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Abstract—With the standardization of the new High Effi-
ciency Video Coding (HEVC) compression algorithm, a dataflow
specification of the HEVC decoding process is also available
as part of the standard. This paper presents methodologies
to improve and optimize the performance of implementations
derived by the dataflow specification. Regarding the architectural
aspect of dataflow network, the throughput has been increased
by developing more potential parallelism. For the platform
aspect, critical processes have been optimized by applying SIMD
functions and communications have been improved by cache
efficient FIFO implementation.

Results revealed an average acceleration factor of 7 in the
decoding framerate over the reference dataflow implementation.

I. INTRODUCTION

The availability of high resolution screens supporting 4K
and 8K Ultra High Definition TV formats, has raised the
requirements for better performing video compression algo-
rithms. With this objective MPEG and ITU have recently
finalized the development of the new High Efficiency Video
Coding (HEVC) video compression standard [1] successfully
addressing these demands in terms of higher compression and
increased potential parallelism when compared to previous
standards. So as to guarantee real-time processing for such
extremely high data rates, exploiting the parallel capabilities
of recent many/multi-core processing platforms is in most of
the cases an obliged implementation option for both encoders
and decoders. In this context, dataflow programming is a
particularly attractive approach because its intrinsic properties
provide the portability of the potential parallelism on different
processing platform.

The MPEG-RVC framework [2] is an ISO/IEC standard
conceived to address these needs. It is essentially constituted
by the RVC-CAL actor dataflow language [3] and a network
language, and aims at replacing the traditional monolithic stan-
dard specification of video codecs with a dataflow specification
that better satisfies the implementation challenges. The library
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of actors is written in RVC-CAL and provides the components
that are configured using the network language to build a
dataflow program implementing an MPEG decoder.

The main contributions of this work are: a) the development
of an RVC-based dataflow program implementing the HEVC
decoder; b) the optimization of the dataflow by exposing an
higher level of potential parallelism; c) the optimization of
the program for the mapping on x86 architectures using SIMD
functions and efficient FIFO cache implementations. The paper
is organized as follows: in Section II, an overview on the
RVC framework and the dataflow HEVC decoder developed
according to the RVC formalism is presented. Section III,
details the methodologies used to profile and to improve the
performance of the decoder. Finally, Section IV shows the
implementation results on multi-core software platform.

II. BACKGROUND

The emergence of massively parallel architectures, along
with the need for modularity in software design, has revived
the interest in dataflow programming. Indeed, designing pro-
cessing systems using a dataflow approach presents several
advantages when dealing with complex algorithms and target-
ing parallel and possibly heterogeneous platforms.

A. Reconfigurable Video Coding

The MPEG-RVC framework is an ISO/IEC standard aiming
at replacing the monolithic representations of video codecs by
a library of components. The framework allows the develop-
ment of video coding tools, among other applications, in a
modular and reusable fashion by using a dataflow program-
ming approach. RVC presents a modular library of elementary
components (actors). An RVC-based design is a dataflow
directed graph with actors as vertices and unidirectional FIFO
channels as edges. An example of a graph is shown in Figure
1. Every directed graph executes an algorithm on sequences
of tokens read from the input ports and produces sequences
of tokens in the output ports.

Actually, defining several implementations of video process-
ing algorithms using elementary components is very easy and
fast with RVC since every actor is completely independent
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Fig. 1: A dataflow network of five processes, the vertices
named from A to E, that communicate through a set of
communication channels, represented by the directed edges.

from the rest of the other actors of the network. Every actor
has its own scheduler, variables and behavior. The only way
of communication of an actor with the rest of the network
are its input ports connected to the FIFO channels to check
the presence of tokens. Then, an internal scheduler enables
or not the execution of elementary functions called actions
depending on their corresponding firing rules. Thus, RVC
ensures concurrency, modularity, reuse, scalable parallelism
and encapsulation. To manage all the presented concepts of
the standard, RVC presents a framework based on the use of
a subset of the CAL actor language called RVC-CAL that
describes the behavior of the actors.

