experiments, the other ranges are given by the
physical limitations of the robotic system.

6, Right Arm: 6, Free Flyer: 7). We are adding a list of
assumptions, namely
1) Left Foot is oriented 90 degrees along y-axis, as
depicted in Fig. ]
2) The chest has fixed 6, and 6, rotation
3) The head is a sphere, and so a rotation of the head
along the z-axis does not change the projected volume
Those assumptions reduce the space to N = 27 moveable
DOFs. (Chest: 1, Head: 1, Left Leg: 3, Right Leg: 6, Left
Arm: 6, Right Arm: 6, Free Flyer: 4)

A. Irreducible Configuration Subspace for HRP-2

Since the chest is not rotating around 6, 6., Theorem
holds for all children configurations, which are covered by
Theorem [5] which includes the right and the left arm. The
same is true for the left leg, such that we can reduce the
right leg. To summarize:

1) Left arm is reducible by chest, due to Theorem

2) Right arm is reducible by chest, due to same argument

3) Right leg is reducible by left leg, due to same argument

In this way, we assign fixed values to the left arm, right
arm and right leg, chosen such that Theorem [3] applies. The
values are shown in Table[l] and the workspace volume of the
default configuration is shown in Fig. [d] It can be seen that
the cross section volume of the chest covers the cross section
volume of the left and right arm, and that the same applies
to the right leg with respect to the left leg. This gives rise
to a 7-dimensional subspace inside the configuration space.
We will call it Quumanoia C C.

Definition 16. Given R = HRP-2, we define the ir-
reducible configuration subspace of R as Qnumanoid

{QNecka qAbdomen s QHip s 4Knee s QAnkle s Qx,Left Foots Qy,Left Fooz} € R,
See Table



Fig. 4: Left Default Position of HRP-2 where the arms are in an irreducible
configuration with respect to the chest, according to Theorem [5] Right and
its view from the side, showing that the projected volume of the arms is
indeed covered by the chest volume.

B. Simulation Results

To test our theoretical results, we have chosen a motion
planning problem, where the robot HRP-2 has to move
through a wall, as shown in Fig.[5] Due to the wall constraint,
a solver has to find a narrow passage in the configuration
space to solve the problem. In the classical 35-dof setting,
this problem has been solved by adding 12 waypoints to
guide the planning algorithm [3]. We consider here the
7-dof setting without waypoints, by using the irreducible
configuration subspace. Since the initial position and the
goal position are not irreducible, we project them onto the
irreducible configuration subspace.

Our algorithm uses a standard RRT implementation [13],
plans from the scratch without waypoints, and is using the ir-
reducible configuration subspace for sampling. The results of
10 runs are reported in Table [IIl Since the passage is narrow,
RRT can take a long time to converge, for our experiment,
it took between 44 minutes up to 43 hours. Even so RRT
is considered state-of-the-art in motion planning [13], the
results highlight, that it might not be the preferred method for
problems involving narrow passages in configuration space.

A video is available showing the resulting trajectory of the
first run:

http://goo.gl/IdTJuv

Since this paper is concerned with a feasibility study, the
resulting motion will be non-optimal, assumes infinitesimal
small footsteps and might appear unnatural to a human
observer. However, having a first feasible trajectory is a
prerequisite for fast convergence of local planning algorithms
like CHOMP [15] or AICO [16].

TABLE II: Simulation results for the wall motion planning problem. Each
Instance is a basic RRT without prior information, planning in Qxumanoid-

Planning Instance  Planning Time
3h37m
6h07m
3hS55m
9h34m
6h37m
0Oh44m
16h19m
2h45m
43h57m
2h03m

O 0NN WN—O

L)
N N

Fig. 5: Wall Motion Planning Problem. Left initial configuration Middle
one irreducible configuration on the final trajectory found by an RRT on
the irreducible subspace Right goal configuration.

IX. CONCLUSION

We defined the irreducible property for configuration space
trajectories, trajectories which have a minimal swept volume,
such that there is no other trajectory with a smaller swept
volume. Our main result is given by Theorem [2] which states
that finding no feasible trajectory in the space of irreducible
trajectories implies that there is no feasible trajectory in the
space of all configuration space trajectories, i.e. that motion
planning is complete w.r.t. irreducible trajectories.

In practice, we approximated the swept volume by its
cross sections, defined the irreducible property on those cross
sections, and used those results under mild assumptions to
define a low dimensional subspace for the humanoid robot
HRP-2. This subspace allowed us to find a feasible trajectory
in a highly constraint environment, where previous planners
could only find a solution by using waypoints [3].

Since this approach will find a feasible trajectory only in
the space of irreducible trajectories, the obtained motions
are possibly not natural or unaesthetic from the view of an
external observer. However, once we found such a feasible
trajectory, we can make use of advanced control algorithms
or local motion planning techniques, in order to deform our
motion locally.

Future research will focus on more efficient planning
algorithms for irreducible trajectories and on conditions for
completeness of the cross section operator.

