
U-statistics in stochastic geometry

Raphaël Lachièze-Rey and Matthias Reitzner

Abstract A U-statistic of order k with kernel f : Xk →R
d over a Poisson process

is defined in [25] as

∑
x1,...,xk∈ηk

6=

f (x1, . . . ,xk)

under appropriate integrability assumptions on f . U-statistics play an important

role in stochastic geometry since many interesting functionals can be written as U-

statistics, like intrinsic volumes of intersection processes, characteristics of random

geometric graphs, volumes of random simplices, and many others, see for instance

[15, 18, 25]. It turns out that the Wiener-Ito chaos expansion of a U-statistic is finite

and thus Malliavin calculus is a particularly suitable method. Variance estimates,

the approximation of the covariance structure and limit theorems which have been

out of reach for many years can be derived. In this chapter we state the fundamental

properties of U-statistics and investigate moment formulae. The main object of the

chapter is to introduce the available limit theorems.

1 U-statistics and decompositions

1.1 Definition

Let X be a Polish space, k ≥ 1, and f : Xk → R be a measurable function. The

U-statistic of order k with kernel f over a configuration η ∈ Ns(X) is 0 if η has

strictly less than k points and the formal sum
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U( f ;η) = ∑
xk∈ηk

6=

f (xk)

otherwise, where ηk
6= is the class of k-tuples xk = (x1, . . . ,xk) of distinct points from

η . Remark that since the sum is over all such k-tuples, f can be assumed to be

symmetric without loss of generality.

An abundant literature deals with the asymptotic study of U( f ; η̃p) as p → ∞
when η̃p is a binomial process, i.e. a set of p iid variables over X. We are concerned

here with Poisson input, i.e. η is a Poisson measure over X which intensity is a

non-atomic locally finite measure µ on X. So that the definition makes any sense,

the basic assumption is that f ∈ L1
s (X

k) = L1
s (X

k; µk).

In the sequel of this section, let µ be a non-atomic locally finite measure on

(X,X ),η a Poisson measure with intensity µ , and k ≥ 1.

1.2 chaotic decomposition and multiple integrals

Theorem 1. Let f ∈ L1
s (X

k) such that U( f ;η) ∈ L2(P) . We have the L2 decompo-

sition

U( f ;η) =
k

∑
n=0

In(hn). (1)

Here In is the n-th order stochastic integral over η defined in Chapter [17]. The

functions hn have been explicitely computed in [25, Lemma 3.3],

hn(xn) =

(

n

k

)

∫

Xn
f (xn,xk−n)dµk−n(xk−n) (2)

for xn ∈X
n, and hn is a function of L1

s (X
n)∩L2

s (X
n).

Remark 1. Somewhat counterintuitively, f ∈ L1
s (X

k)∩L2
s (X

k) does not imply that

EU( f ;η)2 < ∞ (see [25]), but in most examples f is bounded and has a bounded

support, which makes the latter condition automatically satisfied.

As is apparent in Theorem 1, each U-statistic of order k is a finite sum of multiple

integrals of order n ≤ k, and it is not difficult to prove that conversely any multiple

integral of order n ≥ 1 can be written as a finite sum of U-statistics which orders

are smaller or equal to n. From a formal point of view, it is therefore equivalent

to study the asymptotics of finite sums of U-statistics or of finite sums of multiple

integrals. U-statistics are more likely to appear in applications, but the homogene-

ity of multiple integrals make them easier to deal with, and some of the Malliavin

operators of U-statistics have a particularly intuitive form. Consider for instance the

case where F = Ik( f ) is a multiple integral of order k. The Malliavin derivative, the
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Orsntein-Uhlenbeck, and inverse Orstein-Uhlenbeck operators, take the following

form

DxF = kIk−1( f (x, ·)),x ∈X, LF =−kIk( f ), L−1F =−k−1Ik( f ). (3)

For a U-statistic F , one can still derive DxF,LF,L−1F using the linearity of those

operators and the decomposition (1).

The object of this section is really the study of sums of multiple integrals which

order is bounded by some k ≥ 1. The chaotic decomposition also yields that any L2

variable can be approximated by such a sum, allowing us in some cases to pass on

limit theorems stated here to infinite sums. The following result gives the first two

moments of U-statistics.

Proposition 1. Let f ∈ L1
s (X

k). Then E|U( f ;η)|< ∞ and

EU( f ;η) =

∫

Xk
f (xk) dµk(xk).

If furthermore U( f ;η) ∈ L2(P),

Var(U( f ;η)) =
k

∑
n=1

n!‖hn‖2 (4)

where hn is given in Theorem 1 and ‖hn‖ is the usual L2(Xn)-norm.

Proof. The first statement is a direct consequence of the Slyvniack-Mecke for-

mula, while the second stems from the orthogonality between multiple integrals

In(hn),0 ≤ n ≤ k.

1.3 Hoeffding decomposition

Let N ≥ 1, η̃p = {X1, . . . ,Xp} be a family of i.i.d. variables with common distribution

µ on X. Given a measurable kernel h over X
k,k ≥ 1, the traditional Hoeffding

decomposition (see e.g. Vitale [31]) is written

U(h, η̃p) = k!

(

p

k

)

σN
k (h) = k!

