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Phantom-based performance evaluation: Application to brain
segmentation from magnetic resonance images
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Abstract

This paper presents a new technique for assessing the accuracy of segmentation algorithms, applied to the performance evaluation of
brain editing and brain tissue segmentation algorithms for magnetic resonance images. We propose performance evaluation criteria derived
from the use of the realistic digital brain phantom Brainweb. This ‘ground truth’ allows us to build distance-based discrepancy features
between the edited brain or the segmented brain tissues (such as cerebro-spinal fluid, grey matter and white matter) and the phantom
model, taken as a reference. Furthermore, segmentation errors can be spatially determined, and ranged in terms of their distance to the
reference. The brain editing method used is the combination of two segmentation techniques. The first is based on binary mathematical
morphology and a region growing approach. It represents the initialization step, the results of which are then refined with the second
method, using an active contour model. The brain tissue segmentation used is based on a Markov random field model. Segmentation
results are shown on the phantom for each method, and on real magnetic resonance images for the editing step; performance is evaluated
by the new distance-based technique and corroborates the effective refinement of the segmentation using active contours. The criteria
described here can supersede biased visual inspection in order to compare, evaluate and validate any segmentation algorithm. Moreover,
provided a ‘ground truth’ is given, we are able to determine quantitatively to what extent a segmentation algorithm is sensitive to internal

parameters, noise, artefacts or distortions.
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1. Introduction

Accuracy in image segmentation is a nettlesome prob-
lem, especially in medical image analysis, where precision
in segmentation is a prerequisite for a reliable interpreta-
tion of results. Moreover, many current problems in the
medical realm and diagnosis derive benefit from a precise
brain segmentation. For instance, delineating the anatomi-
cal structures in the vicinity of the entorhinal cortex helps
neuroanatomists in the diagnosis of Alzheimer’s disease
(Frisoni et al., 1999; Juottonen et al., 1999). Intracranial
volume measurements in serial magnetic resonance images
also need flawless segmentation, particularly for studies
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and therapy monitoring in ischemic disease, vascular
dementia, multiple sclerosis (Broderick et al., 1996), or
mesial temporal sclerosis (Kuzniecky et al., 1996). Fur-
thermore, the cortical surface detection in magnetic reso-
nance images is of great importance for the quantification
of sulcal lengths (Vannier et al., 1991), for three-dimen-
sional brain display in image-guided neurosurgery (Gallo-
way et al., 1992, 1993; Grimson et al., 1996) and in EEG
projection (Jack et al., 1990). Similarly, multimodality
image registration requires a good brain segmentation:
indeed, surface matching techniques need to have a precise
definition of the segmented volumes (Pelizzari et al., 1989;
Mangin et al., 1994; Malandain et al., 1995; Turkington et
al., 1995; De Munck et al., 1998). As a matter of fact, any
image analysis technique has to be validated in an efficient
way so as to legitimize its use in clinical day-to-day



applications. As stated by Barrett (1996), a rigorous
definition of image quality in terms of algorithm efficiency
depends on the performance of some observer on some
specific task; and mathematical models for these observers
have to be designed in order to replace humans. The lack
of well-considered validation techniques is due to the fact
that assumptions underlying the task at hand are not clearly
defined (Jain and Binford, 1991). Moreover, the high level
of automation in segmentation inherently introduces a
number of impediments for validation (Gerritsen et al.,
1995). This paper is organized as follows. In the first part,
we address the fundamental problem of assessing the
accuracy of brain segmentation methods. After a brief
review of existing methodologies, we substantiate the need
of a reference to quantify the performance of segmentation.
Thanks to the Mac Connell Brain Imaging Center (Collins
et al.,, 1998), we use a realistic MRI brain phantom that
takes into account the well-known partial volume effect
due to spatial sampling: each voxel of the phantom volume
is assigned a known proportion for each cerebral tissue.
Based on this model, deemed as the reference, we propose
new criteria that allow us to assess the performance of
segmentation algorithms in a more or less local manner by
utilizing distance knowledge between the segmented brain
and the reference. In the second part of the paper, we
present a cooperative brain editing algorithm in a way akin
to the methodology combining region growing and contour
approaches (Pavlidis and Liow, 1990; Kapur et al., 1996).
More precisely, the goal is to refine region growing step
results thanks to active contours. The two stages enshrined
in our segmentation method stand for a typical application
of our evaluation procedure. By the same token, we expose
the brain tissue classification method, the performance of
which has been tested with our criteria. Finally, we present
the results of the segmentation methods, on which the
evaluation criteria are applied, and demonstrate the ability
of these new measures to faithfully characterize the
accuracy of the segmentation algorithms. Both phantom
and real data are used, for which appropriate features are
calculated, that take into account the propensity for active
contours to more or less accurately delineate the brain
cortical surface. A joint optimization for active contour
parameters is performed, which gives a range of satisfying
values according to the criteria used. Furthermore, the
influence of data noise and non-uniformity on the quality
of segmentation is studied. Finally, the powerful use of the
brain phantom as a reference conjugated with distance-
based evaluation procedures is discussed, and perspectives
towards validation of other image analysis techniques are
given.

2. Assessment of segmentation accuracy

Because of the morphological complexity of the brain,
the methods for validating the quality of segmentation are

limited. Comparisons are often made between results from
the automatic segmentation and those obtained manually,
taken as the standard reference. But the inter- and intra-
expert variability is often biased toward the so-called
performance of segmentation, which therefore does not
allow us to define a reference very accurately. Further-
more, the ability to have a reference phantom, either
physical or digital, does not ensure that quantitative
measurements are possible in order to evaluate correct
correspondence between the automatically segmented vol-
ume and the reference. Indeed, relevant criteria must both
faithfully and precisely convey the global subjective
impression on the quality of the segmentation and quantify
its accuracy. This compelling trade-off makes the valida-
tion of segmentation a difficult and often dodged issue.

