
HAL Id: hal-01120823
https://hal.science/hal-01120823

Submitted on 26 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of virtual bridging on virtual machine placement
in data center networking

Dallal Belabed, Stefano Secci, Guy Pujolle, Deep Medhi

To cite this version:
Dallal Belabed, Stefano Secci, Guy Pujolle, Deep Medhi. Impact of virtual bridging on virtual machine
placement in data center networking. 26th International Teletraffic Congress (ITC 2014), Sep 2014,
Karlskrona, Sweden. pp.1-9, �10.1109/ITC.2014.6932945�. �hal-01120823�

https://hal.science/hal-01120823
https://hal.archives-ouvertes.fr

Impact of Virtual Bridging on Virtual Machine
Placement in Data Center Networking

Dallal Belabed, Stefano Secci, Guy Pujolle, Deep Medhi∗
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France. Email: firstname.lastname@upmc.fr

∗ U. Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110-2499 USA. Email: dmedhi@umkc.edu

Abstract—The increasing adoption of virtualization techniques
has recently favored the emergence of useful switching functions
at the hypervisor level, commonly referred to as virtual bridging.
In the context of data center network (DCN) consolidations, for
VMs colocated in the same virtualization server, virtual bridging
becomes very useful to offload inter-VM traffic from access and
aggregation switches, at the expense of an additional computing
load. DCN consolidations typically chase traffic engineering (TE)
and energy efficiency (EE) objectives, and both should be affected
by virtual bridging, but it is not intuitive to assert whether
virtual bridging acts positively or negatively with respect to
TE and EE that should also depend on the DCN topology
and forwarding techniques. In this paper, we bring additional
understanding about the impact of virtual bridging on DCN
consolidations. First, we present a repeated matching heuristic
for the generic multi-objective DCN optimization problem, with
possible multipath and virtual bridging capabilities, accounting
for both TE and EE objectives. Second, we assess the impact of
virtual bridging on TE and EE in DCN consolidations. Extensive
simulations show us that enabling virtual bridging has a negative
impact when EE is the goal and multipath forwarding is adopted,
while it leads to important gains, halving the maximum link
utilization, when TE is the DCN consolidation goal.

I. INTRODUCTION

The recent achievement of x86 virtualization by advanced
software techniques allows attaining virtualization of server
and network functions at competitive performance-cost trade-
offs with respect to legacy solutions. The increasing adoption
of virtualization techniques has recently favored the emergence
of useful switching functions at the hypervisor level, com-
monly referred to as virtual bridging. In the context of data
center network (DCN) consolidations, for VMs colocated in
the same virtualization server, virtual bridging becomes very
useful to offload inter-VM traffic from access and aggregation
switches, at the expense of an additional computing load on
the physical server. DCN consolidations typically chase traffic
engineering (TE) and energy efficiency (EE) objectives, and
both should be affected by virtual bridging, but it is not
intuitive to assert whether virtual bridging acts positively or
negatively with respect to TE and EE that should also depend
on the DCN topology and forwarding techniques. In this paper,
we bring additional understanding about the impact of virtual
bridging on DCN consolidations.

The literature on DCN consolidation problems is extensive.
Often referred to as DCN optimization, VM placement or
virtual network embedding, the various propositions at the
state of the art often have a narrow scope, with a set of
constraints so that it is not possible to jointly adopt EE

and TE objectives and model advanced multipath forwarding
protocols [1] [2] [3], network link states optimization [4]
and edge virtual bridging [5]. In particular, virtual bridging
functionalities are rarely modeled, probably because they are
marginally understood.

The impact of multipath forwarding protocols on DCN
performance strictly depends on the DCN topology. While
the most common legacy topology is the 3-tier [6] architec-
ture, it is losing interest because with network virtualization
inter-rack traffic in support of consolidation procedures is
overcoming the amount of external traffic. Therefore, flats
topologies become more interesting. Topologies such as fat-
tree [7], DCell [8] and BCube [9] are gaining momentum.
The flat nature of these topologies can also give virtual
bridging a higher importance in the DCN interconnect. Our
previous study investigated the impact of multipath forwarding
on different topologies [10]; results showed that multipath
forwarding is indeed effective with flattened topology, and that
it can be counterproductive when the EE is the primary goal
of DCN consolidations (without virtual bridging capabilities).

Furthmore, link states can be monitored when planning
Virtual Machines (VMs) migrations. For instance, migrating
a VM catalyst of significant traffic at a server (“VM con-
tainer”) whose access link is close to saturation is not a wise
decision. VM containers that are topologically attractive could
therefore be favored when deciding where to host and migrate
VMs. Commercial DCN consolidation tools, (e.g., VMware
Capacity Planner [11], IBM CloudBurst [12]), typically are
aware of CPU, memory, storage, and energy constraints of
VM containers are not, however, aware of link states since
the legacy hypothesis is to consider unlimited link capacity.
With the emergence of network virtualization, related stor-
age synchronization tools and pervasive virtual bridging, the
hypothesis that DCN links have infinite capacity is today
becoming inappropriate, especially for DCs facing capital
expenditure limitations. Performing VM consolidation that is
aware of both container and link states is, however, known to
be NP-hard [4]. The complexity does naturally increase when
considering multipath and virtual bridging capabilities.

In this context, the recent introduction and large deployment
of virtual bridging in most hypervisor solutions, (e.g., XeN,
KVM, VM Ware NSX), is introducing novel constraints as it
becomes interesting to assign to a same container or nearby
containers, VMs exchanging large traffic amounts. The impact
of virtual bridging on DCN consolidations can be sensible,

depending on topology and forwarding situations as well as
on DCN objectives. The contribution of this paper is twofold:
• We describe a virtual machine placement optimization

problem in DCN, with multipath forwarding and virtual
bridging capabilities meeting TE and EE objectives, in
a novel, compact and versatile formulation. We design
a repeated matching heuristic scaling with large DCN
sizes. To the best of our knowledge, this is the first
comprehensive formulation in this sense, i.e., the first
allowing for the consideration of virtual bridging and
multipath capabilities and of TE and EE objectives.

