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This paper deals with a new algorithm allowing short-circuit and impedance faults smart diagnosis of PV generators. It is based on the use of the SVM technique for the classification of observations not located in its margin, otherwise the proposed algorithm is used a k-NN method.

A PV generator database containing observations distributed over classes is used for testing the new algorithm performance, which shows therefore its contribution and its effectiveness in the diagnosis area.

Nomenclature

I. Introduction

The Earth receives every year a huge amount of energy from the sunlight. Indeed, it receives on average 170 W/m² on its surface. However, photovoltaic solar panels are not able to recover all of this energy. Thus, the amount of the usable energy created by the PV solar panels, divided by its radiation energy received is the performance [START_REF] Iannone | An Integrated Approach to the Simulation/optimization of Grid-connected Photovoltaic Systems: the Rational Choice of Components[END_REF]- [START_REF] Riffonneau | Optimal Reactive Supervision of Grid Connected PV Systems with Batteries in Real Conditions[END_REF]. Among the major factors that influence the photovoltaic generators performance, the presence of electrical defects such as: short circuit and impedance. It is possible to ensure a good control [START_REF] Essefi | Current Control Strategy for Grid Connected Photovoltaic Inverter via LCL Filter[END_REF]- [START_REF] Essefi | Intelligent Approach to Maximum Power Point Tracking Control Strategy for Photovoltaic Generation Systems[END_REF] and diagnostic [START_REF] Rezgui | Electrical faults detection for the intelligent diagnosis of a photovoltaic generator[END_REF]- [START_REF] Rezgui | Development of a smart algorithm for the prognosis and the diagnosis of the short circuit and the reversed polarity faults in a photovoltaic generator[END_REF] functions of the PV generators, to reduce its maintenance costs and especially increase its productivity.

In this context, the paper objective is the development of an algorithm of a short-circuit and impedance faults smart diagnosis, in a photovoltaic generator. Indeed, the paper contributions are twofold: 1) Development of shortcircuit and impedance detection and localization algorithm, it bases on the analysis of the parameters characterizations, of the faulty components: cells, bypass, and blocking diodes. 2) Development of a smart classifier, to detect the PV generator faults, it used the observations collected from the control system. It is based firstly on the support vector machines (SVM) technique, for the classification of observations not located in its margin [START_REF] Yang | Short-term solar radiation prediction based on SVM with similar data[END_REF]- [START_REF] Runqing | Distributed generation planning in distribution network based on hybrid intelligent algorithm by SVM-MOPSO[END_REF], and secondly on the k-NN method in the opposite case [START_REF] Bouguerne | Classification of induction machine faults by K-nearest neighbor[END_REF]- [START_REF] Verdier | Fault detection with an adaptive distance for the k-Nearest neighbors rule[END_REF].

II. Classical Diagnosis Algorithm

The studied generator as it presented in the following 

A) Step1: If a PV generator characteristic is _ 0 PV PV PV Short Circuit V II         (1) means that the generator is short-circuited. But if its characteristic is __ __ PV Opposite PV PV Healthy PV Opposite PV PV Short Circuit V V V I I I             (2)
indicates the presence of generator components impedance, which can cancel its power, or change its functioning to a receptor.

B) Step2: the PV string is short-circuited if its characteristic is _ 0 hort Strin Cir g Strin cuit gS String II V         (3) But, if its characteristic is _ _ _ _ 0 0 0 String String Opposite String Cells String String Opposite String PH VV I II I            (4)
indicates the presence of blocking diode short circuited. Also, if its characteristic is 

               (5) 
means the presence of at least one module impedance. Or, if its characteristic is 

           (6)
indicates the presence of default blocking diode impedance.

C) Step3:

A PV module is short-circuited if its characteristic is _ 0 hort Modul Cir e Modul cuit eS Module II V         (7)
This situation means that all its groups are shortcircuited. But, if its characteristic is 

              (8) 
means the presence of least one group impedance.