2.1. Related work

Several investigators have worked on the evaluation of
the segmentation quality in medical image analysis. Asses-
sing the accuracy of segmentation algorithms is an open
problem and different methods are detailed in (Zhang,
1994; Cho et al., 1997). According to van Gennip and
Talmon (1995), the assessment of algorithmic accuracy in
segmenting objects needs to apply the method to three
types of data: artificial software-generated images, where
the ‘ground truth’ is thoroughly known; hardware phan-
toms because of their more realistic design; and, finally,
real images. In (Hoover et al., 1996) a ground truth is
created from manual delineations, with the risk of bias due
to expert variability. In (Heath et al., 1997) a statistically
based method is proposed for evaluating five edge de-
tection algorithms from visual rating scores indicated by
participants on a set of gray-scale images. By the same
token, Chalana and Kim (1997) suggest statistical methods
to verify whether the computer-generated boundaries agree
with the manually outlined contours. Indeed, the problem
in human visual evaluation is that specifying the ground
truth for real images is very difficult because subjective,
not to mention the tedious work it entails for the experts to
manually delineate the alleged true contours. Actually,
some studies based on the use of a phantom have already
been performed. In (Mortelmans et al., 1993) the clinical
acceptance of a model-based myocardial border delineation
method on SPECT images is described both with software
and man-made phantoms. In (Disler et al., 1994) man-
made phantoms of varying shapes are used and filled with
different contrast agents to assess the volumetric capa-
bilities of CT and MR imaging. Similarly, in (Kalender,
1992) the validation approach of segmentation accuracy is
based on the use of the man-made European Spine
Phantom, on which specific anatomically designed dis-
tances are calculated. Tofts et al. (1997) use obliquely
oriented cylinders for measuring the accuracy of lesion
volume estimation schemes. In (Chakraborty et al., 1996)
synthetic images are generated to quantify the accuracy of



the boundaries given by their gradient-based deformable
boundary finding algorithm. According to the well-known
description of the validation scheme (Haralick, 1994),
smoothing and noise have been added in order to better
simulate real data. The performance of the segmentation
method was assessed from calculation of minimal dis-
tances of sampled points on the reference boundaries to the
final segmented ones. Let us emphasize here that our
quantification scheme basically hinges on this distance
information.

2.2. Digital brain phantom

In our particular application, we have discarded any
physical phantom, because the latter only attests geometric
reliability, and usually does not take into account the
intensity-based information of magnetic resonance images.
Moreover, the use of a physical phantom necessarily needs
a registration step to match the ideal physical object with
the segmented one, and hence to quantify the performance
of the segmentation algorithm used. Because we wanted to
avoid the resulting inaccuracy added by registration and to
have a phantom as realistic as possible, we have used a
computationally synthesized phantom, the geometry and
intensity of which at best express the results obtained by
real MRI brain imaging systems. This phantom is available
on the site Brainweb,' which affords two data sets: on the
one hand, the proportion volumes of each cerebral tissue,
constituting the anatomical model; and on the other hand,
the resulting volume, which we reckon as our brain
phantom. Some choices for parameters are proposed, such
as the spatial resolution. By specifying the modality type
(T1-weighted as far as we are concerned), and by means of
the Bloch equations (Bloch et al., 1946), representing the
link between the physical nuclear magnetic resonance
phenomena and the observed signals, it is possible to
obtain the volume resulting from the chosen model (Kwan
et al., 1996). The great advantage of this phantom model
lies in the knowledge of the proportion of any cerebral
tissue at discrete location of the volume. These proportions
have been devised from a classification procedure per-
formed on the mean volume of 27 registered T1-weighted
MR volumes of one single patient (Collins et al., 1998),
which led to a very high signal-to-noise ratio. Henceforth,
the following notation is used concerning the phantom
model:

M={M} _,_, setof cerebral matters, for N matters;

P, (x,y.2) proportion of matter M, at the location
(x,.2);
I(x,y,2) intensity at the location in the phantom.

The membership of any voxel to a given tissue is naturally

'http: // www.bic.mni.mcgill.ca/brainweb.

defined as follows: one voxel belongs to the tissue M, if
the proportion of this tissue in the voxel is greater than
50%. This one-to-one relationship allows us to define
unambiguous membership of a voxel to the corresponding
tissue. In other words, a voxel belongs to one and only one
tissue. In spite of this property, and since more than two
different tissues make up the phantom (N > 2), an underly-
ing voxel class is created, gathering all the voxels which
do not belong to any predefined tissue, that is to say the
(x,»,z) due to the partial volume effect such as

V, E[LN], P, (x.y.2) < 50%. (1)

The latter mostly constitute the interface between pure
tissues.

2.3. Performance evaluation criteria

2.3.1. Usual measures

The most common way of measuring the agreement
between the detected edges and the ground truth is to
measure the number of false positives (or the false alarm
rate), and the number of false negatives (or misdetection
rate) (Bedekar et al., 1994; Kanungo et al., 1995; Heath,
1996). For our purposes, only one connected object is
extracted from the three-dimensional MRI images, viz. the
brain, and a high false alarm rate on the detection of the
outer cortical surface does not necessarily mean a bad
segmentation. Hence, the false positive/negative alterna-
tive may not be relevant on contours (or cortical surfaces),
but rather on the total brain volume, which is equivalent to
an overlap rate. Moreover, these measures remain too
global and do not take into account local discrepancies in
the compared objects. For instance, the effect of a local-
ized substantial discrepancy will be concealed by a com-
paratively good behavior elsewhere, resulting in a quite
low overlap percentage, even though this situation ought to
be considered bad. That is why we have carried out many
tests suitable to the phantom model, which we now
present. Henceforth and for the purposes of simplicity and
consistency with respect to our application, only 3D
images will be considered. The space of interest is then a
subset of Z°.

One can solve the lack of local information of the two
previous methods by introducing the Euclidean distance
(ED) d, defined as follows in Z*:

YM(x,y,2), VM'(x',y' z") € Z3,
dMM) =N —x'Y+(y—y )Y +E—z) )

Resulting from this metric, the sphere B(C,r), centred in C
and with radius 7, is then easily defined by

B(Cr)={ME Z’|d (CM)<r}. 3)

Although the Euclidean distance is certainly the most
accurate metric, it has not been used for a considerable



time because of the computation time involved (Ge and
Fitzpatrick, 1996). Various time-saving approximations to
the Euclidean distance have been proposed, such as
chamfer distance (Borgefors, 1986), but are inaccurate,
especially for large objects since the approximation error
of the discrete metrics increases with the object size.
Indeed, the latter distance results from the iterative propa-
gation of a local approximation of the Euclidean distance
along the image via neighbor pixels (Eggers, 1998).
Another global distance criterion used to determine the
degree of resemblance between two objects is the Haus-
dorff distance (Huttenlocher et al., 1993), which represents
the maximum of the minimal distances between the
contours of the two objects of interest. As a matter of fact,
this distance only gives the upper bound of the error
between the volume contours, which is insufficient to give
precise account for their good agreement.

2.3.2. Distance map and histogram

We decided to define the reference contours (surface in
our case) as the border of the brain. The border is created
from the threshold of the intra-cerebral matters (white
matter, grey matter and glial matter): only voxels whose
proportion of intra-cerebral matter is greater than 50% are
considered to belong to the brain.