(

p

k

)

k

∑
m=0

(

k

m

)

σ p
m(Hm),

where

σ p
m(Hm) =

1
(

N
m

) ∑
1≤i1<i2<···<im≤p

Hm(Xi1 , . . . ,Xim), 0 ≤ m ≤ k,

and each kernel Hm is symmetric and completely degenerated, i.e.
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EHm(x1, . . . ,xm−1,Xm) =

∫

X

Hm(x1, . . . ,xm−1,y)dµ(y) = 0

for µ (m−1)-a.e. x1, . . . ,xm−1. This property implies in particular the orthogonality of

the σ
p
m(Hm),1 ≤ n ≤ k. If µ is a probability measure, the Hm are uniquely defined

and can be expressed explicitely via an inclusion-exclusion formula

Hm(x1, . . . ,xm) =
m

∑
n=0

(−1)m−n ∑
1≤i1<···<in≤m

(

k

n

)−1

hn(xi1 , . . . ,xin) (5)

where hn is defined in (2). As is clear in this last formula, this decomposition is

different from (1) because in the latter multiple integration is performed with respect

to the compensated measure η −µ , while in σ
p
m(Hm) the compensation occurs in the

kernel Hm.

The Hoeffding rank m1 is defined as the smallest index m such that ‖Hm‖ 6= 0,

and we can see through (5) that it is equal to the smallest index n such that ‖hn‖ 6= 0.

We furthermore have Hm1
=
(

k
m1

)−1
hm1

. As proved in [7] for binomial processes or

[16] for Poisson processes, the stochastic integral of order m1 dominates the sum,

and limit theorems for geometric U-statistics can then be derived by studying this

term, see Section 2.1.2.

1.4 Contraction operators

Let f ∈ L1
s (X

q),g ∈ L1
s (X

k). If f and g satisfy the technical conditions defined in

Chapter [17], one can define for 1 ≤ r ≤ l ≤ min(q,k) their contraction function of

index (r, l), denoted f ⋆r
l g. It has k+ q− r− l variables as arguments, decomposed

in (xr−l ,yq−r,zk−r), where xr−l ∈X
r−l ,yq−r ∈X

q−r, and zk−r ∈X
k−r. We have

f ⋆r
l g(xr−l,yq−r,zk−r) :=

∫

f (xl ,xr−l ,yq−r)g(xl,xr−l ,zk−r)dµ l(xl).

Remember that each function appearing here is symmetric, whence the order of the

arguments does not matter. Contraction operators are used below to assess the dis-

tance between a stochastic integral and the normal law. See [4] for more information

on contraction operators.

2 Rates of convergence

Let F be a L2 variable of the form
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F =
k

∑
n=0

In(hn) (6)

for some kernels hn ∈ L2
s (X

n),n ≥ 1. We assume that those kernels satisfy the tech-

nical conditions mentioned in Chapter [4] so that their mutual contraction kernels

are well defined. This model englobes U-statistics, as outlined by Theorem 1, as

well as finite sums of U-statistics and multiple integrals.

In applied situations, the set-up consists of a fixed integer k ≥ 1, and, for t > 0,

a family of measures µt on X, and a family of kernels hn,t ∈ L2
s (X

n; µn
t ),1 ≤ n ≤ k.

We study the random variables

Ft := ∑
n=1

In(hn,t), (7)

and more precisely the existence of numbers at ,bt > 0 and of a random variable V

such that

F̃t :=
Ft − at√

bt

→V

in the weak topology. In all the applications, µt is either of the form

• µt = tµ for some reference measure µ on the space X, or

• µt = 1Xt µ where Xt ⊂X depends on t.

The following two settings occur in the most important applications.

If η = ηt is a Poisson point process on X=R
d the measure µ will often be the

Lebesgue measure ℓd , or for X = R
d ×M a product measure µ = ℓd ⊗ ν with a

probability measure ν on a topological marks space (M,M ).
If η = ηt is a Poisson ’flat‘ process on the Grassmannian X = A d

i of affine i-

dimensional subspaces (flats) of Rd , the intensity measure µ(·) will be a translation

invariant measure on A d
i . The Poisson flat process is only observed in a compact

convex window W ⊂ R
d with interior points. Thus, we can view ηt as a Poisson

process on the set [W ] defined by

[W ] =
{

h ∈ A
d

i : h∩W 6= /0
}

.

2.1 Central Limit theorem

Let F be of the form (6). Let N ∼ N (0,1), σ2 = Var(F). The next result, which

Wasserstein bound has been established in [15], and Kolmogorov bound in [8], gives

a bound on the distance between F and N in terms of the contractions between the

kernels of F .

Theorem 2. Put
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B(F) = max

(

max
1

‖hn ⋆
l
r hn‖,max

2
‖hn ⋆

l
r hm‖, max

n=1,...,k
‖hn‖2

)

B′(F) = max(|1−σ2|,B(F),B(F)3/2)

where max1 is over 1 ≤ r ≤ n ≤ k,1 ≤ l ≤ r∧ (n−1), max2 is over 1 ≤ l ≤ r ≤ n <
m ≤ k. There exists a constant Ck > 0 not depending on the kernels of F such that

dW (F,N)≤ σ−1CkB(F) (8)

dK(F,N)≤CkB′(F). (9)

We reproduce here the important steps of the proof for the Wasserstein bound.

The main result, due to Peccati, Sole, Taqqu, Utzet [20], is a general inequality

on the Wasserstein distance between a Poisson functional F with variance σ2 > 0

having a finite Wiener-Ito expansion and the normal law. We have

dW (F,N) ≤ 1

σ

√

E[(σ2 −〈DxF,−DxL−1F〉L2(X))
2] (10)

+
1

σ2

∫

X

E[(DxF)2|DxL−1F |]µ(dx).

