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A mesoscopic model of amorphous plasticity is discussed in the wider context of depinning models.
After embedding in a d+ 1 dimensional space, where the accumulated plastic strain lives along the
additional dimension, the gradual plastic deformation of amorphous media can be regarded as the
motion of an elastic manifold in a disordered landscape. While the associated depinning transition
leads to scaling properties, the quadrupolar Eshelby interactions at play induce specific additional
features like shear-banding and weak ergodicity break-down. The latters are shown to be controlled
by the existence of soft modes of the quadrupolar interaction, the consequence of which is discussed
in the context of depinning.

Most liquids flow as soon as they experience shear
stress. In contrast many complex fluids (pastes, foams,
colloidal suspensions, etc.) do not flow for shear stresses
lower than some threshold yield limit. The rheological
behavior of these yield-stress fluids parallels the plastic-
ity of amorphous solids (oxide and metallic glasses, poly-
mers, etc.). Both families of materials exhibit a rich phe-
nomenology. Close to the yielding threshold, critical-like
behaviors are observed: avalanches [1, 2], growth of a
correlation length scale [3], Hershell-Bulkley law [4]... In
parallel other properties are reminiscent of glassy phe-
nomena: e.g. thermal [5] and mechanical [6–8] history
dependence. In the same spirit, strain localization [9, 10],
a phenomenon of crucial technological interest (since it
controls the mechanical strength) can be analyzed as an
ergodicity break-down process: plastic activity is trapped
in a very limited sub-region of the phase space [11].

These two phenomenological archetypes (criticality
and glass transition) have motivated parallel efforts of
modeling. Building on trap models [12] designed to cap-
ture ergodicity breaking and aging at glass transition,
Sollich et al. [13, 14] developed Soft Glassy Rheology
(SGR) models and could associate different rheological
behaviors of complex fluids to a parameter of their model,
an effective temperature associated to mechanical noise
(see a recent discussion in [15]). A different glassy ap-
proach has been pursued by Bouchbinder and Langer[16]
who extended the Shear-Transformation-Zone theory[17]
to explicitly account for an effective temperature related
to the slow configurational degrees of freedom of the
glassy material under shear.

The need to go beyond mean field description and
understand the crucial effect of elastic interactions
associated to the localized rearrangements (Eshelby
events) [17–21] responsible of amorphous plasticity has
early led to the development of mesoscopic models ac-
counting for these interactions [22]. This effort of model-

ing at mesoscopic scale has, since then, been very active
[23–35]. As early noticed in [23], the competition at play
in mesoscopic models between microscopic disorder and
elastic interaction strongly reminds the physics of the de-
pinning transition [36] that naturally entails critical fea-
tures. Recently summarized in Ref. [35], most features
of the associated scaling phenomenology have been ob-
served numerically [37–40] and experimentally [1, 2].

Noteworthily, some of the key non-ergodic features
(e.g. aging and shear-banding[32, 41, 42]) can be also
recovered within the framework of the mesoscopic elasto-
plastic models. This has raised the question of the pre-
cise link with the depinning transition. In particular, the
crucial effect of the non-positiveness of the quadrupolar
elastic interaction induced by individual plastic events
has been questioned. Recently Lin et al. [35] have shown
the necessity of three independent exponents (instead of
two for standard depinning) to account for the scaling
properties of mesoscopic models of amorphous plasticity.

Here we show that the specific features observed in
elasto-plastic models are controlled by the presence of
multiple soft modes of the quadrupolar elastic interac-
tion. The presence of such soft modes will be argued
not to be an artifact of lattice discretization or of a spe-
cific numerical implementation [31], but rather a genuine
characteristic of elasto-plastic models. In the present
perspective, shear bands directly result from the Eshelby
interaction symmetry i.e. extended modes of plastic de-
formation that satisfy compatibility and consequently in-
duce no internal stress. This property, absent in classical
depinning models, has dramatic effects on the stability,
the dependence on initial conditions as well as the ergod-
icity properties of plastic yielding models.

Depinning-like models for amorphous plasticity
Here we restrict ourselves to a simple scalar case [24].
Assuming, bi-axial loading conditions, we define respec-
tively for stress and strain the scalar quantities σ =
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FIG. 1. Sketch of a 2d amorphous material upon bi-axial load-
ing. (a) The mesh is deformed according to the displacement.
The associated strain has a reversible elastic contribution and
an irreversible plastic contribution. The latter is represented
according to the color scale. (b) The plastic strain field (col-
ors) is represented on the un-deformed reference frame. (c)
The plastic strain field can be represented as a d-dimensional
manifold moving in a d+ 1 space.