The RVC framework is supported by a set of tools such as
the Open RVC-CAL Compiler (Orcc). Orcc1 [4] is an open-
source toolkit dedicated to the development of RVC applica-
tions. Orcc is a complete Eclipse-based IDE that embeds two
editors for both actor and network programming, a functional
simulator and a dedicated multi-target compiler. The compiler
is able to translate the RVC-based description of an application
into an equivalent description in both hardware [5], [6] and
software languages [7] for various platforms (FPGA, GPP,
DSP, etc). A specific compiler back-end has been written to
tackle each configuration case such as presented in Figure 2.

B. Dataflow-based HEVC decoder

HEVC is the last born video coding standard, developed
conjointly by ISO and ITU, as a successor to AVC / H.264.
HEVC is improving the data compression rate, as well as the
image quality, in order to handle modern video constraints
such as the high image resolutions 4K and 8K [1]. Another
key feature of this new video coding standard is its capability
for parallel processing that offers scalable performance on the
trendy parallel architectures.

Such parallel capabilities offer a great opportunity to show
the merits of the RVC approach. Consequently, the RVC
working group has developed, in parallel with the standardiza-
tion process, an implementation of the HEVC decoder using
the RVC framework, which is presented in Figure 3. The
description is decomposed in 4 main parts:

1) the parser: it extracts values needed by the next pro-
cessing from the compressed data stream so called

1Orcc is available at http://orcc.sf.net
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Fig. 2: Multi-target compilation infrastructure
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Fig. 3: Standard RVC specification of the MPEG HEVC
decoder

bitstream. The stream is decompressed with entropy
decoding techniques, then the syntax elements compos-
ing the stream are extracted in order to be transmitted
to the actors that they may concern. The parser applies
a Context-adaptive binary arithmetic coding (CABAC)
to extract the syntax element of the bitstream.

2) the residual: it decodes the error resulting of the image
prediction using Inverse integer Transform (IT), which
is no other than an integer implementation of the well-
known IDCT [8]. The transform allows spatial redun-
dancy reduction within the encoded residual image. As
presented in figure 3, the IT can be applied on different
blocks sizes (4x4 .. 32x32) and the dataflow description
allows parallelizing the processes.

3) the prediction part: it performs the intra and inter
prediction. Intra prediction is done with neighbouring
blocks in the same picture (spatial prediction) whereas
inter prediction is performed as a motion compensation
with other pictures (temporal prediction). The inter
predication also implies the use of a buffer, known as
Decoding Picture Buffer (DPB), containing decoding
pictures, needed to perform the temporal prediction.

4) the filter: it is used to reduce the impact of the prediction



on the image rendering. This part contains two different
filters. On the one hand, the DeBlocking Filter (DBF) [9]
is used to smooth the sharp edges between the macro-
blocks. On the other hand, the Sample Adaptive Offset
filter (SAO) [10] is used to better restore the original
signal using an offset look up table.

III. OPTIMIZATION OF THE RVC-BASED HEVC DECODER

In order to assess the performance of the dataflow HEVC
decoder presented above, Orcc has been used to generate a C
implementation. The generated project is compiled with GCC
and executed on a Xeon CPU at 3,2 Ghz. The preliminary
results on HD streams showed a low throughput of 6.1
Frames/second. The mapping of the actors on multi-core for
parallel execution did not bring scalable results.

A. Profiling

In order to better understand the bottlenecks of the design,
profiling tools have been used to evaluate the workload of each
actor and the obtained results have been reported in Figure
4. Results show that only 3 actors (Inter Prediction, DPB
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Fig. 4: Actors workload of the HEVC decoder

and SAO filter) consume 60% of the whole workload which
means that these actors require an optimization stage and a
refactoring to expose an higher potential of parallelism. In
the following, an architecture optimization based on the split
of the decoding process into luminance component (Y) and
chrominance components (U and V) separately is presented.
Then, optimization methodologies dedicated to x86 platforms
are introduced.