To translate those inequalities into bounds on the contraction norms, we use the

multiplication formula from [20], which yields that the multiplication of mutiple

integrals is a linear combinations of multiple integrals. For k,q ≥ 1, f ∈ L2
s (X

q),g ∈
L2

s (X
k),

Iq( f )Ik(g) =
q∨k

∑
r=0

r!

(

q

r

)(

k

r

)

r

∑
l=0

(

r

l

)

Iq+p−r−l( f ⋆̃l
rg), (11)

where the symmetrized contraction kernels f ⋆̃l
rg are the average of kernels f ⋆l

r g

over all possible permutations of the variables.

If for instance F = Ik( f ) is a single multiple integral, (3) gives the value of the

Malliavin operators, and a computation then yields the bound (8) with fk = f ; fi = 0

for i 6= k, see [22, Prop. 5.5]. If F is a general functional with a finite decomposition,

such as a U-statistic (see (1)), Malliavin operators are computed using linearity and

yield the bound (8), see the proof of Th. 3.5 in [15].

Concerning Kolmogorov distance, Schulte [28, 29] has derived a Stein bound

similar to (10), but with more terms on the right-hand side (Theorem 1.1), reflecting

the effect that test functions are indicator functions, more irregular than the Lips-

chitz functions involved in Wasserstein distance. This bound was later improved by

Eichelsbacher and Thäle [8, Th. 3.1], reducing the number of additional terms. With

similar computations as in the Wasserstein case, one can then prove [8, Th. 4.1] that

those additional terms only add contraction norms ‖ fi ⋆
r
l f j‖3/2 at the power 3/2, up

to a constant, yielding the bound B′(F).



U-statistics in stochastic geometry 7

Remark 2. The terms in B′(F) bounding the Kolmogorov distance are smaller than

the original terms present in B(F) if the bound goes to 0, and don’t change the bound

magnitude or its eventual convergence to 0.

Remark 3. The constant Ck explodes as k → ∞. In other papers [25], [18], similar

bounds are derived in more specific cases, with a different method. The constants

are more tractable and allow for instance to approximate accurately the distance

from a Gaussian to an infinite series of multiple integrals by that of its truncation at

some order (see for instance [28]).

Theorem 3 (4th moment theorem). Assume furthermore that kernels hk are non-

negative. Then for some C′
k > 0

B(F)≤C′
k

√

EF4 − 3σ4.

• In view of (8), the convergence of the 4-th moment to that of a Gaussian therefore

implies central limit, with a bound for Wasserstein distance. In this case, as noted

in [8], using (9) yields a similar bound for Kolmogorov distance. The positiveness

of the kernels is adapted to U-statistics with a non-negative kernel.

• It is highly remarkable that the convergence of the 4-th moment to that of the

Gaussian variable is therefore sufficient for such variables to converge to the

normal law. The only technical requirement is that the variables F4
t are uniformly

integrable.

Example 1 (De Jong’s theorem). Let f2 be a non-zero degenerate symmetric kernel

from L1
s (X

2), i.e. such that

∫

X

f2(x,y)µ(dx) = 0 for µ-a.e. y ∈X.

This degeneracy property implies that U( f2,η) = I( f2;η), we also assume that f2 ∈
L4

s (X
2). De Jong [11] derived a 4-th moment central limit theorem for binomial U-

statistics of the form U( f2; η̃p), where p∈N goes to infinity and η̃p is a sequence of

p iid variables with law µ . In the Poisson framework, (9) yields Berry-Essen bounds

between F =U( f2;η) = I2( f2;η) and N:

dW (F̃ ,N) ≤C2
1

‖ f2‖2
b( f2)

dK(F̃ ,N) ≤C2

1

‖ f2‖2
max(b( f2),b( f2)

3/2)

where

b( f2) = max
(

‖ f2 ⋆
0
2 f2‖,‖ f2 ⋆

1
1 f2‖,‖ f2 ⋆

1
2 f2‖

)

.
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See Eichelsbacher and Thäle [8, Th. 4.5] for details. In [21], Peccati and Thäle

derive bounds on the Wasserstein distance between such a U-statistic and a target

Gamma variable, also in terms of contraction operators.

2.1.1 Local marked U-statistics

For many applications, it is useful to assume that the state space X is of the form

S×M where S is a subset of Rd containing the points ti of η , and (M,M ) is a

mark space, i.e. a locally compact space endowed with some probability measure

ν . The space M contains marks mi that will be randomly assigned to each point of

the process. In this setting, assume that ηt has intensity measure µt = 1Xt ℓd ⊗ ν
and let Ft ∈ L2(P) be a U-statistic Ft =U( f ;ηt). Let the kernel f of the U-statistic

be locally square integrable on Xt = [−t1/d, t1/d]d ×M and stationary, i.e. for µk-

almost all (tk,mk) ∈X
k
t ,z ∈R

d ,

f (tk + z,mk) = f (tk,mk). (12)

The tail behavior of the function f is fundamental regarding the limit of variables Ft

as t → ∞.

Definition 1. A measurable function f : (Rd ×M)k → R is rapidly decreasing if it

is locally square integrable, stationary, and if it satisfies the following integrability

condition: There exists a non-vanishing probability density κ on (Rd)k−1 such that

for p = 2,4,

Ap( f ) =

∫

(Rd)k−1×Mk
f (0, tk−1,mk)

pκ(tk−1)
1−pdℓk−1

d (tk−1)dνk(mk)< ∞.

The slight abuse of notation f (0, tk−1,mk−1) means that tk =(0, tk−1)= (0, t2, . . . , tk−1),
and mk = (m1, . . . ,mk).