D) Step4: if a PV group characteristic is _ 0 hort Circuit Group Group S Group II V         (9)
means that the group is short-circuited. Also, if its characteristic is [START_REF] Hirata | Diagnosis photovoltaic failure by simple function method to acquire I-V curve of photovoltaic modules string[END_REF] indicates the presence of all the group cells are shortcircuited. In addition, if its characteristic is [START_REF] Gonzalez | Fault diagnosis in a grid-connected photovoltaic system by applying a signal approach[END_REF] means that the group is connected by a bypass diode short-circuited. But, if its characteristic is

_ _ _ 0 Group Group Cells Short Circuit Bypass Diode Group I I I V        
_ __ 0 Group Group Cells Heal Bypass Diod th e y Group I I I V       
_ _ _ 0 0 0 0 Group Cells Group String PH Group Group Opposite Group I II I I V               (12)
indicates the default all the group cells are impedances. Or, if its characteristic is

_ _ _ _ 0 0 Group Group Healthy PH Group Group Opposite Group Group Healthy II I I VV            (13)
means the presence of bypass diode impedance.

III. Intelligent Diagnosis Algorithm

III.1. SVM algorithm

This technique is a method of two-class classification, which attempts to separate the positive examples from which are negative, in the same space.

The method seeks the hyper-plane that separates the positive examples from which are negative, by ensuring that the margin between the nearest of the positive and negative examples is maximum. This ensures a generalization of the principle, as new examples may not be too similar to those used to find the hyper-plane, but be located on one side or the other of the border.

The advantage of this method is the selection of support vectors, which represent the discriminate vectors by which the hyper-plane is determined. The examples used in the search of the hyper-plane are no longer needed, and only those supports vectors are used to assign a new case, which can be seen as an advantage for this method. This technique consist mainly two steps:

1) Step1: construct the SVM Classifier

The objective is to construct a function f, which for each input value x in a set d  will match an output value y{-1,1}. The following model describes the learning function f in the linear case and also in the non-linearly, but after changing the data space to another with a larger dimension, by the nonlinear mapping function Φ. 

        , ( ) , ( ) , ( ) , ( 
                          (14) 
2) Step2: determining the Hyper-Plane

In the new space data, there are many hyper-planes separating, the best is which maximizes the margin between its location and the support vectors. The following model describes the hyper-plane optimal resulting by the linear programming to found the parameters of the f function. 

                                                                                               (15) 
SVM and like all classification techniques, it has some drawbacks mainly: 1) the binary classification which need to solved the problem by a set of equations, each one presents a classifier between a class and its complement, except classes already processed. 2) The classification of new examples which are located in the SVM margin, and especially if this margin is not well maximized. In this paper we propose for the latter problem as a solution, using the classical method k-NN.

III.2. k-NN method

This is a very simple and straightforward approach. It does not require learning, but simply storing training data. Its principle is as follows:

1) Step1: k-NN compares the new example x* of unknown class, to the all oldest examples in its databases X. 

                                 (16)
With m: examples number of X t . Dis: distance.

2) Step2: k-NN chooses for this new example the majority class among its k nearest neighbors (so it can be cumbersome for large databases) as defined by a selected distance.

*

Class of Observations of Dis min m x imu  (17) C. The Proposed Smart Algorithm

Our contribution in this section is to develop a mathematical model bases on the tools presented above. It is able to make a smart classification of a PV generator defects, aims to increase the classification rate, and at the same time to minimize the classification error rate. In this proposed model, we used for the activation function of SVM the Gaussian type, and for the k-NN method using the Euclidean distance between the gravity centers of database observations. )

    1 1 1 1 1 1 1 1 1 , ( ) , ( ) , , , ( ) 1 * 
M M M M T c c c c i T c c c c i T c c c i sign Xx y sign Xx y fx sign DKD I J DKD I K X D y J x                                                                         1 1 1 * 1 1 * 2 1 , ( ) 1 , , * 1 
1 index min 1 1 *, 1 1 1 End M M M M N j j j N j j j c N jm j T c c c c i x x N CO x x N x N s DKD I J DKD ign K x X D J y I                                                                                                                * j x                                                                                (18) 
Where  = 1 if x is in the margin of the SVM classifier, else  = 0.

