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Abstrakt. 2D-models of multilayered plates are usually derived by a discretization approach across the plate thickness. Every discretized element coincides with a homogeneous layer of the medium and basic unknowns are assumed to be temperature and/or displacement elds on the plate interfaces. If the number of homogeneous layers is large then the discretization approach leads to a large number of basic unknowns. In this contribution there is proposed a new approach to the 2D-modelling of heat conduction which results in 2D-model equations for only two basic unknowns, independently of the number of layers.

OBJECT OF ANALYSIS

The object of analysis is a plate which occupies region , Ω ≡ Π × Δ where is a regular region on Ox 1 x 2 plane, , 2 2

δ δ Δ ≡ -
, where is the plate thickness. It is assumed that the plate thickness is small where compared to a minimum characteristic length dimension of the plane region ; that is why the plate will be treated as a medium-thickness plate. Let interval be divided into N subintervals ( ) we obtain × I as a set of interfaces between homogeneous layers of the heat conductor. In the general case we shall assume that every pair of adjacent layers is made of different materials.

1
Functions ( ) ( )

, k c ⋅
⋅ , de ned on -I which attain constant values k n , c n , in every (z n-1 , z n ) are assumed to determine uniquely all thermal properties of the plate under consideration.

The heat conduction in the plate under consideration will be described within the framework of the well known Fourier heat conduction theory. To this end denote by

( ) ( ) [ ) 1 2 0 * , , , , , , , z t x x z t t t Θ ≡ ∈ Π ∈ Δ ∈ x x , a continuous temperature eld in [ ) , o t t * Π × Δ ×
, t is a time coordinate.

De ne: 

( ) ( ) ( ) [ ) 1 2 1 2 0 , 1,2; , ; , , , , , , x x z t t t z t x α α α ⋅ * ∂ ∂ ∂ ∂ ≡ = ∇ ≡ ∂ ∂ ∂ ≡ ≡ ≡ ∈Π ∈Δ ∈ ∂ ∂ ∂ x ( ) ( ) , f z f z - + ∂ ∂
( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , k z z t k z z t c z z t f t ∇ ⋅∇Θ + ∂ ∂Θ - Θ = x x x x ( ) ( ) [ ) 0 * , , , z t t t ∈ Π × Δ -Ι ∈ x
(1) and has to be satis ed together with the heat ux continuity conditions across interfaces:

( ) ( ) ( ) ( ) , , , , n n n n k z z t k z z t + + -- ∂ Θ = ∂ Θ x x (2) ( ) , n n n k z k z + ≡ ∈Π ∈Ι x ( ) [ ) 1 0 , n n k z k t t t - - * ≡ ∈
As well as the conditions on the upper and lower boundaries plate z = ± / 2. In every initial-boundary value problem equations ( 1), ( 2) have to be considered together with the appropriate boundary and initial conditions.

AIM OF CONTRIBUTION

The aim of contribution is to propose a certain new 2D-model of the heat conduction in the multilayered plate under consideration. To be more exact we represent the temperature eld ( ) ( )

[ )

1 2 0 * , , , , , , , 2 2 z t x x z t t t δ δ Θ = ∈ Π ∈ - ∈ x x
in the form:

( ) ( ) ( ) ( ) , , z t t z z t ϑ γ ψ Θ = + + x x , x , , where 
( ) ( ) , ϑ ψ ⋅ ⋅ are new unknowns and ( ) ( ) 0 C γ ⋅ ∈
Δ is postulated a priori function which will be speci ed bellow and is called the oscylating shape function.

At the same time we are to derive a system of partial differential equations with constant coef cients for aforementioned new unknowns under consideration. This system will be referred to as a 2D-model of the heat conduction in the plate under consideration. Obviously, a solution to a certain correctly stated initial-boundary value problem for The main dif culty of the above modelling procedure is that the functions ( ) ( ) , k c ⋅ ⋅ are discontinuous on interfaces. The problem of modelling of layered plates is not new. Among large number of references we shall mention here: [START_REF] Burmister | The general theory of stresses and displacements in layered systems[END_REF], [START_REF] Dong | On the theory of laminated an isotropic shells and plates[END_REF], Buf er [1971], [START_REF] Sun | Theory of laminated plates[END_REF], Wo niak Cz. [1978], [START_REF] Baczy | Modelowanie matematyczne elastodynamiki kompozytów warstwowych[END_REF], [START_REF] Baron | On modeling of medium thickness plates with an uniperiodic structure[END_REF], J drysiak et al. [2006], and many others.

In most approaches the number of new unknowns and hence the number of 2D-model equations depends on the number N of homogenous layers and is equal to N-1. This statement is usually related to the fact that the known 2D-models of multilayered plates are usually based on the discretization across the plate thickness into N homogeneous sublayers.

For the approach proposed in this contribution the number of unknowns and the number of equations in the presented 2D-model is equal to 2 being independent of the number N of homogenous sublayers. These unknowns are ( ) ( )

, ϑ ψ ⋅ ⋅ .