We have in this case the following result, which is a consequence of Theorem 6.2

and Example 2.12-(ii) in [16] :

Theorem 4. Let Ft = U( f ;ηt ) where f is a rapidly decreasing function, and µt =
1Xt ℓd ⊗ν with Xt = [−t1/d, t1/d ]d ×M. Then, with at =EFt ,bt = Var(Ft), we have

for some C1,C2,C3 > 0 not depending on t,

C1t ≤ bt ≤C2t

dW (F̃t ,N1)≤C3t−1/2.

Remark 4. Reitzner & Schulte [25] first established this result in the case where f is

the indicator function of a ball of Rd (any non-vanishing continuous density κ can

be chosen in this case because f (0, ·) has a compact support).

Remark 5. A similar result holds if F is simply assumed to be a finite sum of stochas-

tic integrals which kernels are rapidly decreasing functions, the U-statistics being a

particular case.
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2.1.2 Geometric U-statistics

Coming back to the general framework, assume Ft =U( f ; µt) where f ∈ L2
s (X

k) is

fixed and µt = tµ for some measure µ on X. Then Ft admits the decomposition (7)

where

hn,t(xn) = tk−n

(

k

n

)

∫

Xk−n
f (xn,xk−n)dµk−n(xk−n), xn ∈X

n.

One can then see that the term ‖h1,t‖ dominates the other terms in the variance

expression (4), provided this term does not vanish. In any case the important feature

is the Hoeffding rank of the U-statistic

n1 := inf{n : ‖hn‖ 6= 0},

because it turns out that In1
(hn1,t) is the predominant term in (7), in the sense that

Ft − In1
(hn1,t) = o(Ft) for the L2 norm as t → ∞. It yields the following result (The-

orem 7.3 in [16]).

Theorem 5. For some C1,C2,C3 > 0 not depending on t,

C1t2k−n1 ≤ bt ≤C2t2k−n1 .

(i) If n1 = 1, U( f ; µt ) follows a central limit theorem and

dW (F̃t ,N)≤C3t−1/2,

dK(F̃t ,N)≤C3t−1/2.

(ii) If n1 > 1, U( f ; µt ) does not follow a CLT and F̃t converges to a Gaussian chaos

of order n1 (see [16, Theorem 7.3-2]).

For a deeper understanding we refer to the proof of Theorem 6.

Remark 6. Point (i) first appears in [25].

Remark 7. Point (ii) crucially uses the results of Dynkin & Mandelbaum [7].

Remark 8. The speed of convergence to the Gaussian chaos in (ii) is studied by

Peccati and Thäle [21] in case the limit is a Gamma distributed random variable.

2.1.3 Regimes classification

The crucial difference in Theorems 4 and 5 is the area of influence of a given point

x∈ηt . In the case of a local U-statistic, a typical point x∈ηt interacts with a stochas-

tically bounded number of neighbors, that are more likely near in view of Assump-

tion 12. The situation is different for a geometric U-statistic, where a point poten-

tially interacts with any other point, regardless of the distance. Both these regimes

can be seen as two particular cases of a continuum.
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Let αt > 0 be a scaling factor,Xt = [−t1/d, t1/d]d ×M, µt = 1Xt ℓd ⊗ ν , and

Ft =U( ft ;ηt), where ft is obtained by rescaling a rapidly decreasing function f :

ft (xk) = f (αt xk),xk ∈X
k
t . (13)

Say that f has non-degenerate projections if the functions

fn(xn) =

∫

X
k−n
t

f (xn,xk−n)dµk−n
t ,xn ∈X

n,

well defined in virtue of (12), are not µ-a.e. equal to 0. It is trivially the case if for

instance f 6= 0 and f ≥ 0 µ-a.e.. Concerning notations, every spatial transformation

of a point x = (t,m) ∈ R
d ×M, such as translation, rotation, or multiplication by a

scalar number, is only applied to the spatial component t.

Subsequently, any spatial transformation applied to a k-tuple of points xk =
(x1, . . . ,xk) is applied to the spatial components of the xi’s. The quantity vt = α−d

t

is relevant because it gives the magnitude of the number of points interacting with a

typical point x. The case vt = αt = 1 is that of local U-statistic. If vt = t is roughly

the volume of Xt , it corresponds to geometric U-statistics. In this case it is useless

to assume that f is rapidly decreasing, as only the behavior over X1 is relevant for

the problem.

Theorem 6. Assume that ft is of the form (13), where f is a rapidly decreas-

ing function with non-degenerate projections. With the notations above, there are

C1,C2,C3 > 0 such that

C1 ≤
bt

tv2k−2
t max(1,v−k+1

t )
≤C2,

and

dW (F̃t ,N)≤C3t−1/2 max(1,v−k+1
t )1/2

dK(F̃t ,N)≤C3t−1/2 max(1,v−k+1
t )1/2.

Concerning the bound for Kolmogorov distance, it is not formally present in the

literature. It relies on the fact that in Theorem 2, B′(F)≤CB(F) for some C > 0 in

the case where σ → 1 and B(F)→ 0. Then one can simply reproduce the proof of

[16], entirely based on an upper bound for B(F).

Remark 9. Theorems 4 and 5-(i) can be retrieved from this theorem by setting re-

spectively vt = 1 or vt = t.

Remark 10. If some projections do vanish, the convergence rate can be modified,

and the limit might not even be gaussian, as it is the the case for the degenerate

geometric U-statistics of Th. 5-(ii).

Remark 11. Depending on the asymptotic behavior of vt , we can identify four dif-

ferent regimes:
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1. Long interactions: vt → ∞, CLT at speed t−1/2, the first chaos I1,t(ht,1) domi-

nates (geometric U-statistics).