B. Architecture optimizations

In the first version of the decoder, sequential decoding
of the image luminance and chrominance components was
applied. This description is changed to split the processes into
independent actors for each image component as illustrated in
Figure 5. The application of this transformation had a direct
impact on the workload as shown in Figure 6 where most
of the critical actors workloads became close to the rest of
the design, such as 6% for the DPB-Y and 11% for SAO-Y.
Concerning the Luminance component of the Inter Prediction,
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Fig. 5: YUV split of the HEVC decoder: example of split of
the intra decoder at finer granularity; the same split is applied
on most actors.

a 23% is still considered to be a major bottleneck. In the
following,a local optimization of this actor by linking with
optimized functions from MPEG libraries has been applied.
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C. Platform-specific optimizations

Beside the possibility of using different dataflow network
structures, the standard RVC dataflow program can also be im-
plemented with platform-specific optimizations. In particular,
a new methodology to use platform-specific optimized kernels
to accelerate the internal processing of actors (i.e. actions) has
been introduced, and an optimized FIFO channels implemen-
tation to speed-up the communication between processor cores
that share a common cache memory has been developed.

1) Optimized kernels: Considering the compiler limitations
to perform low-level optimization on high-level code, we
propose a new technique to insert optimized architecture-
specific kernel code within high-level descriptions of dataflow



application. In this work, we used Intel SIMD instructions to
target x86 architectures. Our techniques relies on an annotation
mechanism in order to keep the portability of the high-level
description over multiple platforms:

1) First, the developer identifies the code to optimize and
move it in its own procedure, knowing that the optimized
kernels have to use the same parameters than their
equivalents in CAL. The optimized version should be
available into an external library (such as FFMPEG).

2) Then, the developer adds the directive @optimize on
top of the CAL procedure to identify the optimized
version of the procedure (see Listing 1). The directive
is based on the following syntax @optimize(condition=”

CONDITION”, name=”NAME”) where NAME is the name of
the optimized kernel and CONDITION is a predefined
condition that enable the execution of the kernel.

3) Finally, the generated code can use the optimized kernels
when they are available (see Listing 2).

@optimize(condition=” d e f i n e d (OPENHEVC ENABLE) ”, name=”
p u t h e v c q p e l h ”)

procedure put_hevc_qpel_h_cal(int(size=16) arg1[64*64],
int arg2)

begin
// Kernel body in CAL
(...)

end

Listing 1: CAL code

void put_hevc_qpel_h_cal(i16 arg1[4096], i32 arg2) {
#if defined(OPENHEVC_ENABLE)
// Optimized kernel
put_hevc_qpel_h(arg1, arg2);
#else
// Standard kernel
(...)
#endif

}

Listing 2: Generated code

As a result, optimized applications easily stay compatible with
all backends and platforms.

To link with SIMD functions, the CAL code undergoes
small modifications by adding annotations and by correspond-
ing functions they become identical to SIMD ones (arguments
number and types). As explained in Figure 7, the FFMPEG
SIMD functions are compiled to obtain a dynamic library.
Then using pretty printing, a correct link of the C project
with the dynamic library is guaranteed.

2) Cache-efficient FIFO channels: In software, FIFO chan-
nels are traditionally implemented by a circular buffer allo-
cated in shared memory. Read and write are then achieved
by accessing the buffer according to read and write indexes
that are updated afterwards. The state of FIFO channels is
known by comparison of their indexes. Using circular buffer
to implement FIFO channels avoids side shuffles of data
after each reading, but implies an advanced management of
memory indexes that may ultimately lead to poor performance.
In modern general-purpose processors, the processor cores
usually communicates through common shared memory ac-
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Fig. 7: Conception flow of the SIMD linked implementation
shows a compilation of a RVC-CAL code with annotations
linked with a DLL library generated from the compilation of
FFMPEG.

cessed using cache mechanism. Naive implementation of FIFO
channels (see Figure 8-a) results in cache inefficiency because
of false sharing. As a result, a memory padding is added on
each FIFO index [11] in order not to share the same cache
line as explained in Figure 8-b.