• We run our heuristic on realistic DCN consolidation in-
stances, showing that enabling virtual bridging improves
TE performance on one hand by roughly two times, and
on the other hand it can be counterproductive when EE
is the primary goal. With respect to the coexistence of
virtual bridging and multipath forwarding, we determine
under which circumstances the gain brought by both
innovations can be positive.

In the following, Section II presents the background of
our work. The DCN optimization model is formulated in
Section III, our heuristic is in Section IV, and our simulation
results are in Section V. Section VI concludes the paper.

II. BACKGROUND

We briefly discuss state of the art work on Ethernet routing,
DCN traffic, and consolidation models.

A. Data Center topologies

The 3-tier architecture [6] is the common legacy of DC
topology. It has three layers: access, aggregation and core
layers. At the access layer, servers or server units, (e.g.,
blades), are attached to the network, via access switches;
at the aggregation layer, access switches connect to aggre-
gation switches; at the core layer, each aggregation switch
is connected to multiple core switches. Such an architecture
typically relies on legacy VLAN and STP switching [13],
which, while simple and fast, is known to underutilize the
network resources. Even if TE mechanisms such as Multiple
STP, root bridge priority and port cost optimization methods
exist, and major problems still persist, namely in terms of
convergence time upon failures, routing, and physical topology
changes.

Alternative topologies have been proposed in recent years,
as briefly mentioned in the introduction. Originally, the au-
thors in [7] proposed a special instance of a Clos topology
called “fat-tree” to interconnect commodity Ethernet switches
as k−ary fat-tree. As depicted in Fig. 1a, all switches are
identical and are organized on two layers: the core layer and
the pod layer. Generally, at the pod layer there are k pods,
each one containing two layers of k

2 switches: edge switches
and aggregation switches. Each k-port switch in the lower
layer (edge layer) is directly connected to k

2 hosts. Each of
the remaining k

2 ports is connected to k
2 of the k ports in

the aggregation layer. Concerning the core layer, there are
(k
2)2 k-port core switches. Each core switch has one port

connected to each of the k pods. The ith port of any core
switch is connected to the ith pod so that consecutive ports
in the aggregation layer of each pod switch are connected
to the core switches on (k

2) strides. Fig. 1a shows a fat-
tree example for k = 4. Another topology is BCube [9],
a recursive architecture designed for shipping and container-
based, modular data center. As depicted in Fig. 1b, the BCube
solution has server devices with multiple ports (typically no
more than four). Multiple layers of cheap commodity off-
the-shelf mini-switches are used to connect those servers. A
BCube0 is composed of n servers connected to an n-port
switch. A BCube1 is constructed from n BCube0s and n n-port
switches. More generally, a BCubek (k ≥ 1) is constructed
from n BCubek−1s and nk n-port switches. For example, in
a BCubek with n n-port switch, there are k + 1 levels of
switches. Each server has k+ 1 ports, numbered from level-0
to level-k. Hence, BCubek has N = nk+1 servers. Each level
having nk n-port switches. The construction of a BCubek is
as follows. One numbers the n BCubek−1s from 0 to n − 1
and the servers in each BCubek−1 from 0 to nk−1. Then one
connects the level-k port of the ith server (i ∈ [0, nk−1]) in the
jth BCubek−1 (j ∈ [0, n− 1]) to the jth port of the ith level-
k switch. The BCube construction guarantees that switches
only connect to servers and never connect directly to other
switches, thus multipathing between switches is impossible. It
is worth noting that this kind of architecture requires virtual
bridging in containers to operate. Fig. 1b shows an example
of a BCube1, with n = 4.

Similarly to BCube, DCell [8] uses servers equipped with
multiple network ports and mini-switches to construct its
recursive architecture. In DCell, a server is connected to
several other servers and a mini-switch. Generally, a high-level
DCell is constructed from low-level DCells. The connection
between different DCell networks is typically done by using
virtual bridging in containers. A DCellk (k ≥ 0) is used
to denote a level-k DCell. DCell0 is the building block to
construct larger DCells. It has n servers and a mini-switch
(n = 4 for DCell0 in Fig. 1c). All servers in DCell0 are
connected to the mini-switch.

In DCell1, each DCell0 is connected to all the other DCell0s
with one link; the Fig. 1c shows a DCell1 example. DCell1
has n + 1 = 5 DCell0s. DCell connects the 5 DCell0s as
follows. It assigns each server a 2-tuple [a1, a0], where a1
and a0 are the level-1 and level-0 IDs, respectively. Thus a1
and a0 take values from [0, 5) and [0, 4), respectively. Then
two servers with 2-tuples [i, j − 1] and [j, i] are connected
with a link for every i and every j > i.Each server has two
links in DCell1. One connects to its mini-switch, and hence
to other nodes within its own DCell0. The other connects to a
server in another DCell0. In DCell1, each DCell0, if treated as
a virtual node, is fully connected with every other virtual node
to form a complete graph. Moreover, since each DCell0 has
n inter-DCell0 links, a DCell1 can only have n + 1 DCell0s,
as illustrated in Fig. 1c. A DCellk, is constructed in the same
way to the above DCell1 construction. The recursive DCell
construction procedure [8] is more complex than the BCube

(a) Fat-tree topology with 4 pods

(b) BCube1and BCube*1 (without virtual bridging capabilities) with n=4

(c) DCell1 and DCell*1 (without virtual bridging
capabilities) with n=4

Fig. 1. Recently proposed DCN topologies

procedure.