2.3.2.1. Distance map. The backbone of the method pro-
posed here is to consider a volume of interest V. and an
object volume ¥, to be compared to the latter. Then d, is
used in order to create a Distance Map (DM) from the
contour C, of V. The DM is finally applied to the contour
C, of V, so that each of the voxels of C, would be
earmarked by a value indicating its approximate Euclidean
distance to the reference C,. As stated by Verwer et al.
(1989), the distance transform (DT), or distance map, is a
grey-value image whose voxel intensity represents the
minimum distance to a reference object. For our purpose,
we used a signed DM (SDM), which allows us to
distinguish the voxels inside from those outside the
reference object. The building of the SDM is performed as
follows. The contour C, is successively dilated by spheres
with increasing radius, as defined above. The difference of
two successively resulting volumes obtained by dilation of
C. with a sphere with respective radius i and i+ 1, is
composed of two surfaces:

S =V, 0D (CND(C)), (4a)

Sext

=V 0D (CD(C)), (4b)
where B, is the sphere with radius equal to i and D%(C)) is
the dilation of C. by the sphere B,. S., is the surface
constituted of the voxels inside the volume of reference ¥,

whose distance to the contour C, is i + 1 voxels and which

will be indexed by — (i +1). S;}, is the surface consti-
tuted of the voxels outside the volume of reference V,
whose distance to the contour C, is i + 1 voxels and which
will be indexed by i + 1. In that way, iso-intensity surfaces
(see Fig. 1(a)) are created, each voxel of which is coded by
its distance to the reference contour C,. The construction
of the SDM ensures that the distance is that of the closest
point to the contour (Fig. 1(b) and 1(c)). By superimposing
this SDM to the contour C_, a grey-level intensity contour
geometrically identical to the latter is obtained, but for
which each voxel intensity represents its distance to the
reference contour C,. Hence it is quite easy to make this
distance information visible by displaying the 3D resulting
distance contour (DC), and to see local discrepancies of
the object volume V, in relation to the reference V, (Fig.

1(d)).

2.3.2.2. Distance histogram. Because of the huge amount
of local information resulting from the formerly presented
SDM, the distance contour DC cannot directly provide an
assessment of the accuracy of the segmentation algorithm.
Furthermore, a visual inspection would not make a signifi-
cant improvement to the usual comparison between the
manually delineated contours and the results. Thus, one
must extract from the raw data some relevant characteris-
tics, which should be as discriminating as possible towards
unbiased criteria. The most simple means to compress
distance information is to calculate the distance histogram
of DC, which indicates the number of voxels in C, at any
distance of C,. In other words, the distribution of distance
errors of C_ in comparison with C, is obtained, and their
similarity can then be assessed.

2.3.2.3. Model-based measurement method. We have only
taken into account the distance concept in order to
compare a test volume with a ‘ground truth’. Now, the
issue of segmentation methods is that of extracting the
brain from the cranium. The goal is to delineate the
external cortical limit (grey matter), contained in the
cerebrospinal fluid (CSF). This interface notion, combined
with the phantom model, led us towards the use of the
notion of percentage of matter per layer. The idea is to take
into account, in addition to the distance information, the
proportion of each matter given by the phantom model, in
order to characterize the similarity between an edited
volume and the ideal brain. In order to most profitably use
the phantom model, iso-distance layers from the contour C,
of the segmented volume V¥, were created in the same way
as the iso-intensity surfaces used in the previous section. In
this way, the delineation of encephalon, considered as the
edge between grey matter and cerebro-spinal fluid (CSF),
is obtained. For each layer inside (outside) S', (S¢¥',) the
segmented volume V,, the histograms of the grey matter
and CSF proportions per 5% slices are created, that is the
number of voxels in the considered layer that have a
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Fig. 1. (a) Building of the distance map of the reference at step i; (b) Signed Distance Map (SDM) on the reference contour (in black); (c) 3D Signed
Distance Map (SDM) applied on the encephalon reference contour (in white). Colour coding of the distance holds from —20 to +20 voxel; (d) Distance

Contour (DC) of an edited brain in relation to the reference.

proportion of grey matter (CSF) between 50 and 55%, 55
and 60%, etc. For each tissue, 10 classes C, are obtained:

G =1b,b;. ), b, =50+5,0<j<9.

The number of voxels in the layer S, belonging to the
tissue M in class C; is then

ng(M) = #{V/(x,y,2) € S,, P\,(x,y.2) € C,}. (5)

The total number of voxels in the layer belonging to the
tissue M verifies

s (M) = 2 (M) (6)

Therefore, for each layer, it is possible to define the
number of voxels of each tissue as its proportion associ-

ated class. Furthermore, normalizing n{/(M) by ng (M)
gives the percentage of voxels of any structure M belong-
ing to the class C,.

2.3.3. Overall statistical features

Now, from the distance histogram detailed above, one
must extract some relevant data that sum up its global
behaviour, so as to obtain a discriminating vector for each
distance histogram. These characteristics must attest as
faithfully as possible the performance of the segmentation,
even though they cannot ensure that the accuracy is
absolute. At least, if one of the coordinates of the resulting
discriminating vector is significantly bad with respect to
our criteria, we are then able to conclude that the seg-
mentation has failed in a precise manner, depending on the
significance of the unsatisfactory characteristic.



2.3.3.1. Mean error. The first statistical measure to be
naturally extracted from the distance histogram is the mean
of the error distribution. This first-order moment gives
information on the global behaviour of the segmented
contour. In other words, one can imagine an equivalent
contour equidistant to the reference contour, with the same
mean error as the segmented contour, but with other
higher-order moments null (e.g., the variance): the mean
error isocontour. If the absolute value of the mean error is
higher than a given threshold, it means that the number of
voxels far away from the reference is substantial, and that
the segmentation is unreliable. Of course, a subjective
threshold is necessary to reject a segmentation. This means
that the operator will have to decide whether the chosen
threshold is relevant or not. But it is clear that there is no
ideal value: it depends on the wishes of the user.

2.3.3.2. Standard deviation of the error. The most usual
second-order statistical moment is the standard deviation
of the error distribution, which is representative of the
spreading of the histogram. Its interpretation is quite
simple: the greater the standard deviation, the sparser the
voxels of the contour around the mean error isocontour
and, hence, the worse the segmentation. So, in the case of
a low mean error in the segmentation, a too high standard
deviation means that there are many outliers on the
segmented contour, and that the segmentation procedure
has failed in a way proportional to the variance. Neverthe-
less, a low standard deviation must also be defined with a
threshold, which is another parameter.