2. Constant size interactions: vt = 1, CLT at speed t−1/2, all chaoses have the

same order of magnitude (local U-statistics).

3. Small interactions: vt → 0, tv−k+1
t → ∞, CLT at speed (tv−k+1

t )−1/2, higher or-

der chaoses dominate. In the case of random graphs (k = 2), the corresponding

bound in (tvt)
−1/2 has been obtained in [15].

4. Rare interactions: tv−k+1
t → c < ∞, the bound does not converge to 0. In the

case k = 2, it has been shown in [15] that there is no CLT but a Poisson limit in

the case c > 0 (see Chapter [4] for more on Poisson limits).

2.2 Other limits and multi-dimensional convergence

Besides the Gaussian chaoses appearing in Theorem 5-(ii), some characterizations

of non-central limits have also been derived for Poisson U-statistics.

2.2.1 Multidimensional convergence

We consider in this section the conjoint behavior of random variables Ft =(F1,t , . . . ,Fk,t)
where Fm,t = Iqm(hm,t) for 1 ≤ m ≤ k, with hm,t ∈ L2

s (X
qm) for some qm ≥ 1, for

t > 0;1 ≤ m ≤ k.

Call σ2
t = ∑k

m=1 Var(Fm,t). Any L2 candidate for the limit of σ−1
t Ft should have

as covariance matrix

Cm,n = lim
t

σ−2
t EFm,tFn,t , 1 ≤ m,n ≤ k

if those limits exist. In this case there is indeed asymptotic normality if all contrac-

tion norms

‖hm,t ⋆
l
r hn,t‖

go to 0 for r = 1, . . . ,qk, and every l = 1, . . . ,r∧ (qk −1), under technical conditions

on the kernels related to technical condition of chapter [4], see [22, Th. 5.8],[3, Th.

2.4] for details. These articles contain explicit bounds on the speed of convergence

with a specific distance related to thrice differentiable functions on (Rd)k, and the

convergence is stable, in the sense of [3].

If now Ft = (F1,t , . . . ,Fk,t) where each Fm,t is a U-statistic, one can consider the

random vector Gt constituted by all multiple integrals with respect to kernels from

the decompositions of the Fm,t , as defined in (2). One can then infer conditions for

asymptotic normality of Ft by applying the previous considerations to Gt .

As noted in Remark 11, some U-statistics behave asymptotically as Poisson vari-

ables. Asymptotic joint laws of U-statistics can also converge to random vectors



12 Raphaël Lachièze-Rey and Matthias Reitzner

with marginal Poisson laws, and it can also happen that they converge to an hy-

brid random vector which has both Gaussian and Poisson marginals, here again the

reader is referred to Chapter [4].

2.2.2 Gamma

Similar results to those of Section 2.1 with Gamma limits have been derived by

Peccati and Thäle [21] for Poisson chaoses of even order. The distance used there is

d3(U,V ) = sup
h∈H 3

|Eh(U)− h(V)|

where H 3 is the class of functions of class C 3 with all first 3 derivatives uniformly

bounded by 1. We again denote by f ⋆̃l
rg the symmetrized contraction kernels .

For ν > 0, let F(ν/2) be a Gamma distribution with mean and variance both

equal to ν/2. We introduce the centered unit variance variable G(ν) := 2F(ν/2)−
ν .

Theorem 7. Let F = Ik(hk) for some even integer k ≥ 2.

We have

d3(Ik(hk),G(ν)) ≤ Dk max{k!‖hk‖− 2ν;‖hk ⋆
p
p hk‖;‖hk ⋆

l
r hk‖1/2;‖hk⋆̃

q/2

q/2
hk − ckhk‖}

where the maximum is taken over all p = 1, . . . ,k−1 such that p 6= k/2 and all (r, l)
such that r 6= l and l = 0, or r ∈ {1, . . . ,k} and l ∈ {1, . . . ,min(r,k− 1)}. Also

ck =
4

(q/2)!
(

q

q/2

)2
.

Remark 12. In the case of double integrals (k = 2), the authors of [21] provide a

4th moment theorem, in the sense that under some technical conditions, a sequence

of double stochastic integrals converge to a Gamma variable if their first moments

converge to those of a Gamma variable.

Remark 13. This result enables to give an upper bound on the speed of convergence

to the second Gaussian chaos in Theorem 5 in the case n1 = 2, if this limit is indeed

a Gamma variable.

3 Large deviations

There are only few investigations concerning concentration inequalities for Poisson

U-statistics. Most results require an nice bound on supη∈N(X), z∈X Dz(F) < ∞. For

U-statistics of order ≥ 2 this condition is not satisfied, even if f is bounded. For

U-statistics of order 1, this holds if ‖ f‖∞ < ∞. Therefore we split our investigations
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into a section on U-statistics of order one and on higher order local U-statistics. We

start with a general result. Throughout this section we assume that f ≥ 0 and f 6= 0.

3.1 A general LDI

In this section we sketch an approach developed in [26] leading to a general con-

centration inequality. For two counting measures η and ν we define the difference

η\ν by

η\ν = ∑
x∈X

(η(x)−ν(x))+ δx . (14)

For x ∈ η and f ∈ L1
s (X

k), we recall that

U( f ;η) = ∑
x∈η

F(x;η) with F(x;η) = ∑
xk−1∈(η\{x})k−1

6=

f (x,xk−1).

