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The midplane of the j-th, j = 1, . . . , n, layer is situated on the coordinate plane x = x j ≡ λ 2 + (j -1) λ, j = 1, . . . , n, in Oxξ 1 ξ 2 space. A midplane of an arbitrary layer is assumed to be its material symmetry plane.

Let ν = ν x, ξ 1 , ξ 2 stand for a differentiable function defined in Ω, 0 < ν x, ξ 1 , ξ 2 < 1. The values of this function on symmetry midplanes will be interpreted as the fraction of the material in which this midplane is situated. Obviously, the fraction of the second component is equal to 1ν (•). Function ν (•) is assumed to satisfy the following restrictions:

1. λ |∂ν (x, ξ)| << 1, (x, ξ) ∈ Ω, 2. λ |∂ α ν (x, ξ)| << 1, (x, ξ) ∈ Ω, α = 1, 2.
For transversally graded materials ν ≡ ν (x), x ∈ [0, L] and for longitudinally graded materials ν ≡ ν ξ 1 , ξ 2 , ξ 1 , ξ 2 ∈ Ξ. If ν = const then we deal with the λ-periodic conductor.

The parts of region Ω occupied by pertinent material components will be denoted by Ω and Ω . Subsequently we denote Δ ≡ -λ 2 , λ 2 , Δ (x) ≡ x -λ 2 , x + λ 2 , x ∈ (0, L). Moreover Δ x j , ξ ≡ x j -λ 2 ν x j , ξ , x j + λ 2 ν x j , ξ and Δ x j , ξ ≡ Δ x j , ξ \ Δ x j , ξ . It follows that Ω = n j=1 ξ∈Ξ Δ x j , ξ , Ω = n j=1 ξ∈Ξ Δ x j , ξ and that the j-th layer occupies region Δ x j × Ξ.

The set of interfaces between Ω and Ω is denoted by I, I ≡ Ω Ω .

Let material components of heat conductor occupying parts Ω and Ω of Ω assumed to be isotropic and homogeneous. The property of these components are determined by heat conductor coefficients k , k and specific heats c , c . Define:

k (x, ξ) = k if (x, ξ) ∈ Ω k if (x, ξ) ∈ Ω , c (x, ξ) = c if (x, ξ) ∈ Ω c if (x, ξ) ∈ Ω .
Denote by θ = θ x, ξ 1 , ξ 2 , t temperature field in Ω×[0, T ) and by q (•), q 1 (•), q 2 (•) the components of heat flux vector. Let the heat conductor be subjected to the known heat sources field f (•) defined in Ω and for almost every t ∈ [0, T ). The heat conduction equations will be assumed in the well known form:

c (x, ξ) ∂ t θ (x, ξ, t) + ∂q (x, ξ, t) + ∂ 1 q 1 (x, ξ, t) + ∂ 2 q 2 (x, ξ, t) + f (x, ξ, t) = 0, q (x, ξ, t) = -k (x, ξ) ∂θ (x, ξ, t) , q α (x, ξ, t) = -k (x, ξ) ∂ α θ (x, ξ, t) , α= 1, 2 (1) 
which hold a.e. in Ω and for every t ∈ [0, T ).

Heat flux component q (•) is continuous on interfaces I for every instant t ∈ [0, T ).
It is important to notice that every two adjacent layers Δ x j × Ξ, j = 1, . . . , n can be treated as interdiscernible. In this sense the conductor under the consideration is termed functionally graded. Thus Eqs. (1) lead to partial differential equation for θ (•) with highly oscillating and discontinuous coefficients k (•), c (•). The direct application of Eqs. (1) in most cases is too complicated from the practical point of view.

The main aim of this paper is to propose a simplified mathematical model of the heat conductor under consideration. This model will be governed by partial differential equations with smooth and non oscillating coefficients.

On the other hand we shall also design the various gradation of material components in a multilayered medium in order to realize certain temperature fields. This is an inverse problem with the respect to the boundary value problem which can be called "the design problem".