B. Ethernet fabric evolution

In the last decade, several evolutions to the legacy Ethernet
switching architecture in terms of TE features have occurred.
Under the perspective of incremental upgrade of the Ether-
net switching architecture to meet TE requirements, we can
consider that the Multiple Spanning Tree Protocol [14] has
been the first attempt to actively perform TE in a legacy
Ethernet switched network running STP and hence suffering
from unused links in normal situations. The multiplexing of
multiple clients or VLANs into one among several spanning
trees can also be optimized as presented in [14]. Then, other
protocols trying to solve bottleneck issues along the spanning
tree(s) have been standardized, as notably the Link Aggrega-
tion Group or the multi-chassis EtherChannel protocols [15],
allowing a switch to use multiple links as a single one with
respect to the STP control-plane. Eventually, the real bottle-

neck in performing TE efficiently in an Ethernet switching
context being the spanning tree bridging of Ethernet traffic,
the STP control-plane has been removed from more recent
carrier Ethernet solutions implementable in DCNs, namely: the
Provider Backbone Bridges with Traffic Engineering (PBB-
TE) [16], where centralized control servers push MAC tables
to backbone switches (in a similar philosophy OpenFlow [3]
does too); the L2LSP [17] effort suggesting to use the VLAN
fields as MPLS label fields; the already mentioned SPB [2]
and TRILL [1] protocols where the control-plane is distributed
adapting a layer-3 link state routing protocol (ISIS) to work
with the Ethernet data-plane. Nodes in this context are no
longer simple bridges since they perform a routing function.
Hence, in TRILL, as well as in the following, we refer to them
as router-bridges (referred to as RBridges, or RBs).

While differing in terms of scalability and deployability, the
latter three solutions have proven to be viable ones and have
been adopted by many vendors. Notably, these protocols en-
abled multipath routing of Ethernet frames, and hence opened
the way to active load-balancing over multiple paths across
virtual and physical switches. In this paper, we assume DCN
multipath capabilities are enabled by one of these protocols.

C. DCN traffic models

At present, little is known about DCN traffic characteristics.
This is likely because of the important heterogeneity context
and because of non-disclosure confidentiality reasons. There
are, however, a few studies worth being mentioned.

Supposing a legacy 3-tier architecture, the authors in [18],
[19] collected information from edge, aggregation, and core
devices, finding that the traffic originating from a rack showing
an ON/OFF behavior following heavy-tailed distributions. It is
also important to mention that, as presented in [19], most of
the DC server-originated traffic, 80%, stayed within the rack,
while for the university and private enterprise DCs, between
40% and 90% left the rack.

In terms of transferred volume, the authors in [20] showed
that more than 90% of transfers had a volume from to 100
MB to 1 GB. They also showed that 50% of the time, a VM
had approximately 10 concurrent flows, and that at least 5%
of the time, a machine had more than 80 concurrent flows.

In [21], the authors studed the incoming and outgoing traffic
rates for seventeen thousand VMs. Their results showed that
80% of the VMs had an average rate less than 800 KBytes/min.
However, 4% of them had a rate ten times higher. Moreover,
the traffic rate’s standard deviation of 82% of the VMs was
lower than or equal to two times of the mean.

D. Virtual Machine Placement in Data Center Networks

We review thereafter relevant works that take network
constraints in the VM placement problem into consideration
modeled as an optimization problem.

In [21], the authors proposed a VM placement solution con-
sidering network resource consumption. They assumed that a
VM container could be divided into CPU-memory slots, where
each slot could be allocated to any VM. They considered the

number of VMs equal to the number of slots; if the number of
slots was higher than the number of VMs, they added dummy
VMs (with no traffic), and did not affect the algorithm. Due
to a communication cost between slots, defined as the number
of forwarded frames among them, the objective was set as
the minimization of the average forwarding latency. They also
assumed static single-path routing and focused on two traffic
models. A dense one where each VM sent traffic to every VMs
at an equal and constant rate, and a sparse Infrastructure as
a Service (IaaS)-like one with isolated clusters so that only
VMs in the same IaaS could communicate.

In [22], the authors consolidated VM placement considering
a non-deterministic estimation of bandwidth demands. The
bandwidth demand of VMs was set to follow normal dis-
tributions. They formulated the consolidation in a Stochastic
Bin Packing problem and introduced a new heuristic approach
to resolve it. In [23], the authors considered network con-
straints in addition to CPU and memory constraints in the
VM placement problem. They defined a network-aware VM
placement optimization approach to allocate VM placement
while satisfying predicted traffic patterns and reducing the
worst case cut load ratio in order to support time-varying
traffic. Interested by network cuts, they partitioned the set of
hosts into non-empty connected subsets, which are bottlenecks
for the traffic demand between VMs placed in different sides
of the cut.

In [24], the authors revisit the virtual embedding problem by
distinguishing between server and bridge nodes with respect
to the common formulation. They proposed an iterative 3-step
heuristic: during the first step an arbitrary VM mapping was
done; the second step mapped virtual bridges to bridges nodes,
and the third one mapped virtual links accordingly. If one
of these steps failed, the heuristic would come back to the
previous one until a solution was found. The quality of the
solution seemed dependent on the first step, the other steps
just minimized the impact of the previous step. Further, there
may have been a scaling problem due to the uncontrollable
backtracking. More generally, virtual embedding approaches
in the literature often discarded specificities of the network
control-plane such as the routing protocol and TE capabilities.