IV. Simulations Results

IV.1. Faulted PV Generator Characterization

The main simulation results of the diagnostic algorithm are shown by Figs. 2 to 4. 1) Fig. 2 presents the evolution of the power supplied by a generator contains cells short-circuit and impedance. It therefore shows that the power of a PV generator is reduced in proportion to the increase in the numbers of its defective cells.

2) Fig. 3 presents the influence of short-circuited and impedance faults at the bypass diodes, on the functioning of a photovoltaic generator. It shows that the bypass diode short-circuit defect a) affects the group voltage, but the current remains independent, unless all its string groups are failed. By const, it shows that the impedance defect b) has no influence on the characterization of a faulty string, which contains at least one good group, c) else the power of the generator increases, proportionally to the increase in the number of strings which all its groups are defective, because its currents are increases, until reaches its short-circuit value. 3) Fig. 4 presents the influence of the blocking diode short-circuited and impedance faults, on the functioning of a photovoltaic generator. It shows that these defects can make a remarkable deterioration in the power supplied by a generator, because the blocking diode short circuit default, with another defect which can reduce its string voltage, and also for the blocking diode impedance default which may reduce the voltage of its string, so these two situations can create the reverse current in its strings, and therefore change its characterizations to a receivers in the absence of the photocurrent, or becomes as open circuit in the opposite case. 

IV.2. Smart Algorithm Tests

The proposed smart fault detection and diagnosis algorithm is tested using a PV generator database containing observations (Tab. 1) distributed over classes (Tab. 2) [START_REF] Rezgui | Modeling of a photovoltaic field in malfunctioning[END_REF][START_REF] Rezgui | Electrical faults modeling of the photovoltaic generator[END_REF]. For that purposes, three indicators are used: the rate of good classified observations (Figs. 56), the computation time to classify any new observation (Fig. 7), and finally the classification error rate (Figs. 89). Each observation is presented by its center of gravity "x'.

The achieved results (Figs. [START_REF] Essefi | Intelligent Approach to Maximum Power Point Tracking Control Strategy for Photovoltaic Generation Systems[END_REF][START_REF] Rezgui | Electrical faults detection for the intelligent diagnosis of a photovoltaic generator[END_REF] show that the rate of good classified observations is The achieved results (Fig. 7) show that the computation time is The analysis of the above achieved results shows that the proposed new classifier has a high classification rate, with a low error rate, but it is a little bit time consuming, due the mathematical computations.

IV. Conclusion

This paper dealt with a new smart algorithm allowing short-circuit and impedance detection and diagnosis in PV generators. It is based on the optimization of SVM classifier, firstly by solving a set of equations as a solution to the problem of multi-class. And secondly by k-NN as a solution to the classification of observations, which located on the SVM classifier itself and its margin.

The new algorithm proposed in this paper shows its specific features: a high classification rate with a low error rate. But, it is a little bit time consuming due the mathematical computations, which necessities to more improvement in the future work as perspective.
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TABLE .

 . 

			1. OBSERVATION CLASS
	Class		normal	defective	defective	defective
			operation	cells		bypass	blocking
						diodes	diodes
	Number	of	1632	1632		1632	1632
	observations "X'					
	TABLE.2. OBSERVATION PARAMETERS
	Parameters I		V	P	R s	T	I ph

TABLE .

 . 

		3. RATE OF GOOD CLASSIFIED OBSERVATIONS
	Classifier	SVM	k-NN	SVM_k-NN
	Rate (%)	60 to 69.9	50 to 53.5	68 to 75.8%

TABLE .

 . 

		Tab.5. Classification Error Rate	
	Classifier	SVM	k-NN	SVM_k-NN
	Rate (%)	0.8 to 0.9	1.5 to 2	0.36 to 0.55
				4. NEW OBSERVATION CLASSIFICATION ELAPSED TIME
				Classifier	SVM	k-NN	SVM_k-NN
				Computation Time (second)	5.5 to 7 2 to 3	5 to 10
				The achieved results (Figs. 8-9) show that
				classification error rate is

Authors' information 1 First author affiliation: Laboratory of Automation and Manufacturing, Batna Univerity, Rue Chahid Boukhlouf Batna Algeria. 2 Second author affiliation: ISEN Brest, EA 4324 LBMS, Brest, France. 3