Preliminary concepts

To simplify the subsequent analysis let us introduce the following denotations g = (k , c ) and g = (k , c ), then:

g (x, ξ) = g if (x, ξ) ∈ Ω g if (x, ξ) ∈ Ω .
Let L 2 (Δ) is a space of square integrable functions defined a.e. in R which are λ-periodic functions (Δ is a periodicity interval). We shall use the concept of locally periodic function (cf. Bensoussan, Lions, Papanicolaou [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF]) assumed in the form

ḡ (•, •) ∈ L 2 (Δ) × Ξ such that ḡ •, x j , ξ Δ(xj )×Ξ = g (•, ξ) Δ(xj )×Ξ , j = 1, . . . , n, ξ ∈ Ξ,
this concept was also used in Briane [START_REF] Briane | Homogeneisation de materiaux fibres et multi-couches[END_REF].

We also introduce the locally periodic function

h (•, y, ξ) ∈ L 2 (Δ) for every y ∈ [0, L], ξ = ξ 1 , ξ 2 ∈ Ξ, the fragment of which in interval y -λ 2 , y + λ 2 is shown in Fig. 2. y -2 ( y, ) y -2 y + 2 ( y, ) y + 2 y 2 2 y [0,L] - x Fig. 2 A fragment of the diagram of locally periodic function h (•, y, ξ) for some y ∈ [0, L], ξ ∈ Ξ.
In order to apply the asymptotic modelling procedure we introduce parameter

ε = 1 m , m = 1, 2, . . . and define ḡε (x, y, ξ) ≡ ḡ x ε , y, ξ for every y ∈ [0, L], ξ ∈ Ξ. We also define Δ ε (y) ≡ y -ε λ 2 , y + ε λ 2 .
For an arbitrary locally periodic function ḡ (•) we introduce its mean value at (y, ξ)

∈ [0, L] × Ξ by setting ḡ (y, ξ) ≡ 1 λ y+ λ 2 y-λ 2 ḡ (x, y, ξ) dx.
Bearing in mind the property of mean value of a periodic function (cf. Jikov [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF]) we conclude that if ε → 0 then ḡε (•, y, ξ) tends weakly to ḡ (y, ξ) in L 2 loc (R) for every y ∈ [0, L], ξ ∈ Ξ. The aforementioned concepts play a fundamental role in the asymptotic modelling procedure.

Modelling procedure

The modelling procedure will be based on the heuristic assumption that the temperature field in every layer Δ x j × Ξ can be approximated by the field

θ j (x, ξ, t) = ϑ (x, ξ,t) + h x, x j , ξ ψ (x, ξ, t) (2)
for every x ∈ Δ x j , ξ ∈ Ξ, t ∈ [0, T ), j = 1, . . . , n, where ϑ (•) , ψ (•) are certain differentiable functions defined on Ω × [0, T ) and h (•, y, ξ) ∈ L 2 (Δ) is the locally periodic function introduced in Sect. 2.

The above assumption plays a similar role to the fairly close approximation in the well known method of asymptotic expansions in the framework of the homogenization procedure; for example c.f. Jikov et al. [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF] p. 25. From the purely formal point of view we also define

θ y ε (x, ξ, t) = ϑ (x, ξ, t) + ε hε (x, y, ξ) ψ (x, ξ, t) (3) for x ∈ Δε (y), ξ ∈ Ξ, t ∈ [0, T ), and arbitrary y ∈ [0, L].
The heat fluxes related to the temperature field θ y ε (•) are