In [25], the authors optimized jobs placement where
each job required a number of VMs; the objective function
minimized the network and the node costs. The authors did
not handle the link capacity constraints, and did not consider
multipath forwarding capabilities instead multipath routing
with one single egress path. In [26], the authors minimize
the power energy consumption of activated servers, bridges
and links, to maximize the global energy saving. The authors
converted the VM placement problems into a routing problem,
and so they addressed the network and server optimization
problem as a single one. So, there was no trade-off between
the network-side and server-side optimization objective.

Some of these studies ignored link capacity constraints,
others excluded dynamic routing as in [21], or just considered
the traffic volume to reduce the number of containers as
in [22], or just the network resources as in [21] and [23],

TABLE I
MATHEMATICAL NOTATIONS

N set of VM containers and RBridges (RB); n ∈ N .
C container set; C ⊂ N .
V VM set; V ⊂ N .
R RB set; R ⊂ N . Ra ⊂ R is the access RB set.
TV set of VM pairs; TV ⊂ V × V .
TC set of container pairs; TC ⊂ C × C.
TR set of RB pairs; TR ⊂ R×R.
Variables
ev,c 1 when v is at c; 0 otherwise, v ∈ V, c ∈ C.
bc 1 if c is enabled; 0 otherwise, c ∈ C.
ac,r 1 when c traffic transits by r if unipath;

∈ [0, 1] if multipath, c ∈ C, r ∈ R.
qks,d 1 if traffic from rs to rd transits by the kth path if unipath.

∈ [0, 1] if multipath, (rs, rd) ∈ TR.
tci,cj traffic from ci to cj , (ci, cj) ∈ TC .
tri,rj traffic from ri to rj ; (ri, rj) ∈ TR.
tc,r traffic from c ∈ C to r ∈ R.
U maximum network link utilization.
Parameters
KP
c power capacity of container c ∈ C.

KM
c memory capacity of container c ∈ C.

dPv computing power demand of VM v ∈ V .
dMv memory demand of VM v ∈ V .
tvi,vj traffic from vi to vj , (vi, vj) ∈ TV ; tvi,vi = 0.
Ki,j (i, j) link capacity, null if no link; (i, j) ∈ N ×N .
pk,s,di,j 1 when kth path from rs to rd uses link (ri, rj).
α trade-off coefficient between TE and EE objective, α ∈ [0, 1].

only [26] considered multipath forwarding capabilities. Com-
monly, because of the relatively recent employment of virtual
bridging for transiting traffic at the server level, virtual bridg-
ing capabilities for external traffic forwarding were ignored. To
the best of our knowledge, our study is the first one to analyze
virtual bridging impact on VM placement optimization and TE
objective considering multipath forwarding.

III. OPTIMIZATION PROBLEM

In the following, we present the mathematical notations
of our reference optimization problem first, then we describe
constraints in the case where multipath and virtual bridging are
not enabled, we then show how they can be easily extended
to enable multipath and virtual bridging. The notations are
provided in Table I. First, we present integrity constraints, then
capacity constraints and the objective function, and finally, we
position the formulation with respect to the state of the art.

The objective of our problem is to balance between max-
imum link utilization and the number of containers to be
activated.

minimize α U + (1− α)
∑
c∈C

bc (1)

Subject to the following constraints. A VM can be assigned
to only one container:∑

c∈C
ev,c = 1; ∀v ∈ V (2)

A container is enabled only if it hosts at least one VM:

bc ≤
∑
v∈V

ev,c; bc ≥ ev,c; ∀c ∈ C, ∀v ∈ V (3)

Each container is assigned to one RB:∑
r∈R

ac,r = 1; ∀ c ∈ C (4)

Traffic between two access RBs is sent over a single path:∑
k

qkrs,rd = 1 ∀(rs, rd) ∈ Ra ×Ra (5)

A VM is assigned to a container only if there are available
residual computing resources:∑

v∈V
dPv ev,c ≤ KP

c ;
∑
v∈V

dMv ev,c ≤ KM
c ; ∀c ∈ C (6)

Container-RB traffic is less than the access link capacity:

tc,r ≤ Kc,r; ∀ c ∈ C ∀r ∈ R (7)

Inter-RB traffic is less than the aggregation-core link capacity:

∑
rs,rd

∑
k

trs,rdq
k
rs,rd

p
k,rs,rd
ri,rj < U Kri,rj ∀(ri, rj) ∈ T

R (8)

Where:
tc,r =

∑
(vi,vj)∈TV

(tvi,vj + tvj ,vi) evi,c ac,r; ∀r ∈ R, ∀c ∈ C

trs,rd =
i 6=j∑

(ci,cj)∈TC

tci,cj aci,rs acj ,rd ; ∀(rs, rd) ∈ TR

tci,cj =
∑

(vx,vy)∈TV

(tvx,vy + tvy,vx) evx,ci evy,cj ; ∀ ci, cj ∈ C

We have a bi-criteria objective function that consists of the
minimization of U , the maximum link utilization (TE goal),
and the number of enabled containers (EE goal), weighted by
the α factor to assess the trade-off between the two goals and
its impact on VM placement and DCN performance.

1) Enabling multipath capabilities: Multipath forwarding
between containers and RBs (in the place of LAG, link
bonding, or similar approaches) can simply be enabled by
declaring ac,r as a non-negative real variable instead of a
binary variable. Hence, (4) becomes an integrity constraint on
the sum of traffic ratios for each active container to its RBs.
Similarly, a multipath between RBs can simply be enabled
by declaring qks,d as a non-negative real variable instead of a
binary variable. Hence, (5) becomes an integrity constraint on
the sum of traffic ratios for each pair of RBs to its used paths.

2) Enabling virtual bridging: Enabling virtual bridging
means that the container absorbs the function of a bridge
(typically at the hypervisor level). This feature can be easily
included by transforming the variable ac,r in a parameter and
extending the RB set including the container nodes. Given
that virtual bridging consumes additional power and memory,
(6) should be slightly changed so that such an additional
component, as a function of the traffic load, is included.

