for relatively simple problems, [START_REF] Fish | Higher-order homogenization of initial-boundary value problems[END_REF]. For more detailed review of papers on this subject the reader is referred to [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF]. An alternative mathematical model for the analysis of the near-boundary and near-initial phenomena has been recently proposed in [START_REF] Wierzbicki | Boundary and initial fluctuation effect on dynamic behavior of a laminated solid[END_REF]. This model is based on the tolerance averaging technique of equations with periodic coefficients, [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF]. The dynamic behaviour of a laminated solid was described in [START_REF] Wierzbicki | Boundary and initial fluctuation effect on dynamic behavior of a laminated solid[END_REF] by a refined homogenized equation of motion for the averaged displacements and by a certain boundary-layer equation for the displacement fluctuations. The above refined homogenized equations of motion involves the extra source term depending on displacement fluctuations but the boundary-layer equation is independent of the averaged displacements. This result has been obtained under a certain heuristic assumption neglecting terms which in most problems seem to be negligible small. The aim of this contribution is to formulate mathematical models of the elastic periodically laminated solid which take into account some from results derived in [START_REF] Wierzbicki | Boundary and initial fluctuation effect on dynamic behavior of a laminated solid[END_REF] but reject the aforementioned heuristic assumption. The main result is that models proposed in this contribution describe not only the coupling between macro-and micro-response of the medium but also can be decomposed into successive asymptotic approximations. However, this decomposition holds only for a special class of laminated solids. The tolerance averaging equations which were derived in [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF] are the starting point of the following considerations. In order to make this paper self consistent, in Section 2 we recall some from basic concepts of the tolerance averaging technique which can be found in monograph [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF].

Denotations. Small bold-face letters stand for vectors and points in 3-space, capital bold-face letters denote second-order tensors and block letters are used for the third-and fourth-order tensors. The scalar and doublescalar products of these objects are denoted by the dot or the double dot between letters, respectively. The time derivatives are denoted by the over dot.

FUNDAMENTALS

Let 3 2 1 x x Ox
stand for the orthogonal cartesian coordinate system in the physical space. Points of this space will be denoted by ( )

3 2 1 , , x x x = x . Let ( ) Π × - = Ω L L, , 2 R ⊂ Π
be the region in the physical space occupied by the laminated solid in its natural configuration. Interfaces between laminae are perpendicular to the Ox 1 -axis. It is assumed that the solid is made of a large number of layers having equal thickness l, where L l << . Every layer is made of two homogeneous linear elastic laminae of thicknesses l ′ and l ′ ′ , where

l l l = ′ ′ + ′
. The mass density and the tensor of elastic moduli of laminae having thickness l ′ and l ′ ′ will be denoted by ρ ′ , Χ ′ and ρ ′ ′ , Χ ′ ′ , respectively. It is also assumed that all laminae are perfectly bonded and every material plane x 1 =const. is the elastic symmetry plane.

The starting point of our considerations are equations derived in [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF] by the tolerance averaging technique.

Following [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF], for an arbitrary integrable function

f defined on [ ] L L, - we denote ( ) ( ) ∫ - ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - + - ∈ + = 2 / 2 / 1 1 1 2 , 2 , 1 l l l L l L x dz z x f l x f
where L l << and f can also depend on x 2 , x 3 and time t. Moreover, by ( ) ⋅ g we denote l-periodic, continuous function of argument x 1 such that ( ) 

3 l nl g = , ( ) 
3 l l nl g - = ′ + , ,... 2 ,
( ) ( ) ( ) ( ) t x g t t , , , 1 x v x u x w + = (1)
where u and v are slowly varying functions of argument 1

x in the sense explained in [9]. Functions u and v in 

l l / ′ = ′ ν , l l / ′ ′ = ′ ′ ν , 0 ≠ ′ ′ ′ ν ν , ( ) 0 , 0 , 1 = e and ( ) 3 2 1 , , ∂ ∂ ∂ = ∇ , ( ) 3 2 , , 0 ∂ ∂ = ∇ where i i x ∂ ∂ = ∂ / , i=1,2,3.
Setting aside all details related to the tolerance averaging technique it can be shown that the governing equations for u and v have the form