σyy − σxx, ε = εyy − εxx from their tensorial counter-
parts. At mesoscopic scales, a simple plastic criterion
can be defined from the comparison between the local
values of the scalar equivalent stress field σ(r, {εpl}) =
σext + σint[r, {εpl}] with a threshold stress σc[r, εpl(r)].
The local stress σ results from the addition of a (con-
stant) external stress σext and of a spatially fluctuating
internal stress σint due to the successive plastic rearrange-
ments mediated by the elastic interactions. Here the lo-
cal stress threshold σc encodes the disordered nature of
the structure, it depends both on space and on the local
value of the plastic strain εpl. From this local criterion
a simple equation can be written to model the evolution
of the plastic strain field:

∂tε
pl(r, t) = P

(
σext+Gel∗εpl(r, t)−σc[(r, εpl(r, t)]

)
(1)

where P(·) stands for the positive part function, i.e.

P(x) = x if x > 0 and P(x) = 0 if not. We recognize the
usual formalism of depinning [36]. As sketched on Fig. 1,
we can define an extra coordinate z, orthogonal to the
space variable r after embedding in a d + 1 dimensional
space. The equation z = εpl(r) thus defines an elas-
tic manifold whose propagation in the random landscape
σc[r, εpl(r, t)] is governed by Eq. (1).

The quenched noise σc is defined by its average 〈σc〉 =
σc and its correlations 〈σc(r, z)σc(r + δr, z + δz)〉 =
ς2f(δr)g(δz) where ς2 gives the variance. Short-range
correlations are considered, namely, f(δr)→ 0 if |δr| � `
and g(δz) → 0 if |δz| � b. The length scale ` is given
by the mesoscopic scale at which coarse-graining is per-
formed. The length scale b corresponds to the typi-
cal plastic strain induced by elementary plastic events.
Finally Gel is the elastic kernel associated to the reac-
tion of the elastic matrix to a plastic inclusion[43]. This

FIG. 2. (a) Strain and elastic stress variance vs cumulated
plastic strain 〈εpl〉 for a quadrupolar propagator GQ and a
Mean-Field GMF . A linear behavior is represented for com-
parison. (b) Size-dependent diffusive-like behavior of the
plastic strain field for the quadrupolar kernel GQ for sizes
N = 32, 64, 128 with M = 1000, 100, 30 realizations re-
spectively. Results have been divided by the linear behavior
expected for diffusion. The larger the system, the longer the
anomalous sub-diffusive behavior.

long-range interaction is characterized by a quadrupolar
symmetry and can be written in an infinite medium as:
GQ(r) = A cos(4θ)/r2 where r = |r| and θ is the polar
angle. Instead of directly integrating Eq. (1), an extremal
dynamics algorithm of the model discretized on a lattice
is implemented [23, 24]. Only one site experiences plastic
deformation at each iteration step.
Depinning vs plasticity In the following, GQ de-

notes the quadrupolar interaction used in the plasticity
model and GMF a simple Mean-Field (MF) interaction,
GMF (r) = 1/(N2 − 1) if |r| 6= 0 and GMF (r) = −1 if
not. The latter will be used (all other parameters being
kept constant) to show the expected behavior of a stan-
dard reference depinning model. In order to to investi-
gate the origin of the specific effects of the elastic kernel,
we also define a weighted average of the two propagators:
Ga = (1−a)GQ+aGMF where the parameter a gives the
relative weight of the mean field. For moderate values of
a, the quadrupolar symmetry is mainly preserved in the
sense that the Green function remains strictly negative
in the 0 and π/2 directions.

We first show in Fig. 2 (a) the evolution of the variance
of the plastic strain (the interface width in the depin-
ning context) in the two cases of amorphous plasticity
and mean field depinning. In the latter case, a classi-
cal Family-Vicsek scaling [44] is recovered: the interface
width grows as a power law until it reaches a plateau.
Saturation is obtained at a typical time scale τ ∝ Lz

such that the correlation length ξ has reached the sys-
tem size ξ(τ) ≈ L. In the amorphous plasticity case,
the first power-law growth regime is recovered but, past
ξ ≈ L, the interface width shows no saturation but rather
a diffusive trend [24]. The evolution of the variance of the
elastic stress is also shown in the two cases. Here satura-
tion is recovered in plasticity as well as in MF depinning.
Note that the elastic stress field can be directly obtained
from the plastic strain field from a simple convolution
with the propagator. The fact that the diffusive trend
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at play with the strain field does not show in the stress
fluctuations is a first indication that strain fluctuations
are controlled by soft modes of the elastic interaction.

We show in more details the scaling properties of the
variance of the plastic strain field in Fig. 2(b). In order
to emphasize the specificity of the diffusion-like process,
the variance is scaled by the mean plastic strain, a ratio
expected to be constant for standard diffusion. A signifi-
cant system size dependence is observed. In particular, a
long sub-diffusive transient is obtained for large systems.