IV. RESULTS

To apply the optimization methodologies evoked above, an
Intel Xeon CPU at 3.2 GHz with 6 cores has been used. We
applied the HD stream “Kimono” with Low Delay encode
and QP=27. The HD stream “Kimono” with Low Delay
encode and QP=27 were the test sequence selected for the
experiments. In Table I, all the results of the reference design
and the YUV design with and without x86 optimizations are
presented.

TABLE I: Decoding framerates of the reference and the
YUV designs on multi-core processor (in FPS) using all
combinations of enabling and disabling SIMD functions and
cache padding.

Number of processor cores
Description Padding SIMD 1 2 3 4 5 6
Reference OFF OFF 6,1 8,4 8,5 8,2 9,4 9,5

ON OFF 6,1 9 9 8,8 10,6 10,6
OFF ON 8,3 11,9 9,9 8,1 7,9 8,5
ON ON 8,3 13,1 14,8 15,6 15,3 15,1

Y U V OFF OFF 9,5 16,7 19 22,6 22,7 19
ON OFF 9,5 17 23,6 23,2 23,4 24,1
OFF ON 15,8 27,7 37,4 30,4 35,9 35,5
ON ON 15,8 28,8 40,5 43,2 46,6 39,1

To focus on the evolution of the framerate, the curves
of Figure 9 are considered. The impact of the YUV design
is the scalability with the number of cores. The framerate
reaches a maximum of 46.6 FPS with 5 cores then starts
decreasing and this is due to the increasing communication
cost between processing cores. To compare the obtained result
with a reference from the literature, the same stream on the
OpenHEVC decoder [12] has been applied. Using one thread,
OpenHEVC decodes at 59 FPS in mono-thread which is close
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Fig. 8: A smart FIFO implementation in the cache of the processor. In (a), the classic definition of the indexes results in setting
indexes in the same line of cache which requires useless waits for refresh. In (b), by adding the paddings, the indexes are set
into distinct lines of cache.

TABLE II: Decoding acceleration of the reference and the
YUV designs on multi-core processor (in FPS) using all
combinations of enabling and disabling SIMD functions and
cache padding

Number of processor cores
Description Padding SIMD 1 2 3 4 5 6
Reference ON OFF 1 1.47 1.47 1.44 1,73 1,73

OFF ON 1.36 1.95 1.62 1.32 1.29 1.39
ON ON 1.36 2.14 2.42 2.55 2.50 2.47

Y U V OFF OFF 1.55 2.73 3.11 3.70 3.72 3.11
ON OFF 1.55 2.78 3.86 3.80 3.83 3.95
OFF ON 2.59 4.54 6.13 4.98 5.88 5.81
ON ON 2.59 4.72 6.63 7.08 7.63 6.40
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Fig. 9: Decoding framerate using the different optimization
techniques compared with the reference description

to the performance of the automatically generated code from
high-level description in dataflow.

V. CONCLUSION

In this paper, a dataflow description of the HEVC decoder
based on the RVC framework has been presented. To improve
the performance of the decoder, more parallelism in the archi-
tecture has been achieved by splitting most of the decoding

processes into independent Y, U and V components separately.
Platform specific x86 optimizations have been developed and
they consist of using a smart FIFO cache implementation and
substituting some critical functions with SIMD ones. Results
show an acceleration that exceeds a factor of 7.6 which allows
real time decoding for HD streams.

In the ongoing works, the achievement of an higher level of
parallelism by applying frame-based decoding is under study.
Some critical actors, considered as bottlenecks, are also under
consideration for improving their processing efficiency.
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