Assume that in addition to η a second point set ζ ∈ N(X) is chosen. The non-

negativity of f yields

U( f ;η) ≤ U( f ;ζ )+ k ∑
x∈η

F(x;η)1(x /∈ ζ )

= U( f ;ζ )+ k

∫

F(x;η)d(η\ζ ) .

The convex distance of a finite point set η ∈ N(X) to some A ⊂ N(X) was intro-

duced in [24], and is given by

dπ
T (η ,A) = max

‖u‖2,η≤1
min
ζ∈A

∫

u d(η\ζ )

where u : X→R+ is a non-negative measurable function and ‖u‖2
2,η =

∫

u2dη . To

link the convex distance to the U-statistic, we insert for u the normalized function

‖F(x;η)‖−1
2,η F(x;η) and rewrite U(η) in terms of the convex distance as follows:

dπ
T (η ,A) ≥ min

ζ∈A

∫

1

‖F(x;η)‖2,η
F(x;η)d(η\ζ )

≥ 1

k‖F(x;η)‖2,η
min
ζ∈A

(

U( f ;η)−U( f ;ζ )
)

.

If we assume F(x;η) ≤ B, then ‖F(x;η)‖2
2,η ≤ B∑x∈η F(x;η) = BU( f ;η),

which implies

dπ
T (η ,A)≥

1

k
√

B
min
ζ∈A

U( f ;η)−U( f ;ζ )
√

U( f ;η)
1(∀x ∈ η : F(x;η) ≤ B) . (15)
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In [24], a LDI for the convex distance was proved. For η a Poisson point process,

and for A ⊂ N(X), we have

P(A)P(dπ
T (η ,A)≥ s)≤ exp

(

− s2

4

)

.

Precisely as in [26], this concentration inequality combined with the estimate (15)

yields the following theorem.

Theorem 8. Assume that ε(·) and B ∈R satisfy P(∃x ∈ η : F(x;η) > B)≤ ε(B).
Let m be the median of U( f ;η). Then

P(|U( f ;η)−m| ≥ u)≤ 4exp

(

− u2

4k2B(u+m)

)

+ 3ε(B) . (16)

In the next sections we apply this to U-statistics of order one and to local U-statistics.

In the applications, the crucial ingredient is a good estimate for ε(B).

3.2 LDI for first order U-statistics

There are several concentration inequalities for integrals over Poisson point pro-

cesses, i.e. U-statistics of order one,

U( f ;η) = ∑
x∈η

f (x) =
∫

f dη , f ≥ 0

in which case DzU = f (z). Assuming that ‖ f‖∞ = B < ∞ we have

‖DzU‖∞ ≤ B.

A result by Houdre and Privault [10] shows that

P(U −‖ f‖1 ≥ u)≤ exp

(

− ‖ f‖1

‖ f‖∞
g
( u

‖ f‖1

)

)

(17)

where g(u) = (1+ u) ln(1+ u)− u, u ≥ 0 and because f ≥ 0 the 1-norm equals

the expectation EU( f ;η). A similar result is due to Ane and Ledoux [1]. Reynaud-

Bouret [27] proves an estimate involving the 2-norm ‖ f‖2 instead of the 1-norm. A

slightly more general estimate is given by Breton et al. [5].

We could also make use of Theorem 8 and choose B = ‖ f‖∞. This yields

P(|U( f ;η)−m| ≥ u)≤ 4exp

(

− u2

4‖ f‖∞(u+m)

)

, (18)

which is a slightly weaker estimate than (17).
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3.3 LDI for local U-statistics

In this paragraph we assume that X is equipped with a distance and B(x,r) denotes

the ball of radius r around x ∈X. If U is a local U-statistic which is concentrated on

a ball of radius δt , we have

F(x,η) ≤ ‖ f‖∞η(B(x,δt ))
k−1

P(∃x : F(x;η) > B) ≤ E ∑
x∈η

1(F(x;η)> B)

≤
∫

X

P(F(x;η)> B)dµt

and it remains to estimate

P

(

η(B(x,δt ))>

(

B

‖ f‖∞

)
1

k−1

)

.

We use the Chernoff bound for the Poisson distribution, namely

P(ηt(B
d(x,δt ))> r)≤ inf

s≥0
eE(es−1)−sr, (19)

because η(B(x,δt)) is a Poisson distributed random variable with mean

E(x) := Eηt(B
d(x,δt )) = µt(B

d(x,δt ))≤ sup
x∈X

µt(B
d(x,δt )) =: E . (20)

Because infs≥0 E(es − 1)− sr = r(1− ln(r/E))−E we estimate the right hand side

of (19) by exp
(

− 1
2
r
)

for Ee2 ≤ r. This leads to

P(∃x : F(x;η)> B) ≤ µt(X)exp

(

−1

2

(

B

‖ f‖∞

) 1
k−1

)

:= ε(B)

for B ≥ Ek−1e2(k−1)‖ f‖∞. We set B = ‖ f‖
1
k
∞(

u2

(u+m) )
k−1

k and combine this with the

general Theorem 8.

Theorem 9. Set E := supx∈X µt(B
d(x,δt)). Then for u2

(u+m) ≥ Eke2k‖ f‖∞,

P(|U( f ;η)−m| ≥ u)≤ 4µt(X)exp

(

− 1

4k2
‖ f‖−

1
k

∞

( u2

u+m

)
1
k

)

.

Clearly, in particular situations more careful choices of ε(B) and B lead to more

precise bounds.
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4 Applications

In this section we investigate some applications of the previous theorems in stochas-

tic geometry. In all these cases X is either a subset of Rd or a subset of the affine

Grassmannian A d
i , the space of all i-dimensional spaces in R

d .