The provided optimization model is an extension of the
baseline multi-commodity flow (MCF) problem for network
routing with link capacity constraints [27], taking into account:
peculiar data center networking constraints due to VM mobil-
ity, VM container switching on and off, virtual bridging, and
multipath forwarding. In order to control the MCF complexity
when handling TE and multipath parameters and variables, we
adopted above the link-path formulation [27].

Given the elasticity related to VM migrations and multi-
pathing, requiring double mapping between VMs and VM
containers, and between VM containers and usable paths, our
optimization problem defined by (2)-(1) even if comprehensive
and versatile (considering both unipath and multipath modes,
with and without virtual bridging, and VM attachment con-
straints) is a non-linear problem and cannot be linearized.
Single mapping could be linearized but not double mapping.

IV. HEURISTIC APPROACH

Classically, mapping problems can be revisited as facility
location problems, and when capacity constraints need to
be verified as a function of the type of mapping, there are
similarities with the capacitated facility location problem [28]
and, in particular, with the single source facility location
problem (SSFLP) [29], [30]. It is easy to derive that our
DCN optimization problem can be reduced to the SSFLP
and hence is NP-hard. Recently, modeling an optical network
dimensioning problem as a facility location problem, the au-
thors in [31] extended a primitive repeated matching heuristic
described in [29], [30] to solve the SSFLP and proved it can
reach optimality gaps below 5% also for many instances of the
problem. A similar approach was later adopted for an optical
network dimensioning approach, also providing outstanding
performance for very large instances as described in [31].

Motivated by those results, we redesigned the repeated
matching heuristic to our DCN optimization problem. Nev-
ertheless, the double mapping we have handle in our problem
and the multiple capacity constraints to care about (at both link
and server sides) made this problem is much more difficult
to solve and comparison to the optimum is not possible
differently than in previous applications [29], [30], [31].

A. Reformulation of the optimization problem

Recall that DCN communications are between VMs that can
be hosted behind the same VM container or behind distant
containers interconnected by a DCN path. Certainly, external
communications can be modeled introducing fictitious VMs
and VM containers acting as egress point, from a functional
standpoint. When multipath is enabled, multiple paths can be
used, and when virtual bridging is enabled, a VM container
can transit external traffic if the topology supports it. When
communicating VMs are not colocated, inter-VM communi-
cation should involve a pair of containers and at least a DCN
path between them.

Let a virtual node be designated by v, v ∈ V , and a VM
container node pair be designated by cp, cp ∈ TC , so that cp =
(ci, cj), i.e., a container pair is composed of two containers
ci and cj). When ci = cj the container pair cp is said to be
recursive. A subset of container node pairs is designated by
DC so, DC ⊆ TC . Let the kth path from RB r1 to RB r2 be
designated by rp = (r1, r2, k). A set of RB paths is designated
by DR so that DR ⊂ TR.

Definition IV.1. Kit φ

Fig. 2. Representation of heuristic sets: L1, L2, L3, and L4

A Kit φ is composed of a subset of VMs DV , a VM
container pair cp ∈ TC and a subset of RB paths DR. In a
Kit φ, each VM v ∈ DV is assigned to one of the containers
in a pair cp (c1, c2). A container pair cp (c1, c2) is connected
by each RB path rp (r1, r2, k) ∈ DR, so that c1 and c2 are
respectively mapped to r1 and r2. The Kit is recursive when
its cp is recursive, and in such a case, DR must be empty.
When the multipath is not enabled, |DR| = 1. The Kit is
denoted by φ(cp,DV , DR).

Definition IV.2. Feasible Kit

A Kit φ(cp,DV , DR) is said to be feasible if:
• DV is not empty, i.e., DV 6= �.
• Memory and power demands of each VM are satisfied,

i.e., (6) restricted to DV and cp.
• In case of non-recursive Kit, the link capacity constraints

between VM containers are satisfied, i.e., (7) restricted
to DV , DR and cp.

Definition IV.3. L1,L2,L3,and L4

L1 is the set of VMs not matched with a container pair. L2

is the set of VM container pairs not matched with an RB path.
L3 is the set of RB paths not matched with a container pair.
L4 is the set of Kits.

Definition IV.4. Packing Π

A Packing is a union of Kits in L4. A Packing is said to
be feasible if its Kits are feasible and L1 is empty.

B. Matching Problem

Given the DCN optimization problem’s elements using the
above described sets, it can be reformulated as a matching
problem between them. The classical matching problem can
be described as follows. Let A be a set of q elements
h1, h2, . . . , hq . A matching over A is such that each hi ∈ A
can be matched with only one hj ∈ A. An element can be
matched with itself, which means that it remains unmatched.
Let si,j be the cost of matching hi with hj . We have
si,j = sj,i. We introduce the binary variable zi,j that is
equal to 1 if hi is matched with hj and zero otherwise. The
matching problem consists in finding the matching over A that
minimizes the total cost of the matched pairs.

min

q∑
i=1

q∑
j=1

si,j zi,j (9)

s.t.

q∑
j=1

zi,j = 1, i = 1, . . . , q (10)

q∑
i=1

zi,j = 1, j = 1, . . . , q (11)

zi,j = zj,i, i, j = 1, . . . , q (12)
zi,j ∈ {0, 1}, i, j = 1, . . . , q (13)

(10) and (11) ensure that each element is exactly matched
with another one. (12) ensures that if hi is matched with hj ,
then hj is matched with hi. (13) sets zi,j as binary.