2.3.3.3. Skewness and kurtosis. Even though the two
former statistical moments are usually enough to describe
the behaviour of a distribution, we have calculated the
third moment (or skewness) and the fourth moment (or
kurtosis) of the distance histogram, so as to more precisely
characterize the segmentation performance. The skewness,
whose value determines the degree of asymmetry of a
distribution around its mean, is useful to test whether the
distance errors mostly stand inside or outside the reference
contour. As for the kurtosis, it indicates the relative
peakedness or flatness of the distribution, and hence is
representative of the importance of the ‘small’ segmenta-
tion errors. The more the small errors, the lower the
kurtosis. But a high positive kurtosis is not indicative of a
good segmentation.

2.3.3.4. Distance to the maximum. That is why the dis-
tance to the maximum error is relevant: it can attest to the
worst segmentation error and show in which manner the
segmentation has failed. But, as the final segmented
surface is closed and continuous, as far as the discrete
topology is concerned, one voxel far away from the
reference contour implies that its direct neighbours also
stand far away from the ideal contour and, therefore, that
many substantial segmentation errors inevitably occur.

Consequently, a high value for the maximal distance error
can lead to a peaked histogram, but usually entails a high
value for the standard deviation and low (negative) value
for the kurtosis.

As a conclusion, we have processed some characteristics
from the distance histogram. No precept is to be followed a
priori to find the ‘best’ segmentation. Actually, the con-
junction of the proposed tools can be used advisedly to
obtain the performance of the segmentation algorithms.
They only allow the rejection of a segmentation for a
particular criterion, but cannot ensure that the segmenta-
tion is satisfactory according to other criteria, as yet
undefined.

3. Tested segmentation methods

A huge number of studies have already been carried out
concerning 3D MR segmentation, from most of which it
emerges that the stumbling block in MRI data comes from
the morphological complexity of the brain, which includes
both smooth and jagged areas. Segmentation of the en-
cephalon is usually performed in three ways. The first one
is based on region growing techniques and connectivity
rules (Cline et al., 1987; Joliot and Mazoyer, 1993).
Nevertheless, a manual operation is often required in order
to cut the undesirable ties caused by partial volume effects.
The second method deals with contour detection using
gradient or Laplacian (Bomans et al., 1990; Raman et al.,
1991), but needs a post-processing. Finally, the last
method, based on mathematical morphology (Brummer et
al., 1993; Vérard et al., 1995), consists of two main steps: a
threshold followed by erosions in order to disconnect the
different cerebral structures, and conditional dilations to
obtain a complete structure and retrieve illegitimately
broken ties.

3.1. Editing algorithm

The first step of our cooperative segmentation method
consists in obtaining the initial contour for a further
refinement with active contours. The methodological ap-
proach is based on a histogram analysis for an automatic
threshold selection and on morphological steps (Suzuki
and Toriwaki, 1991; Vérard et al., 1995; Aboutanos and
Dawant, 1997). The former contour is then submitted to
internal constraints linked to the regularization of the
contour and to external constraints involving local prop-
erties in terms of image knowledge. The active contours
model, originally introduced by Kass et al. (1988), has
been applied in many fields, and particularly in segmenta-
tion (Cootes et al., 1994; Ashton et al., 1997). It is to be
pointed out that authors often ignore the crucial choice of
parameters of the deformable model, which is the back-
bone of segmentation. In the deformable model we have
implemented (Nastar and Ayache, 1992), each point



belonging to the contour is given a physical mass, linked to
its neighbors by springs, and converging towards a stable
state under an external strength field. Because of the time
requirement heaviness of active surface, we only applied
active contours in 2D in a slice-by-slice method along the
axial axis. The evolution of each mass m; is described by
the well-known equation

F()=ma ), 0<i=n, (7)

where F(¢) is the total strength applied on the point M, and
a(t) its acceleration. Assuming that all the points of the
contour have unit mass and the same damping coefficient,
the nodal shifting U,(t) = M,(t) — M,(t,) of each point M,
(#, is the initial instant) is ruled by the second-order
differential equation

FXO=U({t)+2{w,U. ()
+oi(~U,_,(t) +2U(t) = U, (), (8)

where ( is the damping factor and w, the natural pulsation
of the system.

The excitation field arises from one or more image
properties, and is derived from the potential P, associated
with the strength field F, (#)= —VP, where V is the
gradient operator. As far as we were concerned, this
potential was chosen as a linear combination of an image
potential and a gradient potential:

PoaM0) = al(M.1) = (1 = a)|[VG FIM,1)], )

where a (a €[0,1]) balances the image and gradient
knowledge. The minus sign in the gradient potential
formula means that the contour must tend towards strong
gradients with low grey values, that is to say towards CSF,
which is a prerequisite for encephalon extraction. The
invariability of « in formula (9) would imply undesirable
constraints in the simple implementation of this method.
Indeed, depending on the value «, either the image
potential or the gradient potential is emphasized: a weak «
(e < 1) will lead the active contours towards strong
gradient areas, whereas a high value (« = 1) will drive it to
low-intensity areas. Now, the compulsory trade-off it
implies must not be indefinitely fixed, given a contour, but
rather locally adjustable according to image characteristics.
Therefore, we have made « dependent on the local
gradient, more precisely as a decreasing function of the
gradient: « equals 1 where the gradient information is
insignificant and converges to 0 when the gradient norm
tends towards infinity. The chosen function is then the
following:

1
1+ [[lgrad@n)|/s21°

a,(grad(M)) = (10)
where ol acts as a normalization factor that can be
calculated from global attributes on the gradient image.
Thus, we have built an adaptive balance parameter that

locally modifies the weight of both image and gradient
potential.

3.2. Brain tissue segmentation

As we wanted to evaluate the performance of intrinsical-
ly volumetric structures segmentation, we implemented a
classification algorithm that utilizes three-dimensional
Markov Random Field (MRF) models for segmenting
cerebro-spinal fluid, grey matter and white matter in
magnetic resonance T1-weighted images. The mixclasses
(mixture of two pure classes), due to the partial volume
effect, are taken into account in the tissue class model. The
method is thoroughly described in (Ruan et al., 1998).

4. Results

The characteristics of the phantom used are as follows:
T1-weighted MRI data, 1 mm thickness, 1X1 mm? in-
plane resolution (that is to say a 181 X217X 181 volume),
8 bits per voxel (256 grey levels). The phantom, whose
characteristics have been described in Section 2.2, is first
used without any additive noise. In a first step, the
initialization editing program gives the start contour for the
active contours segmentation algorithm. Then, active con-
tours are performed in a 2D slice-by-slice procedure in
order to retrieve the grey matter missed by the first
segmentation procedure. Even though the volume edited
by the latter is simply connected, the 2D procedure makes
some surfaces not simply connected (that is to say
containing one hole at least). The resulting multicontour
images are automatically processed for each slice. Finally,
the brain tissue classification procedure is performed.