PROOFS

Proof of Theorem 1. Let s = SV(7) and s’ = SV(7'). s is
feasible if s N E = (). We proceed by direct proof:

(1) Let s be infeasible, then Jv € s, such that v N E = v.
Since s C s’, we have that v € s’. Since v exists, we can
conclude that at least s' € > v, which makes s’ infeasible.
(2) 7’ being feasible means s’ N E = (). Since s C &/, it
follows from elementary set theory that s N E = (), which
proofs that 7 is feasible. O

Proof of Lemma 1. Let u be the lebesque measure on the
workspace W. First, let us see that if SV(r) C SV(70),
then p(SV(m1)) < p(SV(70)).

Now, by definition, if 79 ¢ Z, then 37y € F, such
that SV(m1) C SV(70). Then either 4 € Z, and we
are done. Or 7y ¢ Z, and by definition, 372 € F, such
that SV(m2) C SV(m). Let us assume that there is no
trajectory 7; € Z, such that we obtain an infinite sequence
IT = {79, 71,72, - } of reducible trajectories 7; € F, such
that V7; € I1 : SV(7i41) C SV(7;). Since we have Vr; € 11 :
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w(SV(1i41)) < u(SV(1;)) and p(SV(7)) > 0, the sequence
is strictly monotonically decreasing and bounded, and will
therefore converge to its maximum lower bound, which
we call C, ie. lim,_ . u(SV(7;)) = C. Consequently,
since the maximum lower bound is obtained, there cannot
exists another trajectory 7/, such that p(SV(7')) < C. By
definition, the sequence is converged in Z, and therefore we
conclude that every element 7 € F\Z is reducible by 7" € 7.

O

Proof of Theorem 2. Let us assume that 37 € F, with 7
being feasible, and that V7’ € Z : 7’ is not feasible. Since
7 is feasible, it follows that 7 ¢ Z. Then by definition there
has to be a 7" € F such that SV(7”) € SV(7). Then 7" is
feasible by Theorem [1| Further, either we have that 7/ € Z.
Then we have a contradiction. Or we have 7" ¢ Z, which
means that we can still find another 7"/ € F reducing 7.
By Lemmal |l we know that such a sequence can be reduced
by a 7 € Z . So we reach a contradiction, too.

O

Proof of Corollary 1. By definition, motion planning is
complete, if we can find a solution (a trajectory), if one exist.
By Theorem [2} we know that if we cannot find a solution
in Z, then there is no solution in F. Conversely, if there is
a solution in F, then by Theorem |1} there exists a solution
in Z. O

Proof of Theorem 3. 1) It follows directly from
Vig) € V(¢), ie. if ¢ is infeasible, then Jv € V(q),
such that v intersects the environment, ie. v N E # 0.
Because we have v € V(¢) = v € V(¢'), we have that
Jv € V(¢'), such that it intersects the environment, and
makes ¢’ therefore infeasible.

2) Similar, if ¢’ is feasible, then Vv € V(¢') we have
vNE = (. Since v € V(q) = v € V(¢'), we have that
v e V(g) =vNE =1, and so g is feasible.

O

Proof of Theorem 4. Let us assume that V¢ € @
q is infeasible. Let us assume that 3¢ € C,q ¢ @, and that
q is feasible. Since g € @, we know that 3¢’, which reduces
g. Then by Theorem 3| ¢ is feasible, too. Now, there are
two cases: Either ¢’ € (@, then we have a contradiction.
Or ¢’ ¢ @, then we can find another ¢”, which reduces ¢/,
meaning that we can reduce ¢ until we reach a contradiction,
according to a similar argument as made in Lemma [I}

O

Proof of Lemma 2.
(=)T(V(p) Cc T(V(g))
=V(p)+TCV(+T=V(p) CcV(g
(=)V(p) c V(g
=V(p)+TcV(g+T=TV(p) cTV())
L]

Proof of Lemma 3. Since V(p) C V(q), we have Vv €
V(p) — T’ € V(q), such that v = o'. Rotation is
equivalent to applying Ry onto both sites to get Ry v =
Ry v'. Now, let V(p) = {v1,va,---}. Applying Ry gives
Ry(V(p)) = {Ryvi,Ryvg, - }. Since v; = v} € V(q),
Ry v; = Ry v}, we conclude that Ry (V(p)) C Ry (V(q)).
And vice versa. O

Proof of Theorem 5. Assume that 3¢ € C.(NN;), such that
V(eUp) C V(' Up), i.e. ¢ Up is reducible by ¢ U p. We
know that V(¢' Up) = V(¢)UV (p) and that V(') C V(p).
Therefore, V(') U V(p) C V(p). Therefore, V(¢ U p) C
V(' Up) C V(p). However, clearly we have V(¢)UV (p) D
V(p), which contradicts our assumption, and we follow that
there does not exist such an element. O

Proof of Theorem 6. Follows by applying Lemma [2] onto

V(dUp) C V(ecUp) O

Proof of Theorem 7. Follows by applying Lemma |3| onto

V(dUp) C V(ecUp) O
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