In our heuristic, one matching problem is solved at each
iteration between the elements of L1, L2, L3, and L4. At
each iteration, the number of matchable elements is n1 +n2 +
n3 +n4 where n1, n2, n3, and n4 are the current cardinalities
of the four sets, respectively. For each matching iteration, the
costs si,j have to be evaluated. The cost si,j is the cost of
the resulting element after having matched element hi of L1,
L2, L3, or L4 with element hj . The costs zi,j are stored in a
matrix Z. The dimension of the cost matrix Z is (n1 + n2 +
n3 + n4) × (n1 + n2 + n3 + n4) Note that this dimension
changes at each iteration. Z is a symmetric matrix. Given the
symmetry, only ten blocks have to be considered. The notation
[Li − Lj] is used hereafter to indicate the matching between
the elements of Li and the elements of Lj as:

Z =

[L1 − L1] [−] [−] [−]
[L2 − L1] [L2 − L2] [−] [−]
[L3 − L1] [L3 − L2] [L3 − L3] [−]
[L4 − L1] [L4 − L2] [L4 − L3] [L4 − L4]



Selecting the least cost matching vector enables solution
improvements via set transformations in next iterations. Ob-
viously, L1 − L1, L2 − L2 and L3 − L3 matchings are
ineffective. To avoid a matching, e.g., because infeasible, its
cost is set to infinity (a large number in practice). Matching
corresponding to other blocks without L4 lead to the formation
of Kits. Other matchings involving elements of L4 shall lead
to the improvement of the current Kits, also generating local
improvements due to the selection of better VM containers
or RB routes; note that for these block local exchange linear
optimization problems are to be solved for determining an
exchange of VMs, VM containers and Kits between the
heuristic sets while satisfying computing capacity constraints.

The Kit cost computation has to maintain the same ratio-
nale as in the reference optimization problem when setting
individual matching costs. The cost needs to be computed to
de-motivate under-loading VM containers in terms of CPU
and RAM utilization, while avoiding over-loading RB paths
in terms of link utilization and respecting computing capacity
constraints. The Kit cost function has to appropriately model
two opposite forces due to the dual aspects stressing DCNs:
computing and network resources. On the one hand, the Kit

feasibility, in terms of link capacity constraints as described
above does not need to be enforced during the repeated
matching iterations, but to be motivated via the classical
TE costs inducing the minimization of the maximum link
utilization, and hence maximizing the minimum residual link
capacity. On the other hand, residual computing capacities at
the VM container level should be considered as costs; it is
not suitable to have idle memory and CPU capacities when
reducing the VM container’s fixed energy consumptions is one
of the goals of the DC provider. The overall Kit cost is not
meant to represent a direct monetary cost, but it is such that the
repeated matching promotes less expensive and more efficient
Kits. Therefore, to align with the objective function (1), and
remembering that the cost of a Packing corresponds to the cost
of its Kits, we set the cost of a Kit φ(cp,DV , DR) as:

µ(φ) = (1− α)µE(φ) + αµTE(φ) (14)

Where α is the trade-off scaling factor between the EE and
the TE components, that are, respectively:

µE(φ) =
∑
ci∈cp

 KP
ci∑

v∈DV
i

dPv
+

KM
ci∑

v∈DV
i

dMv
+ ΓTv

 (15)

µTE(φ) = max
(ni,nj)∈rp,rp∈φ

Uni,nj (Π) (16)

Where Tv represents the global traffic v sends and re-
ceives, i.e., Tv =

∑v 6=v′

v′∈V tv,v′ ; Γ is the additional power
and memory, to take into account the impact of traffic to
VM container’s CPU and memory consumption when virtual
bridging is enabled (zero otherwise). Note that the computing
capacity constraints are indirectly enforced within the L4L4

matching cost computation. Uni,nj
(Π) is the link utilization

of each link used by the current Packing Π solution, so that
the maximum link utilization experienced by the Kit’s RB
paths can be minimized. In our heuristic, in order to linearly
compute the RB paths’ link utilization, the aggregation and
core links of RB paths are considered as congestion free,
while access container-RB links are considered as prone to
congestion, Then generally adheres to the reality of most
DCNs today as access links are typically 1 G Ethernet links
while aggregation/core links reach the 10 Gbps and 40 Gbps
rates. This is a realistic approximation a acceptable in a
heuristic approach, especially because it allows a significant
decrease in the heuristic’s time complexity.

C. Steps of the repeated matching heuristic

Due to the advantage of repeated matching between the
different sets as described above, we can get rid of the
non-linearities of the reference optimization problem with a
heuristic approach that, based on the state of the art, is geared
to achieve low optimality gaps. Its steps are as follows.
• Step 0: The algorithm starts with a degenerate Packing

with no Kits and all other sets full.
• Step 1: A series of Packings is formed.
• Step 1.1: The cost matrix Z is calculated for every block.

• Step 1.2: The least cost matching vector is selected.
• Step 1.3: Go back to 1.1 for a new iteration unless the

Packing cost has not changed in the last three iterations.
• Step 2: The heuristic stops, and in the case L1 is not

empty a local incremental solution is created assigning
VMs in L1 to enabled and available VM containers or,
if none, to new containers.

The least cost matching computation (Step 1.2) can be hard
to solve optimally because of the symmetry constraint (12).
In our heuristic, we decided to solve it in a suboptimal way
to lower the time complexity. We have implemented the algo-
rithm in [32], based on the method of Engquist [33]. Its starting
point is the solution vector of the matching problem without
the symmetry constraint (12) obtained with the algorithm
described in [34] that was chosen for its speed performance;
its output is a symmetric solution matching vector.

Designing the matching costs in an efficient and rational
way, the Packing cost across iterations should be decreasing,
monotonically starting by the moment when L1 gets empty;
moreover, Step 2 should be reached and the heuristic con-
verges, and L1 at the last step should be empty.