[ ] ( ) ( ) { } [ ] 0 u v C v v 0 v u u = ∇ + ⋅ + ∇ ⋅ ∇ - = ⋅ + ∇ ⋅ ∇ - : : : 2 2 T l l Χ Χ Χ Χ & & & & ρ ρ (2)
where the constant coefficients are given by

ρ ν ρ ν ρ ′ ′ ′ ′ + ′ ′ = , Χ = Χ Χ ′ ′ ′ ′ + ′ ′ = ν ν , [ ] ( ) e ⋅ ′ - ′ ′ = Χ - Χ Χ 3 2 , [ ] ( ) Χ - Χ Χ ′ - ′ ′ ⋅ = e 3 2 T , { } e e C ⋅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ′ ′ ′ ′ + ′ ′ ⋅ = ν ν Χ Χ 12
Model equations (2) with formula [START_REF] Bakhvalov | Averaging processes in periodic media[END_REF] represent what is called the tolerance model of the periodically laminated two-component medium. Equations ( 2) have to be considered together with initial conditions for u and v, boundary condition for u on

( ) ( ) { } ( ) { } ( ) Π × ∪ Π × - ∪ Π ∂ × - = Ω ∂ L L L L,
and boundary condition

for v on ( ) Π ∂ × -L L,
. The main feature of the above model is the coupling between macro-and micromechanics of a laminated medium. This coupling is represented by the presence of the microstructure length parameter l in the second from equations (2). Equations ( 1), ( 2) constitute the basis for the subsequent analysis. The detailed discussion of the above model equations can be found in [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF].

ALTERNATIVE FORM OF MODEL EQUATIONS

The main aim of this contribution is to show that under certain conditions the model equations ( 2) can be decomposed into equations describing independently macro-and micro-response of the periodic laminate. To this end we shall derive an alternative form of the model equations [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. In this form, instead of fluctuation amplitude v, we shall deal with a new kinematical unknown r defined by

{ } [ ] v u C r + ∇ ⋅ = - : 1 T Χ (3) 
where { } 1 -C represents inverse to the non-singular linear transformation { } C . For the homogenized model 0 r ≡ , [7]. That is why r is referred to as the intrinsic fluctuation amplitude, i.e., the amplitude independent of the averaged displacement field u. At the same time from (1) and (3) we obtain

( ) ( ) ( ){ } [ ] ( ) ( ) ( ) t x g t x g t t T , , : , , 1 1 1 x r x u C x u x w + ∇ ⋅ - = - Χ
where r g represents the intrinsic fluctuation of displacement. The part of response of periodic laminates described by the averaged displacement u is referred to as macro-response while that described by the intrinsic fluctuation amplitude r is called micro-response.

In order to formulate governing equations for functions u and r we shall use the notion of homogenized tensor of elastic moduli

[ ] { } [ ] T h Χ Χ Χ Χ ⋅ ⋅ - ≡ -1

C

We also introduce ( )

u u u ∇ ⋅ ∇ - ≡ : h A Χ & & ρ , ( ) [ ] { } r C r r r ⋅ + ∇ ⋅ ∇ - ≡ : 2 Χ & & ρ l D , { } [ ] { } [ ] ( ) ( ) [ ] u C u C u ∇ ⋅ ⋅ ∇ ⋅ ∇ - ∇ ⋅ ≡ - - : : : 1 1 2 T T l F Χ Χ Χ & & ρ
Combining equations (2) with formula (3) we obtain the coupled system of the model equations for u and r [ ]

u r r u F D A T = ∇ = : Χ (4)
which is an alternative to model equations [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. It has to be emphasized that equation ( 4) have a physical sense only if u and r are slowly varying functions of argument 1

x . We recall that boundary conditions for u have to be prescribed on (

) Π ∂ × -L L, and on { } Π × -L L,
while boundary conditions for r only on

( ) Π ∂ × -L L,
.