A dramatic effect on the diffusion regime is obtained
when running a model with a > 0. In Fig. 3 (top) the
time evolution of the interface width is shown for dif-
ferent values of a. It turns out that even the lowest
MF contribution is enough to recover saturation at long
times. A transient diffusive regime appears when a tends
to zero, and the level of the final plateau increases ac-
cordingly. But when the interface gets too distorted, if
a > 0 the (low) MF restoring force eventually stops the
divergence of the strain fluctuations. A negative MF con-
tribution a < 0 has the opposite effect: after a transient,
the plastic strain gets unstable and its variance diverges
very fast. The strong effect of the MF contribution is
manifest in the plastic strain field for a cumulated plas-
tic strain 〈εpl〉 ≈ 5 for a = −0.01, 0, 0.01 using the
same color scale in Fig. 3 (bottom). The plastic case
(a = 0.0) shows a superposition of patterns localized at
±π/4 following the symmetry of the quadrupolar kernel.
Similar patterns survive with a positive MF contribution
(a = 0.01) but get very attenuated (the interface width
is much lower). A negative MF contribution induces con-
versely a strong localization behavior: plastic activity is
restricted along a unique very thin shear band.

As above mentioned, shear-banding can be analyzed as
an ergodicity breakdown: plastic deformation only visits
a sub-part of the phase space. It is thus tempting to an-
alyze the present model along these lines. In Fig. 4 we
show two-point correlation functions computed after var-
ious “waiting times” (here the cumulated plastic strains).
For the bare plasticity model, a striking mechanical his-
tory effect is observed: the larger the waiting time, the
larger the decorrelation time. Again, the addition of a
very small MF contribution is enough to destroy this me-
chanical history behavior. Such results are reminiscent of
recent studies of depinning lines [45] that revealed aging
properties but only in the roughness growing stage. Here
the saturation of the interface roughness is postponed at
infinity and aging can persist forever. This regime is thus
naturally associated to the divergence of the interface
width. This behavior could even be observed in a sim-
ple diffusion process. As above mentioned, the diffusion
regime here at play is actually non trivial. In particular,
as shown in Fig. 2 (b), for large systems, a very long sub-
diffusive transient regime is obtained. This observation
again supports weak ergodicity breakdown. The latter
behavior is indeed associated to sub-diffusion [46].

FIG. 3. Top: Strain variance (equivalently interface width)
vs cumulated plastic strain 〈εpl〉 for 5 different propagators:
GQ, Ga (a = 10−1, 10−2, 10−3), GMF . Bottom: Maps of
plastic strain field obtained for a mere quadrupolar elastic
interaction (b), and with a positive (a) and a negative (c)
MF contribution a = ±10−2 for 〈εpl〉 ≈ 5, past the transient
regime. The same color scale has been used in the three cases.

Fourier space and soft modes The introduction of
yet a tiny MF component has thus dramatic consequences
on the localization behavior In the following, a rewriting
in Fourier space allows one to emphasize the crucial role
of the soft modes of the propagator in this phenomenon.
In the model presented above, the “Eshelby” quadrupolar
interaction was defined through its Fourier transform in
order to handle periodic boundary conditions [24]:

G̃Q
pq = A (− cos(4θpq) + 1) = −8A

(
p2 − q2

p2 + q2

)2

, (2)

where θpq is the polar angle and (p, q) the wavevector in
Fourier space. A is a constant chosen so that G(0, 0) =
−1. The Fourier transform of the plastic strain field is
defined as:

εplmn =
1

N2

N/2−1∑
p=−N/2

N/2−1∑
q=−N/2

ε̃plpq e
−i 2πmp

N e−i 2πnq
N . (3)

The Fourier components of the elastic interaction is thus:

σ̃el
pq = G̃Q

pq ε̃plpq =−8A

(
p2−q2

p2+q2

)2

ε̃plpq . (4)

Denoting e(p,q) =e−i 2πmp
N e−i 2πnq

N the (p, q) Fourier mode,
we get GQ ∗ e(p,q) = λpqe(p,q) with λpq = −8A[(p2 −
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FIG. 4. Two-point correlation of the plastic strain field for 4
“waiting times” 〈εpl〉 = 1, 4, 16, 64 and for 4 different prop-
agators: GQ (a), Ga with a Mean-Field weight a = 10−3 (b),
a = 10−2 (c) and a = 10−3 (d). A clear aging effect show for
the quadrupolar propagator GQ: the longer the waiting time,
the slower the decorrelation. The small MF contributions in
propagators Ga gradually kills the aging behavior.