We state some normal approximation and concentration results which follow

from the previous theorems. In many cases multi-dimensional convergence and con-

vergence to other limit distributions can be proved in various regimes. We restrict

our presentation to certain ‘simple’ cases without making any attemp for complete-

ness. Our aim is just to indicate recent trends, we refer to further results and inves-

tigations in the literature.

4.1 Intersection process

Let ηt be a Poisson process on the space A d
i with an intensity measure of the form

µ(·) = tθ (·) with t ∈ R
+ and a σ -finite non-atomic measure θ . The Poisson flat

process is only observed in a compact convex window W ⊂R
d with interior points.

Thus, we can view ηt as a Poisson process on the set X= [W ] defined by

[W ] =
{

h ∈ Ad
i : h∩W 6= /0

}

.

Given the hyperplane process ηt , we investigate the (d − k(d − i))-flats in W

which occur as the intersection of k planes of ηt . Hence we assume k ≤ d/(d − i).
In particular, we are interested in the sum of their j-th intrinsic volumes given by

Φt = Φt(W, i,k, j) =
1

k!
∑

(h1,...,hk)∈ηk
6=

V j(h1 ∩ . . .∩hk ∩W )

for j = 0, . . . ,d−k(d− i), i = 0, . . . ,d−1 and k = 1, . . . ,⌊d/(d− i)⌋. For the defini-

tion of the j-th intrinsic volume V j(·) we refer to the Chapter 2 of the current book.

We remark that V0(K) is the Euler characteristic of the set K, and that Vn(K) of an n-

dimensional convex set K is the Lebesgue measure ℓn(K). Thus Φt(W, i,1,0) is the

number of flats in W and Φt(W, i,k,d−k(d− i)) is the (d−k(d− i))-volume of their

intersection process. To ensure that the expectations of these random variables are

neither 0 nor infinite, we assume that 0 < θ ([W ])< ∞, and that 2 ≤ k ≤ ⌊d/(d− i)⌋
independent random hyperplanes on [W ] with probability measure θ (·)/θ ([W ]) in-

tersect in a (d−k(d− i))-flat almost surely and their intersection flat hits the interior

of W with positive probability. For example, these conditions are satisfied if the hy-

perplane process is stationary and the directional distribution is not concentrated on

a great subsphere.
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The fact that the summands in the definition of Φk
i are bounded and have a

bounded support makes sure that all moment conditions are satisfied and we can

apply Theorem 5:

Theorem 10. Let N be a standard Gaussian random variable. Then constants c =
c(W, i,k, j) exist such that

dW (Φ̃t ,N)≤ ct−1/2,

dK(Φ̃t ,N)≤ ct−1/2,

for t ≥ 1.

Furthermore, it can be shown [25] that the asymptotic variances satisfies

VarΦt =CΦ t2k−1(1+o(1)) as t → ∞ with a constant CΦ =CΦ (W, i,k, j). The order

of magnitude already follows from the first part of Theorem 5.

For more information we refer to [9] and [18]. In the second paper the Wiener-

Itô chaos expansion is used to derive even multivariate central limit theorems in an

increasing window for much more general functionals Φ .

4.2 Flat processes

For i < d
2

two i-dimensional planes in general position will not intersect. Thus the

intersection process described in the previous section will be empty with probability

one. A natural way to investigate the geometric situation in this setting is to ask

for the distances between this i-dimensional planes, or more general for the so-

called proximity functional. The central limit theorems described in the following

fits precisely into the setting of this contribution, we refer to [30] for further results.

Let ηt be a Poisson process on the space A(d, i) with an intensity measure of the

form µt(·) = tθ (·) with t ∈R
+ and a σ -finite non-atomic measure θ . The Poisson

flat process is observed in a compact convex window W ⊂R
d . To two i-dimensional

planes in general position there is a unique segment [x1,x2] with

d(h1,h2) = ‖x2 − x1‖= min
y∈h1,z∈h2

‖z− y‖.

The midpoints m(h1,h2) =
1
2
(x1 + x2) form a point process of infinite intensity,

hence we restrict this to the point process

{m(h1,h2) : d(h1,h2)≤ δ ,h1,h2 ∈ η2
6=}

and are interested in the number of midpoints in W .

Πt = Πt(W,δ ) =
1

2
∑

h1,h2∈η2
6=

1(d(h1,h2)≤ δ ,m(h1,h2) ∈W )
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It is not difficult to show that EΠt is of order t2δ d−2i. The U-statistic Πt is local

on the space A d
i . Thus the following theorem due to Schulte and Thaele [30] is in

spirit similar to Theorem 4.

Theorem 11. Let N be a standard Gaussian random variable. Then constants

c(W, i) exist such that

dK(Π̃t ,N)≤ c(W, i)t−
d−i

2 .

for t ≥ 1.

Moreover, Schulte and Thäle proved that the ordered distances form after suitable

rescaling asymptotically an inhomogeneous Poisson point process on the positive

real axis.

We add to this a concentration inequality which follows immediately from The-

orem 9. Observe that µt(X) = tθ ([W ]).

Theorem 12. Denote by m the median of Πt . Then

P(|Πt −m| ≥ u)≤ 4tθ ([W ])exp

(

− 1

16

u√
u+m

)

for u√
u+m

≥ e2t suph∈[W ] θ (B
d(h,δ )).