q y ε (x, ξ, t) = -k (x, y, ξ) ∂θ y ε (x, ξ, t), qyα ε (x, ξ, t) = -k (x, y, ξ) ∂ α θ y ε (x, ξ, t) . ( 4 
) If ε → 0 then q y ε (x, ξ, t) -k (y, ξ) ∂ϑ (x, ξ, t) -k∂ h (y, ξ) ψ (x, ξ, t) , q yα ε (x, ξ, t) -k (y, ξ) ∂ α ϑ (x, ξ, t) , c (x, ξ, t) ∂ t θ y ε (x, ξ, t) c (y, ξ) ∂ t ϑ (x, ξ, t) (5)
in L 2 loc (R). Notice that the weak limit passage has to be used as a tool of a modelling since the convergence in the strong sense does not hold. Let us substitute the right hand side of decomposition (3) into (4) for heat flux. Bearing in mind the heat flux continuity across interfaces, after limit passage ε → 0 we arrive at

ψ (x, ξ, t) → ν (x, ξ) (1 -ν (x, ξ)) (k -k ) ν (x, ξ) k + (1 -ν (x, ξ)) k ∂ϑ (x, ξ, t) . ( 6 
)
The above limit passages applied to fields θ y ε (•) lead to the model equations or every (x, ξ) ∈ (0, L)×Ξ×[0, T ) summarized in the next section.

Model equations

Substituting the right hand side of formula (6) into formula [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF] and denoting these values by q 0 (•) , q α 0 (•), α = 1, 2 we obtain that:

q 0 (x, ξ, t) = -k 0 (x, ξ) ∂ϑ (x, ξ, t) , q α 0 (x, ξ, t) = -k α 0 (x, ξ) ∂ α ϑ (x, ξ, t) , where k 0 (x, ξ) ≡ k k (1 -ν (x, ξ)) k + ν (x, ξ) k , k α 0 (x, ξ) = k ν (x, ξ) + k (1 -ν (x, ξ)) . ( 7 
)
The heat conduction equation takes the form

∂q 0 (x, ξ, t) + ∂ 1 q 1 0 (x, ξ, t) + ∂ 2 q 2 0 (x, ξ, t) + c 0 (x, ξ) ∂ t ϑ (x, ξ, t) + f (x, ξ, t) = 0, (8) 
where

c 0 (x, ξ) = c ν (x, ξ) + c (1 -ν (x, ξ)) for x ∈ (0, L), ξ ∈ Ξ, t ∈ [0, T ).
After finding solution for ϑ (•) from the initial boundary value problem under consideration we calculate the approximate form of temperature field. To this end define

h j (x, ξ) = h x, x j , ξ θj (x, ξ, t) = ϑ (x, ξ, t) + h j (x, ξ) ν (x, ξ) (1 -ν (x, ξ)) (k -k ) ν (x, ξ) k + (1 -ν (x, ξ)) k ∂ϑ (x, ξ, t) (9) 
for every x ∈ Δ x j , ξ ∈ Ξ, t ∈ [0, T ), j = 1, . . . , n. Evidently for heat conductors which are periodic in the direction 0x axis (for an arbitrary ξ ∈ Ξ) we have ν = ν (ξ). In this case the above equations represent the model of longitudinal heat conductors. If ν (•) ∈ (0, 1) is constant then above model equations have constant coefficients. In this case the obtained results coincide with the well known homogenized model for periodically layered composites.

Example of application

The subsequent considerations are restricted to multilayered functionally graded heat conductors with a transversal gradation. Moreover we consider stationary problems and we neglect heat sources. From the formal point of view the functionally graded conductor under consideration can be defined as the fourtouple

F GM ≡ (0, L) × Ξ, k , k , ν (•) , ν = ν (x) or ν = ν (x), ν (x) + ν (x) = 1, x ∈ (0, L).
Let us assume that (0, L) × Ξ, k , k are known. The problem we are going to solve is: how for the given a priori temperature field ϑ (•) ϑ ∈ C 1 ((0, L) × Ξ) and ϑ (•) ≥ 0 find the pertinent distribution of material component (defined by function ν (•)).