The subsequent analysis of equations ( 4) will be based on the decomposition

∆ ∆ + = + = r r r u u u 0 0 , ( 5 
)
where 0 u , 0 r are assumed to satisfy equations 0 r

0 u = = 0 0 , D A ( 6 
)
as well as boundary/initial conditions. These conditions in every problem under consideration have to be the same as those imposed on u and r, respectively. It follows that ∆ u , ∆ r satisfy the corresponding homogeneous boundary/initial conditions and nonhomogeneous equations

[ ] ( ) ( ) ∆ ∆ ∆ ∆ + = + ∇ = u u r r r u 0 0 : F D A T Χ (7) 
It has to be emphasized that the first from equations (6) represents the model obtained by the homogenization technique, [START_REF] Bakhvalov | Averaging processes in periodic media[END_REF][START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], and the second from equations (6) describes phenomena related to the fluctuations of boundary and initial displacements, [START_REF] Wierzbicki | Boundary and initial fluctuation effect on dynamic behavior of a laminated solid[END_REF]. The analysis of equations ( 7) will be carried out in the subsequent section.

ASYMPTOTIC APPROXIMATIONS

Let us denote by n ⋅ an arbitrary but fixed norm in the linear space of all n-th order tensors related to space . The above condition holds true for many laminated materials met in civil and mechanical engineering. The subsequent analysis will be restricted to laminates with a weak transversal inhomogeneity where η is treated as a certain small parameter. r are assumed to be linear functions of η . Applying the asymptotic limit passage 0 → η to equations [START_REF] Wierzbicki | Boundary and initial fluctuation effect on dynamic behavior of a laminated solid[END_REF] we obtain the following system of equations for 1

u , 1 r : [ ] 0 1 0 1 : u r r u F D A T = ∇ = Χ (8)
The above equations are assumed to hold together with homogeneous boundary and initial conditions. These conditions have the same form as pertinent homogeneous conditions for ∆ u , ∆ r , respectively. It can be seen that the right-hand sides of equations ( 8) are known provided that the boundary/initial value problem for equations [START_REF] Sanchez-Palencia | Homogenization technics for composite media[END_REF] has been previously solved.

Summarising the obtained asymptotic results we state that model equations ( 4) for u and r can be decomposed to the form given by equations ( 6) and [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF]. In this case formula (5) yields ( )

η o + + = 1 0 u u u , ) η o + + = 1 0 r r r
i.e. we deal with an asymptotic approximation of an order ( )

η o .
Equations ( 6) will be referred to as the first order approximation model for laminates with a weak transversal inhomogeneity. In the framework of this model the basic kinematical unknowns u, r are approximated by 0 u , 0 r , respectively. Equations ( 6) together with (8) will be referred to as the second order approximation model. In this model unknowns u, r are approximated by 1 0 u u + , 1 0 r r + , respectively. Formulation of higher-order approximation models is also possible and will be studied in a separate contribution.

ILLUSTRATIVE EXAMPLE

The general results of Sec. 3 and 4 will be now illustrated by a simple benchmark problem. We consider a thick unfinite laminated layer bounded by planes Bearing in mind the formula for total displacement field w it can be seen that from the physical viewpoint the above boundary conditions are rather artificial and have been introduced only to make subsequent calculations as simple as possible. Moreover, the problem will be treated as time independent. In this case, denoting

0 2 = x , H x =
2 x x ≡ , we obtain ( ) ( ) ( ) ( ) ( ) ( ) [ ] H x x r x x u x , 0 , 0 , 0 , 0 , 0 , ∈ = = r u Let G ′ , G ′
′ stand for the shear elastic modulae in both components of the laminate, such that

G G ′ > ′ ′ . Correspondingly E E ′ ′ ′ , stand for the longitudinal elastic modulae. Let us denote ( ) G G G G ′ ′ ′ ′ + ′ ′ ′ - ′ ′ ≡ ν ν η 3 2 , ( ) ( ) , G G G G G G ′ ′ ′ ′ ′ ′ + ′ ′ ′ ′ ′ ′ ′ + ′ ′ ≡ ν ν ν ν β ( ) (
)

E E G G ′ ′ ′ ′ + ′ ′ ′ ′ ′ ′ ′ ′ + ′ ′ ′ ≡ ν ν ν ν ν ν α 12 2 , ( ) ( ) G G G G ′ ′ ′ + ′ ′ ′ ′ ′ ′ ′ + ′ ′ ′ ′ ′ ≡ ν ν ν ν ν ν γ = = = = H r r H u u
In this case we obtain 0 , exp 1