For practical reasons, the 3D distance map of the
reference volume has been performed in a maximal
vicinity of 20 voxels: only the voxels whose distance to the
reference contour is less than 20 mm are indexed as
described in Section 2.3.2. In this way, 20 internal layers
and 20 external layers are defined for the reference
contour. Fig. 1(c) displays the distance map obtained, from
which one-eighth of the space has been removed, in order
to appreciate the global look of a typical map. The distance
contour of the edited brain can elicit astonishment if no
caution is taken (Fig. 1(d)). Indeed, the interpretation of
the DC is not as straightforward as it might seem.
Actually, one must keep in mind that a distance contour
displays the distance discrepancies between an edited
volume and a reference. From this, we can make two
statements: the more homogeneous the color of a DC, the
more homogeneous the error distance on the DC; secondly,
the lower the absolute value of a voxel intensity, the closer
to the reference the voxel is.

The stumbling block of segmentation methods, i.e. the
choice of appropriate parameters, is presented and dis-
cussed below for the editing operation. Concerning the



tissue classification, we show some performance measures,
and test the influence of well-known artefacts on seg-
mentation performance. To finish, an application to real
MRI images extends our criteria to assess the performance
of the day-to-day editing procedure.

4.1. Parameter choice and joint optimization

The use of active contours is always a crucial issue
because it first requires to find, if not optimal, then at least
satisfactory parameters. In order to obtain an appropriate
range for w,, { and s, we have made these parameters
vary by covering a parameters cube (subset of R*) and
calculating some features from the resulting distance
histograms. The extremal values and steps for each param-
eter are the following: w, varies from 0.25 to 5, with the
step dw, =0.25; ¢ varies from 0 to 1, with the step
8 =0.05; o varies from 0.25 to 1, with the step 3 =
0.05.

As the calculating process would be too long for the
entire volume, we restrict our parameter optimization to
the two-dimensional case by choosing and segmenting a
representative axial slice of the tested volume. We then
obtain a vector of performance characteristics at any point
of the parameter cube, which allows us to find an optimal
parameter set: the intersection of all the characteristic
volumes thresholded to adequate chosen values, depending
on the requirements of the user. Finally, the set of points in
the parameters cube, whose resulting performance values
verify our criteria, can be considered as a set of all possible
values for the parameters. Thanks to the similarity mea-
surements previously detailed, we succeed in determining
a parameter set providing satisfying results with regards to
the segmentation performance on the selected slice.

The results are presented in Fig. 2, where the color map
is defined by the usual correspondence: the darker the
image, the lower the value. The five quantities on the
distance histogram (mean, standard deviation, skewness,
kurtosis, and maximum distance) are visible according to
the three parameters of the active contours algorithm. As
no volume can be visualized, we have decided to show
only three slices in orthogonal directions, centred in the
middle of the parameter cube. So, in each incidence
(corresponding to one parameter), the influence of the two
other parameters on the performance measures is shown.
These images need some interpretation. To begin with, it is
clear that the five characteristics are correlated. For
instance, the maximum distance behaves in a way akin to
the standard deviation, a phenomenon we have already
expressed in Section 2.3.3. According to the mean varia-
tions, one can predict that low values for s give better
results (low mean). By the same token, one can expect
values for the two other parameters (w, and ) that are not
too small. Otherwise, the mean error becomes too big, and
the corresponding criterion is no longer verified.

Concerning the standard deviation, the same propensity
is found for the good range of parameters. As regards the
higher-order statistical measures, the skewness images
show that the lower absolute values, corresponding to
symmetric distance histograms, coarsely correspond to the
low means and standard deviations. In the same way, the
kurtosis images corroborate the remark in Section 2.3.3,
and the high standard deviations (linked to the maximum
distances) are equivalent to low negative kurtosis, which
means that the distance histogram is platykurtic (flat
distribution).

Finally, there exists a good correspondence between
each characteristic used. For purposes of visualization, we
have tried to use two sets of parameters (Fig. 3), in order
to illustrate the previous behaviour of parameters: one bad
editing (with a satisfying standard deviation of 0.95, but a
bad mean of 4.1), and one satisfying these statistical
criteria (standard deviation 1.05, mean 1.15). The results of
the brain editing are shown on the original slices, which
are corroborated by the performance measures: the contour
given by the bad editing obviously stands far away from
the ideal contour. Let us specify here that the corre-
sponding parameters were chosen according to the charac-
teristics volumes previously described (Fig. 2), and the
predicted effect of such parameters were verified on the
original slices. Thus, the thought process used here is the
inverse of the usual empirical one: we do not find the ideal
parameters a posteriori, after any visual test, but a priori,
from the joint optimization.

4.2. Three-dimensional extension

We then make the assumption that the results obtained
for the parameter optimization on an axial slice are
extendable to the entire volume. One sufficient condition is
that all of the possible geometrical and intensity-based
configurations of the brain contour should be present in the
tested slice, in such a way that no significant difference
appears in the other slices of the whole volume. We present
the distance histograms of the three-dimensional edited
brain for each parameter set in Fig. 3(d). Some apposite
remarks are now imperative. As foreseeable, the charac-
teristics of the distance histogram have changed in relation
to the two-dimensional restriction (Fig. 3(c) and 3(d)),
especially by the fact that the means have significantly
decreased, even though their trend to attest faithfully the
segmentation performance is obvious. One hypothesis for
this is that the two-dimensional joint optimization uses a
two-dimensional distance map, whereas the three-dimen-
sional performance histograms are calculated in a three-
dimensional way. So, some of the points belonging to the
2D test contour might be closer to the 3D cortical surface
than when they were restricted to the two-dimensional
case, especially for the points near a surface element
almost tangent to the axial slice.
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4.3. Brain tissue classification its robustness in relation to the noise and the non-uni-
formity level. We utilize the data available on Brainweb,