V. SIMULATION RESULTS

We implemented our heuristic using Matlab, we used
CPLEX for the computation of matching costs of some blocks.
The adopted VM containers correspond to an Intel Xeon 5100
server with 2 cores of 2.33GHz and 20GB RAM, able to host
16 VMs. We study the virtual bridging impact on our virtual
machine placement model under two scenarios: when TE is
the primary goal and when EE is the primary goal. We also
analyze what happens when multipath forwarding is enabled
at bridge level.

We executed our heuristic with the following DCN topolo-
gies: 3-tier, fat-tree, BCube and DCell. We note that only
BCube, and DCell had a server centric architecture so that
their servers had to employ virtual bridging. However, for
the sake of comparison with 3-tier and fat-tree topologies, we
included also variations of the conventional BCube and DCell
topologies in the analysis, while maintaining their flat nature.
Instead of connecting BCube0 or DCell0 containers with the
higher level bridges, we connected BCube0 or DCell0 bridge,
so they could work without virtual bridging; these variations
were marked as BCube* (Fig. 1b) and DCell* (Fig. 1c)).

In the simulations, all DCNs are loaded at 85% in terms of
computing and network capacity. Note that with all topologies,
we allowed for a certain level of overbooking in the resource
allocation for the sake of algorithm fluidity especially at
starting and intermediate iterations. The capacity of the access
link was set to 1Gbps. As not all VMs communicate to each
other in todays DCNs adopting network virtualization, but
instead traffic is segmented by IaaS management, we built
an IaaS-like traffic matrix as in [21], with clusters of up to 30
VMs communicating with each-other and not communicating
with other IaaS’s VMs. Within each IaaS, the traffic matrix
was built accordingly to the traffic distribution of [20]. We ran
30 different instances with different traffic matrices for each

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier

4

6

8

10

12

14

16

18

20

22
E

n
a
b

le
d

 V
M

 c
o

n
ta

in
e
rs

(a) Unipath

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier

4

6

8

10

12

14

16

18

20

22

E
n

a
b

le
d

 V
M

 c
o

n
ta

in
e
rs

(b) Multipath

Fig. 3. Number of enabled VM containers (VB=Virtual Bridging)

case, and the results reported in the following were shown with
a confidence interval of 95%. Our heuristic was fast (reached
convergence roughly within a dozen of minutes per execution)
and successfully reached a steady state, (i.e., three iterations
let to the same solution, characterized by a feasible Packing
as previously described).

A. Virtual bridging impact under EE-oriented consolidations

Fig. 3 illustrates the results in terms of enabled VM con-
tainers for different topologies when EE was the goal, (i.e.,
α = 0 in the problem formulations). We report results for
both the cases when multipath forwarding was not enabled,
(i.e., |DR| = 1 for all Kits) and the case where it is enabled.
Observing the results we can assess the following:
• the impact of virtual bridging in DCN consolidations

when the EE was the goal leads to negligible differences
in EE performance;

• with multipath forwarding, the use of virtual bridging was
counterproductive;

• the DCell topology showed better EE performance than
the BCube, especially when multipath forwarding was en-
abled. This can be explained by the higher path diversity
at the DCell container;

• hierarchical topologies, fat-tree, and 3-layer, did show the
overall worst EE performance for single-path forwarding
and better EE performance for multipath forwarding, with
negligible difference to each other.

All in all, the main outcome of this analysis is that enabling
virtual bridging does not bring any useful EE gain, and can
even worsen the EE performance, when the consolidation EE
objective is minimizing the number of enabled VM containers.

B. Virtual bridging impact under TE-oriented consolidations

As already mentioned, EE goals can be considered the
opposite of TE goals. Chasing EE tends to minimize the
number of enabled VM containers, yet no care is given
to network link utilization. We rerun the experimentations
setting the traffic engineering goal as the DCN consolidation
objective, i.e., α = 1, considering singlepath and multipath
forwarding, for the different topologies. Results are reported
in Fig. 4. Observing the results we can assess that:

• virtual bridging always leads to sensible TE performance
gains;

• with singlepath forwarding, the DCell gets the largest TE
gain, from a median of roughly 65% of the maximum
link utilization to roughly 45%. This is due to the fact that
virtual bridging in the DCell allows indirectly minimizing
the number of links used to interconnect servers.

• with multipath forwarding, the BCube gets the largest TE
gain, with maximum link utilization being halved from
about 80% to 40%.

• BCube and DCell do have similar TE performances, with
slighter better performance with BCube probably because
the gain in path diversity brought by virtual bridging is
higher with BCube, (which keeps a core layer unlike the
DCell);

• the TE gain with respect to hierarchical topologies (Fat-
tree, 3-tier) is always positive and slightly higher with
enabled multipath forwarding.

These TE performance results are not intuitive and relevant.
It is definitely interesting to adopt virtual bridging when the
primary goal of DCN consolidations is traffic engineering. Flat
topologies show a sensible gain with respect to more hierar-
chical topologies, which once more motivate the migration to
such new topologies for IaaS-based DCNs.

VI. CONCLUSIONS

Data Center Networking is a challenging field of applica-
tions of old and new technologies and concepts. In this paper,
we investigate how traffic engineering and EE goals in virtual
machine consolidations can coexist with the emergence of
virtual bridging, i.e., the capability to switch Ethernet traffic
at the hypervisor level in virtualization servers. We also study
such an impact when multipath forwarding is enabled.

We provide a versatile formulation of the virtual machine
placement problem supporting virtual bridging capabilities
and multipath forwarding, and describe a repeated matching
heuristic.