1 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - + - = r l x H x r l u α α ηβ Hence u and r are approximated by [ ] H x l x r r l x H x r l H x u u , 0 , exp exp 1 1 ∈ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ≅ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - + - + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ≅ α α α ηβ (12)
with an approximation of an order ( ) 

∈ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - + - + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - = α α α ηβ (13)
Apart from approximation (11), which for sufficiently small H l / has no essential meaning, formulae (13) can be treated as the exact solution to the boundary value problem under consideration. Comparing ( 12) and ( 13) we conclude that the second order approximation (12) describes the exact solution from the qualitative viewpoint. This situation does not hold for the first order approximation of averaged displacements. From the quantitative viewpoint the desired accuracy of the second order approximation is determined by the quotient l l / 0 . For a postulated value of l l / 0 (which should be close to 1) we can calculate η and hence to formulate a necessary condition imposed on laminates with a weak transversal inhomogeneity described by the second order approximation model.

CONCLUSIONS

The main results and new information about modelling of periodically laminated solids presented in this contribution can be stated as follows 1.

Following [START_REF] Wierzbicki | Boundary and initial fluctuation effect on dynamic behavior of a laminated solid[END_REF], an alternative form (4) of the tolerance model equations (2) derived in [START_REF] Cz | Averaging techniques in thermomechanics of composite solids[END_REF] was introduced.

The basic kinematical unknowns in equations ( 4) are: averaged displacement u and intrinsic fluctuation amplitude r. The intrinsic fluctuation describes a micro mechanical response of a laminate. In the framework of the well known homogenized model of a laminated medium this response is neglected.

2.

The concept of laminates with a weak transversal inhomogeneity was introduced. This concept is based on the proposed definition of the transversal inhomogeneity parameter η . This kind of inhomogeneity takes place for laminae reinforced by long high-strength fibres. In this case components of elastic moduli tensor Χ which are related to the 3 2 x Ox -plane are strongly different in adjacent laminae; the remaining components attain only small jumps across the lamina interfaces.

3.

It was shown that for laminates with a weak transversal inhomogeneity the model equations ( 4) for u and r can be decomposed into successively independent equations ( 6) and ( 8) for new unknowns 0 u , 0 r , 1 u , 1 r . Equations (6) for 0 u , 0 r represent the first order approximation model. In the framework of this model unknowns u, r are approximated by 0 u , 0 r , respectively, with an asymptotic approximation of an order ( ) η O . Equations (6) for 0 u , 0 r together with equations (8) for 1 u , 1 r constitute the second order approximation model. Using this model we approximate u and r by 

4.

The final conclusion is that for laminates with a weak transversal inhomogeneity the model equations ( 4) can be decoupled into equations for 0 u , 0 r , 1 u , 1 r which can be solved successively. Let us observe that in equations (4) micro mechanical response r is coupled with averaged displacement u.

The general results have been illustrated by a simple benchmark problem where solution obtained in the framework of the second order approximation model was compared with the exact solution. This comparison makes it possible to evaluate the effect of the transversal inhomogeneity parameter η on the accuracy of approximate solutions. It was shown that for η small when compared to 1 the second order approximation model yields reliable results both from the qualitative and quantitative viewpoint. On the other hand, the first order approximation model is unable to describe properly the problem under consideration.

( 1 )

 1 are the basic kinematical unknowns. Field u is the averaged displacement, w u = , and v is referred to as the fluctuation amplitude. Let us define

3 E

 3 inhomogeneity parameter of the laminates under consideration. These laminates are said to have a weak transversal inhomogeneity provided that η satisfies condition 1

  fields u, r are assumed to be equal to zero.

where η is a transversal inhomogeneity parameter introduced in Sec. 4. It can be shown that, under the above notations, equations (4) take the form

where unknowns ( )

We shall assume that l H >> so that condition

will take place in all subsequent manipulations.

The first order approximation model determined by equations ( 6) leads to the boundary value problem given by 0 , 0

The second order approximation model governed by equations (6) together with equations (8) yields