Once the brain editing has been performed, and with the the noise varying with the following values: 1, 3, 5, 7 and
concern to take into account the real acquisition phenom- 9%. Concerning the intensity non-uniformity, only two
ena, necessary for a reliable modelling, we apply the values are tested: 0 and 20%. For all of these configura-

classification algorithm explained in Section 3.2, and test tions, we calculate the distance histograms for each usual
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Fig. 3. Influence of the parameters of active contours on the performance criteria for the active contours algorithm. (a) Bad editing result with w, = 4.5,
{=0.85, &/ =0.9. (b) Good editing result with w, =5, {=0.6, &/ = 0.05. (c) Corresponding distance histograms with the following characteristics: (bad
editing) mean 4.1, standard deviation 0.95, maximum distance 7, skewness — 0.5, kurtosis 2; (good editing) mean 1.15, standard deviation 1.05, maximum
distance 6, skewness 0.9, kurtosis 2.4. (d) Three-dimensional distance histograms of the previous ‘bad’ and ‘good’ editing, with the following
characteristics: (bad editing) mean 2.247, standard deviation 1.489, maximum distance 7, skewness —0.5181, kurtosis 0.13; (good editing) mean —0.0649,
standard deviation 0.9404, maximum distance 7, skewness 0.699, kurtosis 1.324.

cerebral matter (cerebrospinal fluid, grey matter, and white
matter). The distance maps for all these internal structures
are calculated from the definition of a reference contour, as
specified in Section 2.3.2, by a threshold to 50% of each
proportion volume. The influence of the two artefacts on
the distance histograms is presented through its statistical
features in Fig. 4.

The first remark we can make from these variations is
that the mean error almost equals — 1, which means a bias
of 1 mm in the detection of the contours. This phenomenon
can be explained by the definition of the reference contour:
the border of each cerebral matter is found by thresholding
the original proportion volume to 50%. By the way, this
threshold might have been too high, for each structure, and
hence biases the performance quantification by an offset of
one voxel. If only one classified matter had a positive
offset, and the neighbouring structure the opposite of this
offset, one could have concluded a bad classification. But,
in our case, the same offset appears in each distance

histogram, which prompts us to adopt the aforementioned
explanation.

Next, for an intensity non-uniformity equal to 20%, one
notes the global increase of the standard deviation while
the noise increases. One possible explanation is that the
number of well-classified voxels decreases (maximum of
the peak), whereas the tails of the histograms grow
substantially, and hence the variance increases. Moreover,
this phenomenon is all the more pronounced for the
cerebro-spinal fluid and the white matter. Anyway, it
means that the non-uniformity artefact noticeably influ-
ences the performance of the classification process. We can
conclude that the noise addition tends to shift some well-
classified voxels from the peak towards the tails of the
distance histogram, and that this propensity increases with
the intensity non-uniformity. Nonetheless, in view of the
noise level tested on the magnetic resonance images, the
classification results are quite satisfying, and we believe
that our segmentation method is robust in relation to
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Fig. 4. Influence of the noise (N) and intensity non-uniformity (INU) on the statistical quantities of the distance histograms for the brain tissue
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normally distributed white noise, provided on Brainweb.
Nevertheless, an exhaustive study concerning the real
noise effect should be performed. For instance, Rayleigh
distribution for the background noise (Henkelman, 1985)
should be added to the noiseless data.

4.4. Application to real MRI images

For real experiments, the MRI images were acquired on
a 1.5 T Signa scanner (GE-Milwaukee) using a conven-
tional head-coil. We have used 256X256X124 sized
volumes, coded on 8 bits, with a 1X1X1.2 mm’ res-
olution, coming from 3D SPGR T1-weighted acquisitions
(TE=7 ms, TR=30 ms, a =40°). The aim of our study
consists in showing the improvement in brain editing
thanks to the active contours. Figs. 5(a) and 5(b) show
results on a segmented volume axial slice, before and after
the active contours step. The original program erodes the
encephalon in the cortical area too much, that is to say

some gyri are not totally included in the final edited brain.
On the contrary, the refinement using the active contours
allows us to retrieve some omitted cortical parts. Further-
more, the geometrical complexity of the external cortical
frontier (grey matter—cerebro-spinal fluid interface) is
better managed by the active contours. By the way, it
should be noted that the latter tends to include, in some
places of the encephalon, some CSF, proclivity which can
be explained by the form of the gradient potential in Eq.
(9). Keeping in mind that the final purpose is to obtain the
whole of the cerebral structures (especially the cortex) for
a better subsequent classification of tissues, the advantage
of active contours is obvious.

Even though real data inherently cannot provide an
unbiased ‘ground truth’, we have manually built a refer-
ence volume thanks to the Voxtool software’ This refer-

*Voxtool Software, General Electric, Milwaukee, WI, USA.
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Fig. 5. Comparison of the two segmentation stages on real MRI T1-weighted data. (a) Superimposition of the contour before the active contours on the
original axial slice. (b) Superimposition of the contour after the active contours on the original axial slice. (c) 3D distance histogram of the two former

segmented volumes.



ence has been devised by an expert, and helps us to use the
distance-based criteria developed in Section 2. So, we have
to make the assumption that this volume stands for a
reference, whose accuracy is better than the mean error to
be detected in the automatically edited brain. Now, consid-
ering the distance histograms (see Fig. 5(c)), it is obvious
that many voxels before the active contours procedure
extend too much into the reference volume. Conversely,
the distance histogram of the edited brain after active
contours shows that most voxels of the resulting surface
belong to the reference contour, and most of the mis-
classified voxels have been retrieved.

5. Conclusion and discussion

To conclude, the contribution of this work to the
evaluation of segmentation performance is shown, and the
criteria used here can be a good prerequisite for validation
of new algorithms, provided a reference is given. For
purposes of validation, the use of a phantom model based
on anatomical information of the brain and its synthesis
from the physical equations provide a simulation as close
as possible to the real acquired images. Moreover, the
knowledge of all proportions of the cerebral matters in any
location of the phantom permits us to precisely character-
ize the performance of the encephalon segmentation
methods. Indeed, new methods for quantifying segmenta-
tion algorithms, combining the concept of distance and the
information provided by the model, are presented. Further-
more, we use some statistical measures from the distance
histograms to reliably find a set of optimal parameters
according to user-defined criteria. Some examples show
the faithful congruence between the performance measures
and the effective accuracy of the segmentation. The
robustness of a brain tissue segmentation algorithm with
regard to some usual artefacts is tested and demonstrated
with our performance evaluation method. Finally, we
prove the efficiency of the brain editing method on real
MRI images, by automatically comparing the results
before and after the active contours step with a quasi-
manually designed reference. The distance information,
provided by the definition of a reference, considerably
improves the quantification of the segmentation perform-
ance. By means of some statistical features on the distance
histograms, we can evaluate in which manner the seg-
mented objects fit the ideal ones. The localization of the
misclassified voxels can lead to an automatic enhancement
of the segmentation process. The preselection of a range
for parameters of active contours by means of the phantom
is specific to the type of sequence. The extension of the
phantom model presented here to other clinical day-to-day
sequence types could provide a wider automation of the
active contour method. More generally, the discrepancy
measurements allow us to compare any kinds of objects,
such as segmentation performance quantification (by com-

paring one segmentation with a reference) or general
registration (by testing the good fit between the standard
and the resliced objects).