4.3 Gilbert graph

Let ηt be a Poisson point process on R
d with an intensity-measure of the form

µt(·) = tℓd(· ∩W ), where ℓd is Lebesgue measure and W ⊂ R
d a compact convex

set with ℓd(W ) = 1. Let (δt : t > 0) be a sequence of positive real numbers such that

δt → 0, as t → ∞. The random geometric graph is defined by taking the points of ηt

as vertices and by connecting two distinct points x,y ∈ ηt by an edge if and only if

‖x− y‖ ≤ δt . The resulting graph is called Gilbert graph.

There is a vast literature on the Gilbert graph and one should have a look at

Penrose’s seminal book [23]. More recent developments are due to Bourguin and

Peccati [3], Lachièze-Rey and Peccati [15, 16] and Reitzner, Schulte and Thäle [26].

In a first step one is interested in the number of edges

Nt = Nt (W,δt) =
1

2
∑

(x,y)∈η2
t, 6=

1(‖x− y‖ ≤ δt)

of this random geometric graph. It is natural to consider instead of the norm func-

tions 1( f (y− x)≤ δt) and instead of counting more general functions g(y− x):

∑
(x,y)∈η2

t, 6=

1( f (y− x)≤ δt)g(y− x).
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For simplicity we restrict our investigations in this survey to the number of edges Nt

in the thermodynamic setting where tδ d
t tends to a constant as t → ∞. Further results

for other regimes, multivariate limit theorems and sharper concentration inequalities

can be found in Penrose’s book and the papers mentioned above.

Because of the local definiton of the Gilbert graph, Nt is a local U-statistic. The-

orem 6 with νt = tδ d
t can be applied.

Theorem 13. Let N be a standard Gaussian random variable. Then constants c(W )
exist such that

dW (Ñt ,N)≤ c(W )t−1/2,

dK(Ñt ,N)≤ c(W )t−1/2.

for t ≥ 1.

A concentration inequality follows immediately from Theorem 9. Observe that

µt(X) = tℓd(W ).

Theorem 14. Denote by m the median of Nt . Then there is a constant cd such that

P(|Πt −m| ≥ u)≤ 4tℓd(W )exp

(

− 1

16

u√
u+m

)

for u√
u+m

≥ cd .

In [26] a concentration inequality for all u ≥ 0 is given using a similar but more

detailed approach.

4.4 Random simplicial complexes

Given the Gilbert graph of a Poisson point process ηt we construct the Vietoris-Rips

complex R(δt) by calling F = {xi1 , . . . ,xik+1
} a k−face of R(δt) if all pairs of points

in F are connected by an edge in the Gilbert graph. Observe that e.g. counting the

number N
(k)
t of k-faces is equivalent to a particular subgraph counting. By definition

this is a local U-statistics given by

N
(k)
t = N

(k)
t (W,δt) =

1

(k+ 1)! ∑
x1,...,xk+1∈ηk+1

t, 6=

1(‖xi − x j‖ ≤ δt , ∀1 ≤ i, j ≤ k+ 1).

Central limit theorems and a concentration inequality follow immediately from the

results for local U-statistics. We restrict our statements again to the thermodynamic

case where tδ d
t tends to a constant as t → ∞. Results for other regimes can be found

e.g. in Penrose’s book. Because of the local definiton of the Gilbert graph, N
(k)
t is a

local U-statistic. Theorem 6 with νt = tδ d
t can be applied.
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Theorem 15. Let N be a standard Gaussian random variable. Then constants c(W )
exist such that

dW (Ñ
(k)
t ,N)≤ c(W )t−1/2,

dK(Ñ
(k)
t ,N)≤ c(W )t−1/2.

for t ≥ 1.

A concentration inequality follows immediately from Theorem 9. Observe that

µt(X) = tθ ([W ]).

Theorem 16. Denote by m the median of Nt . Then

P(|Πt −m| ≥ u)≤ 4tℓd(W )exp

(

− 1

4(k+ 1)2

u
2
k

(u+m)
1
k

)

for u2

u+m
≥ cd .

Much deeper results concerning the topology of random simplicial complexes

are contained in [6, 12] and [14]. We refer the interested reader to the recent survey

article by Kahle [13]

4.5 Sylvester’s constant

Again we assume that the Poisson point process η has an intensity-measure of the

form µt(·) = tℓd(· ∩W ), where ℓd is Lebesgue measure and W ⊂ R
d a compact

convex set with ℓd(W ) = 1.

As a last example of a U-statistic we consider the following functional related

to Sylvester’s problem. Originally raised with k = 4 in 1864, Sylvester’s original

problem asks for the distribution of the number of vertices of the convex hull of

four random points. Put

Nt = Nt(W,k) = ∑
(x1,...,xk)∈ηk

6=

1(x1, . . . ,xk are vertices of conv(x1, . . . ,xk)),

which counts the number of k-tuples of the process such that every point is a vertex

of the convex hull, i.e., the number of k-tuples in convex position.

The expected value of U is then given by

ENt = tk
P(X1, . . . ,Xk are vertices of conv(X1, . . . ,Xk)) = tk p(W,k),

where X1, . . . ,Xk are independent random points chosen according to the uniform

distribution on W .

The question to determine the probability p(W,k) that k random points in a con-

vex set W are in convex position has a long history, see e.g. the more recent de-
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velopment by Bárány [2]. In our setting, the function t−kNt is an estimator for the

probability p(W,k) and we are interested in its distributional properties.

The asymptotic behaviour of Var(Nt) is of order t2k−1. Together with Theorem

5, we immediately get the following result showing that the estimator H is asymp-

totically Gaussian:

Theorem 17. Let N be a standard Gaussian random variable. Then there exists a

constant c(W,k) such that

dW

(

Ñt ,N
)

≤ c(W,k)t−
1
2 .
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