To simplify solution of the problem under consideration let us also assume that:

∇ • ∇ϑ (x, •) ≡ 0∀x ∈ (0, L) .
It follows that Eq. ( 8) reduces to the form:

∂ (k 0 ∂ϑ) = 0∀ξ ∈ Ξ.
Hence the solution for ∂ϑ(•) of above equation takes the form:

∂ϑ (x, ξ) = [(k -k ) ν (x) + k ] k g (ξ) , ξ ∈ Ξ,
where g (•) is an arbitrary differentiable function. Define α ≡ k k and assume that α ∈ (0, 1), what does not restrict considerations. From relations (7 1 ) and ∂ϑ

(x, ξ) = [(k -k )ν(x)+k ] k g (ξ)
, ξ ∈ Ξ it can be easily shown that: 1 0 Solution to the problem exists if ∀ξ ∈ Ξ function ∂ϑ (•, ξ) is strongly monotone and ∂ϑ (0, ξ) = 0, ∂ϑ (L, ξ) = 0.

2 0 If ϑ (•, ξ), ∀ξ ∈ Ξ, is convex in [0,L] then α∂ϑ (L, ξ) = ∂ϑ (0, ξ) , ∂ϑ (L, ξ) ≤ g (ξ) ≤ 1 α ∂ϑ (0, ξ) . ( 10 
)
3 0 If ϑ (•, ξ), ∀ξ ∈ Ξ, is concave in [0,L] then: α∂ϑ (0,ξ) = ∂ϑ (L, ξ) , ∂ϑ (0,ξ) ≤ g (ξ) ≤ 1 α ∂ϑ (L, ξ) . ( 11 
) From relation ∂ϑ (x, ξ) = [(k -k )ν(x)+k ] k g (ξ)
, ξ ∈ Ξ we obtain that:

1 0 if ϑ (•, ξ) is not linear with respect to x ∈ [0, L] ν (x) = 1 1 -α 1 - ∂ϑ (x, ξ) g (ξ) , ξ ∈ Ξ, x ∈ [0, L] , ( 12 
)
where: ∂ϑ (x, •), g (•) are harmonic in Ξ and g (ξ) is interrelated either by [START_REF] Łaciñski | Boundary-layer phenomena in the laminated rigid heat conduction[END_REF] or [START_REF] Mastysiak | Thermal stresses in a periodic two-layered composite weakened by an interface crack[END_REF].

2 0 If ϑ (•, ξ) is linear with respect to x ∈ [0, L] then ν (•) is constant in [0,L]
and can take an arbitrary value from (0, 1).

Illustrative example

For the sake of simplicity let us restrict the following consideration to the one dimensional problem, setting ϑ = ϑ (x),

x ∈ [0, L]. Solution to the design problem will be discussed for cube, quadratic and linear distribution of ϑ (•) for a transversally graded composites. [START_REF] Mastysiak | On applications of the microlocal parameter method in modelling of temperature distributions in composite cylinders[END_REF] the formula for ν (•) takes form:

I ϑ (•) is a cubic function 1 0 if ϑ (•) -is convex in [0,L], ϑ (x) = cx 3 + ax 2 + bx , a, b, c > 0 then from
ν (x) = 1 - 3cx 2 + 2ax 3cL 2 + 2aL , x ∈ [0, L] .
From this relation we obtain that in this example ν (•) is concave in [0,L]. The obtained result is shown in Fig. 3.

x 0 L 1 x 0 L (L) = c L + a L + bL 3 2
Fig. 3 Diagram of ν (•) for the given cube distribution of temperature ϑ for a transversally graded composite. [START_REF] Mastysiak | On applications of the microlocal parameter method in modelling of temperature distributions in composite cylinders[END_REF] we obtain that:

2 0 if ϑ (•) -is concave in [0,L], ϑ (x) = cx 3 -ax 2 + bx, a, b, c > 0 then from
ν (x) = 3cx 2 -2ax 3cL 2 -2aL , x ∈ [0, L] .
From this relation we obtain that in this examplet ν (•) is convex in [0,L].The obtained result is shown in Fig. 4.

x 0 L 1 x 0 L (L) = c L -a L + bL 3 2
Fig. 4 Diagram of ν (•) for the given cube distribution of temperature ϑ for a transversally graded composite.