q2)/(p2 + q2)]2. In other terms, the eigenmodes of the
Green operator are precisely Fourier modes, and the asso-
ciated eigenvalues are the above written λpq. This prop-
erty stems from the translation invariance of the elastic
propagator. The same property also holds for the MF
propagator: GMF

mn = −δmδn + (1− δmδn) /(N2 − 1) and

G̃MF
pq = −δpδq + (1− δpδq)/(N2 − 1) where N is the lin-

ear size of the system. Let us now discuss the eigenvalue
spectrum of the quadrupolar interaction. One first recog-
nizes the translation mode of zero eigenvalue λ00 = 0. In
the classical depinning case (say MF, Laplacian or power-
law in distance) this mode is the only one characterized
by a zero eigenvalue. It is the signature of the invariance
of the model with respect to a uniform translation of the
manifold along its propagation direction.

In the present quadrupolar case, a set of non-trivial
eigenmodes are also characterized by a null eigenvalue.
Namely e(p,p) and e(p,−p) with p ∈ [−N/2, N/2− 1]\{0}.
Thus there is one trivial zero translation eigenmode and
2(N−1) non-trivial ones. These non-trivial modes corre-
sponds in real space to arbitrary amplitudes for any com-
bination of shear bands oriented at ±π/4. Shear bands
thus appear as soft modes of the quadrupolar elastic in-
teraction. The diffusive-like behavior observed at long
times for the plastic strain thus results from a competi-
tion between the different soft modes controlled by the
quenched disorder. It is of interest to rewrite the argu-
ment of the P(·) function in Eq. 1 in Fourier space

F
[
σext +Gel ∗ εpl(r, t)− σc(r, εpl)

]
=

σextδpδq + G̃Q
pq ε̃

pl
pq + η̃pq .

(5)

In real space, the spatial coupling is induced by the
elastic interaction kernel, Gel, while the noise term is
local. In the space of eigenmodes, the opposite charac-

FIG. 5. Spectrum of eigenvalues of elastic propagators:
Mean-Field (MF), quadrupolar interaction and MF-weighted
quadrupolar interactions. The introduction of a fraction a of
MF opens a gap between the translational mode having a null
eigenvalue and the other modes λ < 0. The evolution of the
gap is zoomed in the inset.

ter is observed, namely the restoring force is local, but
noise is not. Since all eigenvalues are null or negatives
(otherwise the dynamics would be unstable) a competi-
tion emerges between the relaxation of the eigenmodes
induced by the elastic contribution and a random forcing
due to the quenched noise contribution. However, this
interpretation only holds if we ignore the P(·) function
that intervenes in Eq. 1. At long time scales, the loading
contributes to a positive average that allows for such an
interpretation, however, at short time scales, the positive
part function unfortunately cannot be simply expressed
in Fourier space. Note that a similar situation appears
in classical depinning models. The point is that for the
latter ones, a long time integration gives a finite restoring
force to any wavelength of manifold fluctuations.

When soft modes are present in the propagator, the
relaxation contribution cancels out and one expects the
strain field to be asymptotically dominated by the sole
superimposition of soft modes, that is shear bands at
±π/4, consistently with the diffusive behavior observed
in the quadrupolar case. The strong effect of a small MF
contribution to the quadrupolar propagator can thus be
re-read as the consequence of the opening of a gap in the
spectrum of eigenvalues, in other words to the vanishing
of the soft modes. In Fig. 5, the spectra of eigenvalues
of the stress redistribution kernel show the gradual gap
opening due to the introduction of a MF contribution to
the elastic quadrupolar interaction.

Conclusion The interpretation of the shear-bands as
soft modes of the Eshelby elastic interaction may clar-
ify the long debate about the relative importance of lo-
calized rearrangements and large scale shear-band like
events [21],[47] as microscopic mechanisms of amorphous
plasticity and complex rheology. It appears in particu-
lar that localized plastic events is the rule at short time
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scales but on a larger time horizon, mostly shear bands
account for the kinematics, as these are the only displace-
ment fields that prevent large shear stress build-up.

While the present study has been concerned with the
modeling of amorphous media plasticity, a similar phe-
nomenology is expected for any depinning model as soon
as the elastic propagator exhibits soft modes. As dis-
cussed in [35] in the case of plastic yielding, this new
sub-class of depinning model is expected to exhibit non-
trivial scaling properties. More generally it is tempting to
study in more details the ergodic behavior of such mod-
els at finite temperature in relation with the Soft Glassy
Rheology models [13] and with the recent observation of
the strong effect of Eshelby events on relaxation processes
in the liquid state [48].

DV and SP wish to express their sincere thanks to M.L.
Falk for several stimulating discussions.
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