Acknowledgements

We are grateful to the MR unit at Caen Hospital for
providing the brain images used in this work. We also
thank the devisers of the brain phantom available on the
Web.

References

Aboutanos, G.B., Dawant, B.M., 1997. Automatic brain segmentation and
validation: image-based versus atlas-based deformable models. IEEE
Proc. SPIE-Med. Imaging 3034, 299-310.

Ashton, E.A., Parker, K.J., Berg, M.J., Chen, CW., 1997. A novel
volumetric feature extraction technique with applications to MR
images. IEEE Trans. Med. Imaging 16 (4), 365-371.

Barrett, H.H., 1996. Objective evaluation of image quality. In: Second
IEEE EMBS International Summer School on Biomedical Imaging.
Berder Island, France.

Bedekar, A.S., Haralick, R.M., Ramesh, V., Zhang, X., 1994. A bayesian
corner detector: theory and performance evaluation. ARPA 94, 703—
715.

Bloch, F., Hansen, WW., Packard, M., 1946. The nuclear induction
experiment. Phys. Rev. 70, 474—485.

Bomans, M., Hohne, K.H., Tiede, U., Riemer, M., 1990. 3-D segmenta-
tion of MR images of the head for 3D display. IEEE Trans. Med.
Imaging 9, 177-183.

Borgefors, G., 1986. Distance transformations in digital images. Comput.
Vision Graph. Image Process. 34, 344-371.

Broderick, J.F., Narayan, S., Gaskill, M., Dhawan, A.P., Khoury, J., 1996.
Volumetric measurement of multifocal brain lesions. Implications for
treatment trials of vascular dementia and multiple sclerosis. J. Neuro-
imaging 6 (1), 36—43.

Brummer, M.E., Mersereau, R.M., Eisner, R.L., Lewine, R.R.J., 1993.
Automatic detection of brain contour in MRI data sets. IEEE Trans.
Med. Imaging 12 (2), 153-166.

Chakraborty, A., Staib, L.H., Duncan, J.S., 1996. Deformable boundary
finding in medical images by integrating gradient and region in-
formation. IEEE Trans. Med. Imaging 15 (6), 859-870.

Chalana, V., Kim, Y., 1997. A methodology for evaluation of boundary
detection algorithms on medical images. IEEE Trans. Med. Imaging
16 (5), 642—652.

Cho, K.J., Meer, P., Cabrera, J., 1997. Performance assessment through
bootstrap. IEEE Trans. Pattern Anal. Mach. Intell. 19 (11), 1185—
1197.

Cline, H.E., Dumoulin, C.L., Hart, Jr. H.R., Lorensen, W., Ludke, S.,
1987. 3D reconstruction of the brain from magnetic resonance images
using a connectivity algorithm. Magn. Reson. Imaging Magnet 5 (5),
345-352.

Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J.,
Holmes, C.J., Evans, A.C., 1998. Design and construction of a realistic
digital brain phantom. IEEE Trans. Med. Imaging 17 (3), 463—468.

Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J., 1994. The use of active
shape models for locating structures in medical images. Image Vision
Comput. 12 (6), 355-366.

De Munck, J.C., Verster, F.C., Dubois, E.A., Habraken, J.B., Boltjes, B.,
Claus, J.J., Van Herk, M., 1998. Registration of MR and SPECT
without using external fiducial markers. Phys. Med. Biol. 43 (5),
1255-1269.



Disler, D.G., Marr, D.S., Rosenthal, D.I., 1994. Accuracy of volume
measurements of computed tomography and magnetic resonance
imaging phantoms by three-dimensional reconstruction and prelimin-
ary clinical application. Invest. Radiol. 29 (8), 739-745.

Eggers, H., 1998. Two fast Euclidean distance transformations in Z2
based on sufficient propagation. Comput. Vision Image Understanding
69 (1), 106-116.

Frisoni, G.B., Laakso, M.P., Beltramello, A., Geroldi, C., Bianchetti, A.,
Soininen, H., Trabucehi, M., 1999. Hippocampal and entorhinal cortex
atrophy in frontotemporal dementia and Alzheimer’s disease. Neurolo-
gy 52 (1), 91-100.

Galloway Jr., R.L., Maciunas, R.J., Edwards II, C.A., 1992. Interactive
image-guided neurosurgery. IEEE Trans. Biomed. Eng. 39 (12), 1226—
1231.

Galloway Jr., R.L., Edwards II, C.A., Lewis, J.T., Maciunas, R.J., 1993.
Image display and surgical visualization in interactive image-guided
neurosurgery. Opt. Eng. 32, 1955-1962.

Ge, Y., Fitzpatrick, J.M., 1996. On the generation of skeletons from
discrete Euclidean distance maps. IEEE Trans. Pattern Anal. Mach.
Intell. 18 (11), 1055-1066.

Gerritsen, F.A., van Veelen, CW.M., Mali, W.P., Bart, A.I.M., de Bliek,
H.L.T., Buurman, J., van Eeuwijk, A.HW., Hartkamp, M.J., Lobregt,
S., Moreira Pereira Ramos, L., Polman, L.J., van Rijen, P.C., Visser,
C.P, 1995. Some requirements for and experience with COVIRA
algorithms for registration and segmentation. In: Beolchi, L., Kuhn,
M.H. (Eds.), Medical Imaging, pp. 4-27.

Grimson, W.E.L., Ettinger, G.J., White, S.J., Lozano-Perez, T., Wells,
WM., Kikinis, R., 1996. An automatic registration method for
frameless stereotaxy, image guided surgery, and enhanced reality
visualization. IEEE Trans. Med. Imaging 15, 129—-140.

Haralick, R.M., 1994. Dialogue: performance characterization in com-
puter vision. Comput. Vision Graph. Image Process.: Image Under-
standing 60 (2), 245-265.

Heath, M.D., 1996. A robust visual method for assessing the relative
performance of edge detection algorithms. Master’s Thesis, Tampa,
FL.

Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, KW., 1997. A robust visual
method for assessing the relative performance of edge-detection
algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 19 (12), 1338—
1359.

Henkelman, M., 1985. Measurement of signal intensities in the presence
of noise in MR images. Med. Phys. 12 (2), 232-233.