Moreover, through extensive simulation of realistic in-
stances with legacy and novel flat DC topologies, we discov-
ered that when EE is the primary goal of DNC optimization,
virtual bridging can be counterproductive and should not

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

(a) Unipath

DCell (with VB) DCell* BCube (with VB) BCube* Fat−tree 3−tier
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
a
x
im

u
m

 l
in

k
 u

ti
li
z
a
ti

o
n

(b) Multipath

Fig. 4. Maximum link utilization (VB=Virtual Bridging)

be enabled. When TE is the primary goal instead, the TE
performance gain can be very important and improved up to
two times, with a maximum link utilization that can be halved
for the BCube DCN topology, while remaining important
also for the DCell topology. The gain with respect to more
hierarchical topology (Fat-tree, 3-tier) is also important.

ACKNOWLEDGMENT

This work was partially supported by the Systematic FUI
15 project RAVIR (http://www.ravir.io) and National Science
Foundation grant CNS-0916505.

REFERENCES

[1] J. Touch and R. Perlman, “Transparent interconnection of lots of links
(TRILL): Problem and applicability statement,” RFC 5556, 2009.

[2] M. Seaman, “IEEE 802.1aq shortest path bridging,” IEEE std, 2006.
[3] N. McKeown and et al., “Openflow: enabling innovation in campus

networks,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, 2010.

[5] “IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks - Amendment: Edge Virtual Bridging,”
in IEEE 802.1Qbg, 802.1Q-2012 Edition. IEEE, 2012.

[6] “Data center architecture overview,” in Cisco Data Center Infrastructure
2.5 Design Guide. Cisco, 2011, pp. 7–16.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[8] C. Guo and et al., “Dcell: a scalable and fault-tolerant network structure
for data centers,” in ACM SIGCOMM Computer Communication Review,
vol. 38, no. 4. ACM, 2008, pp. 75–86.

[9] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[10] D. Belabed, S. Secci, G. Pujolle, and D. Medhi, “Impact of ethernet
multipath routing on data center network consolidations,” Proc. of the
4th Int. Workshop on Data Center Performance (DCPerf 2014), ICDCS,
2014.

[11] “VMware Capacity Planner,” VMware. [Online]. Available: http:
//www.vmware.com/products/capacity-planner/overview.html

[12] “IBM Workload Deployer,” IBM. [Online]. Available: http://www-01.
ibm.com/software/webservers/workload-deployer/

[13] R. Perlman, “An algorithm for distributed computation of a spanningtree
in an extended lan,” in ACM SIGCOMM Computer Communication
Review, vol. 15, no. 4. ACM, 1985, pp. 44–53.

[14] D. Santos, A. de Sousa, F. Alvelos, M. Dzida, and M. Pióro, “Optimiza-
tion of link load balancing in multiple spanning tree routing networks,”
Telecommunication Systems, vol. 48, no. 1-2, pp. 109–124, 2011.

[15] “Multi-chassis etherchannel (mec),” in Cisco Data Center Infrastructure
2.5 Design Guide. Cisco, 2011, pp. 7–16.

[16] “Provider backbone bridges with traffic engineering,” IEEE Ratifies
Computer Society-Sponsored 802.1Qay, 2009.

[17] D. Papadimitriou, E. Dotaro, and M. Vigoureux, “Ethernet layer 2 label
switched paths,” in Next Generation Internet Networks, 2005. IEEE,
2005, pp. 188–194.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” ACM SIGCOMM Computer Comm.
Review, vol. 40, no. 1, pp. 92–99, 2010.

[19] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in Proceedings of the 10th annual conference
on Internet measurement. ACM, 2010, pp. 267–280.

[20] A. Greenberg and et al., “Vl2: a scalable and flexible data center
network,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 4, pp. 51–62, 2009.

[21] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in in
Proc. of IEEE INFOCOM 2010, 2010, pp. 1–9.

[22] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in in Proc. of IEEE
INFOCOM 2011, 2011, pp. 71–75.

[23] O. Biran and et al., “A Stable Network-Aware VM Placement for Cloud
Systems,” in in Proc. of IEEE/ACM CCGrid 2012, 2012, pp. 498–506.

[24] M. G. Rabbani and et al., “On tackling virtual data center embedding
problem.” in IM, F. D. Turck, Y. Diao, C. S. Hong, D. Medhi, and
R. Sadre, Eds. IEEE, pp. 177–184.

[25] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement
and routing for data center traffic engineering,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 2876–2880.

[26] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and
N. Pissinou, “Joint host-network optimization for energy-efficient data
center networking,” IEEE IPDPS, Boston, MA, 2013.

[27] M. Pióro and D. Medhi, Routing, flow, and capacity design in commu-
nication and computer networks. Elsevier/Morgan Kaufmann, 2004.

[28] M. Balinski, “On finding integer solutions to linear programs,” in
Mathematica, May 1964.

[29] M. Rönnqvist, S. Tragantalerngsak, and J. Holt, “A repeated matching
heuristic for the single-source capacitated facility location problem,”
European Journal of Operational Research, vol. 116, pp. 51–68, 1999.

[30] M. Rönnqvist, K. Holmberg, and D. Yuan, “An exact algorithm for the
capacitated facility location problems with single sourcing,” European
Journal of Operational Research, vol. 113, pp. 544–559, 1999.

[31] A. Reinert, B. Sansò, and S. Secci, “Design optimization of the petaweb
architecture,” IEEE/ACM Trans. on Netw., vol. 17, no. 1, pp. 332–345.

[32] M. Forbes, J. Holt, P. Kilby, and A. Watts, “A matching algorithm with
application to bus operations,” Australian Journal of Combinatorics,
vol. 4, pp. 71–85, 1991.

[33] M. Engquist, “A successive shortest path algorithm for the assignment
problem,” in INFOR, 1982, vol. 20, pp. 370–384.

[34] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, vol. 38, pp.
325–340, 1986.