II ϑ (•) is a quadratic function

1 0 if ϑ (•) -is convex in [0,L], ϑ (x) = ax 2 + bx, a, b > 0 then formula for ν (•) takes form: ν (x) = L -x L , x ∈ [0, L] .
Diagram of ν (•) for the given convex quadratic distributions of temperature ϑ is shown in Fig. 5.

x 0 L 1 x 0 L (L) = a L + b L (L) = a L + b L 1 1 1 2 2 2 2 2 2 1
Fig. 5 Diagram of ν (•) for the given quadratic distributions of temperature ϑ for a transversally graded composite. [START_REF] Mastysiak | On applications of the microlocal parameter method in modelling of temperature distributions in composite cylinders[END_REF] takes the form:

2 0 if ϑ (•) -is concave in [0,L] ϑ (x) = -ax 2 + bx a > 0, b > 0 then formula
ν (x) = x L , x ∈ [0, L] .
Diagram of ν (•) for the given concave quadratic distributions of temperature ϑ is shown in Fig. 6. 

x 0 L 1 x 0 L (L) = -a L + b L (L) = -a L + b L
ν (x) = g -b g (1 -α) .
Diagram of ν (•) for the linear distribution of temperature ϑ is shown in Fig. 7. These examples were only illustrative examples more complicated exampes will be presented in separated form.

x 0 L 1 x 0 L (L) = bL
In this contribution it was shown that the asymptotic modelling procedure which is well known in homogenization of periodically layered heat conductors can be also extended to the functionally graded (not periodic) heat conductors. In the contrast to the modelling of periodic laminates the coefficients in the model equations [START_REF] Kaczyñski | Thermal stresses in a laminate composite with a row of interface cracks[END_REF] are not constant but represented by smooth functions. These functions depend on material fractions ν (•), ν (•), where ν (•) + ν (•) = 1, which were postulated as smooth. In every specific case fractions ν (•), ν (•) are assumed to be known a priori. However, the above fractions can by also interpreted as unknowns if we are going to design the material structure of a layered composite. Moreover, these functions have to be slowly varying. These property is very important mainly for the application numerical procedures for solutions obtaining to specific boundary value problem. This fact makes it possible not only to solve specific boundary value problem for the functionally graded heat conductors but also to design new functionally graded composites by finding a suitable form of fractions ν (•), ν (•). This problem was studied in Sect. 5 for transversally graded laminates but can be also extended to designing of longitudinally graded composites. The effective properties of these conductors are represented by smooth functions given by formulas [START_REF] Kaczyñski | Plane contact problems for a periodic two-layered elastic composites[END_REF]. It can be seen that these functional coefficients have a very simple analytical form and in the special case of periodically layered heat conductors coincide with the well known formulas obtained by homogenization. Let us also observe that the design problem formulated in Sect. 5 has a physical sense mainly in the case of longitudinal gradation of material properties. In this case we can design multilayered heat conductors which have different conductivities in the direction along the layers. Such situations take place in many engineering problems in which we deal with multilayered walls, the conductivity of witch should by different in different parts of these walls.

Fig. 1 A

 1 Fig. 1 A structure of FGM a) with the transversal gradation of layers, b) with the longitudinal gradation of layers.

Fig. 6

 6 Fig.[START_REF] Kaczyñski | On the three-dimensional interface crack problems in periodic two-layered composites[END_REF] Diagram of ν (•) for the given quadratic distributions of temperature ϑ for a transversally graded composite.

Fig. 7

 7 Fig. 7 Diagram of ν (•) for the linear distribution of temperature ϑ for a transversally graded composites -periodic composites.