Hoover, A., Gillian, J.-B., Jiang, X., Flynn, P.J., Bunke, H., Goldgof,
D.B., Bowyer, K., Eggert, DW., Fitzgibbon, A., Fisher, R.B., 1996. An
experimental comparison of range image segmentation algorithms.
IEEE Trans. Pattern Anal. Mach. Intell. 18 (7), 673—689.

Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J., 1993. Comparing
images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach.
Intell. 15 (9), 850—-863.

Jack, C.R., Marsh, W.R., Hirschom, K.A., Sharbrough, FW., Cascino,
G.D., Karwoski, R.A., Robb, R.A., 1990. EEC scalp electrode
projection onto three-dimensional surface rendered images of the
brain. Radiology 176 (2), 413-418.

Jain, R.C., Binford, T.O., 1991. Ignorance, myopia and naivete in
computer vision systems. Comp. Vision Graph. Image Process.: Image
Understanding 53 (1), 112-117.

Joliot, M., Mazoyer, B., 1993. Three-dimensional segmentation and
interpolation of magnetic resonance brain images. IEEE Trans. Med.
Imaging 12 (2), 269-277.

Juottonen, K., Laakso, M.P., Partanen, K., Soininen, H., 1999. Compara-
tive MR analysis of the entorhinal cortex and hippocampus in
diagnosing Alzheimer disease. Am. J. Neuroradiol. 20 (1), 139-144.

Kalender, W., 1992. A phantom for standardization and quality control in
peripheral bone measurements by QCT and DXA: Design considera-
tions and specifications. Med. Phys. 19, 583—586.

Kanungo, T., Jaisimha, M.Y., Palmer, J., Haralick, RM., 1995. A
methodology for quantitative performance evaluation of detection
algorithms. IEEE Trans. Image Process. 4 (12), 1667-1674.

Kapur, T., Grimson, W.E.L., Wells III, W.M., Kikinis, R., 1996. Segmenta-
tion of brain tissue from magnetic resonance images. Med. Image
Anal. 1 (2), 109-127.

Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour
models. Int. J. Comput. Vision, 321-331.

Kuzniecky, R.I., Burgard, S., Bilir, E., Morawetz, R., Gilliam, F., Faught,
E., Black, L., Palmer, C., 1996. Qualitative MRI segmentation in
mesial temporal sclerosis: clinical correlations. Epilepsia 37 (5), 433—
439.

Kwan, RXK.S., Evans, A.C., Pike, G.B., 1996. An extensible MRI
simulator for post-processing evaluation. In: Visualization in Bio-
medical Computing. Fourth International Conference Proceedings.
Lecture Notes in Computer Science, Vol. 1131. Springer, pp. 135-140.

Malandain, G., Fernandez-Vidal, S., Rocchisani, J.M., 1995. Physically-
based rigid registration of 3D free-form objects: application to medical
imaging. Research Report INRIA, No. 2453.

Mangin, J.F., Frouin, V., Bloch, 1., Bendriem, B., Lopez-Krahe, J., 1994.
Fast nonsupervised 3D registration of PET and MR images of the
brain. J. Cereb. Blood Flow Metab. 14 (5), 749-762.

Mortelmans, L., Nuyts, J., Vanhaecke, J., Verbruggen, A., De Roo, M., De
Geest, H., Suetens, P., Van de Werf, F., 1993. Experimental validation
of a new quantitative method for the analysis of infarct size by cardiac
perfusion tomography (SPECT). Int. J. Card. Imaging 9 (3), 201-212.

Nastar, C., Ayache, N., 1992. Fast segmentation tracking and analysis of
deformable objects. Research Report INRIA, No 1783.

Pavlidis, T., Liow, Y.T., 1990. Integrating region growing and edge
detection. IEEE Trans. Pattern Anal. Mach. Intell. 12 (3), 225-233.

Pelizzari, C., Chen, G., Spelbring, D., Weichselbaum, R., Chen, C., 1989.
Accurate three dimensional registration of CT, PET and/or MR
images of the brain. J. Comput. Assisted Tomogr. 13, 20-26.

Raman, SV.,, Sarakar, S., Boyer, K.L., 1991. Tissue boundary refinement
in MRI using contour-based scale space matching. IEEE Trans. Med.
Imaging 10 (2), 109-121.

Ruan, S., Jaggi, C., Bloyet, D., Mazoyer, B. (Eds.), 1998. Brain Tissue
Classification in MR Images Based on 3D MRF Model. IEEE EMBS,
Hong Kong, p. 625.

Suzuki, H., Toriwaki, J., 1991. Automatic segmentation of head MRI
images by knowledge guided thresholding. Comput. Med. Imaging
Graph. 15 (4), 233-240.

Tofts, P.S., Barker, G.J., Filippi, M., Gawne-Cain, M., Lai, M., 1997. An
oblique cylinder contrast-adjusted (OCCA) phantom to measure the
accuracy of MRI brain lesion volume estimation schemes in multiple
sclerosis. Magn. Reson. Imaging 15 (2), 183-192.

Turkington, T.G., Hoffman, J.M., Jaszczak, R.J., MacFall, J.R., Harris,
C.C., Kilts, C.D., Pelizzari, C.A., Coleman, R.E., 1995. Accuracy of
surface fit registration for PET and MR brain images using full and
incomplete brain surfaces. J. Comput. Assisted Tomogr. 19 (1),
117-124.

van Gennip, E.M., Talmon, J.L., 1995. Assessment and Evaluation of
Information Technologies in Medicine. IOS Press, Amsterdam.

Vannier, MW., Brundsen, B.S., Hildeholt, C.F., Falk, D., Cheverud, J.M.,
Figiel, G.S., Perman, W.H., Kohn, L.A., Robb, R.A., Yoffie, R.I.,
Bresina, S., 1991. Brain surface cortical sulcal lengths: quantification
with three-dimensional MR imaging. Radiology 180 (2), 479-484.

Vérard, L., Allan, P.,, Ruan, S., Travére, .M., Bloyet, D., 1995. 3D brain
structures extraction using fully automated MRI segmentation. In-
formation Processing in Medical Imaging, Brest, France, pp. 373-374.

Verwer, B.I.LH., Verbeek, PW., Dekker, S.T., 1989. An efficient uniform
cost algorithm applied to distance transforms. IEEE Trans. Pattern
Anal. Mach. Intell. 11 (4), 424-429.

Zhang, Y.J., 1994. Evaluation and comparison of different segmentation
algorithms. Patt. Recogn. Lett. 18, 963—974.