FUNDAMENTAL CONCEPT

The fundamental concept of the proposed approach is that of the oscillating shape function ( ) γ ⋅ , which was introduced previously but not de ned. We have stated above that this function is continuous and bounded in . We also postulate that:

(i) ( ) γ ⋅ is linear in every ( ) 1 , 1, 2, ...., n n z z n N - = (ii) function ( ) γ ⋅ satis es boundary condition: ( ) ( ) 0 , N z z γ γ = (iii) ( ) 2 2 0 z dz δ δ γ - = (iv)
values of function (z n ), n = 1, 2, ..., N -1 are given by the system of linear algebraic equations:

( ) ( )

1 1 1 1 1 1, 2, ..., 2 1 n n n n n n n n n n k k k k n N γ γ γ γ δ δ + + - + + - - - = - = -

MODELLING HYPOTHESES

The proposed modelling approach is based on two hypotheses. The rst of them will be called 2D-modelling hypothesis and states that the temperature eld can be approximated by means of the formula:

( ) ( ) ( ) ( ) , , , , z t t z z t ϑ γ ψ Θ = + + x x x (3) ( ) [ ) 1 2 0 * , , , , , 2 2 x x z t t t δ δ = ∈Π ∈ - ∈ x
provided that the plate thickness is suf ciently small when compared to the smallest characteristic length dimension of the plane region .

The above restriction represents the necessary condition but is not suf cient.

The most important fact is that under decomposition (3) the heat ux continuity condition ( 2) is satis ed identically.

If we assume that on the lower and upper boundary plane the distribution of the temperatures for every ( )

[ ) 1 2 0 * , , x x t t t = ∈Π ∈ x are equal: ( ) ( ) ( ) , , , i f 2 2 t t t z δ δ ϑ ψ + Θ = + = x x x ( ) ( ) ( ) , , , i f 2 2 t t t z δ δ ϑ ψ - Θ = - =- x x x
Then the unknowns ( ) ϑ ⋅ and ( ) ψ ⋅ are interpreted by the formulas:

( ) ( ) ( ) ( ) 1 , , , 2 t t t ϑ + - = Θ +Θ x x x ( ) ( ) ( ) ( ) 1 , , , t t t ψ δ + - = Θ -Θ x x x
Before the formulation of the second hypothesis we de ne the concept of the residual eld de ned on

[ ) 0 and , t t t * Π × Δ ∈
and by means of:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , r z t k z z t k z z t c z z t f t = ∇⋅∇ Θ -∂ ∂ Θ - Θ - x x x x x (4)
where in the right hand side of this formula the temperature eld has to be substituted by equation ( 3).

The second 2D-modelling hypothesis is based on the well known de nition of averaging which states that for every integrable function F(z) we de ne:

( ) 2 2 1 F F z d z δ δ δ - < >≡
Under the above denotation the second 2D-modelling hypothesis states that:

( )

0 0 r r z γ < >= < + >= (5)
This is a speci c case of the orthogonalization procedure.

MODEL EQUATIONS

Realizing both hypothesis stated previously we obtain the following system of two partial differential equations with constant coef cients for unknowns ( ) ( )

, ϑ ψ ⋅ ⋅ : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 , , , , , 0 , , , , , 0 k 
z t k z z z t c z t c z z z t f t k z z z t k z z z t c z z z t c z z z t f t z z ϑ γ ψ ϑ γ ψ γ ϑ γ ψ γ ϑ γ ψ γ ∇ ⋅∇ + + ∇ ⋅∇ - - - + - = + ∇⋅∇ + + ∇⋅∇ - - + - + - + = x x x x x x x x x x (6)
Equations ( 6) represent the proposed 2D-model of the plate under consideration. It can be observed that for a homogeneous plate we have N = 1 and function ( ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 , , , 0 , 

CONCLUSIONS AND REMARKS

Special example of 2-D model Equations will be restricted to N = 3. The oscillating shape function ( ) γ ⋅ for N = 3 is determined by the layer thicknesses 1 , 2 and 3 = 1 , by the heat conduction coef cients k 1 , k 2 and k 3 = k 1 . The scheme of the plate cross section and the diagram of oscillating shape function for k 1 > k 2 are shown in Figure 2. The corresponding model equations ( 7) are:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 , , , 0 , 
, 0 
k z t c z t f t k z z z t c z z z t ϑ ϑ γ ψ γ ψ ∇ ⋅∇ - - = + ∇⋅∇ - + = x x x x x (8)
We recall that the plate thickness = 2 1 + 2 has to be suf ciently small with the smallest characteristic length dimension of the plate midplane . This requirement is necessary but not suf cient in applying the proposed 2D-model; this is a situation which is typical for any 2D-plate model which should appropriate the exact 3-D description of the thin plate.

The main advantage of the proposed 2-D model of the layered plate is evident if the number of homogeneous layers is large i.e. we deal with multilayered plates. We recall that the proposed model is represented by the system of only 2 partial differential equations for two unknown functions ( ) ( ) , ϑ ψ ⋅ ⋅ independently to the number of layers. In most approaches the number of new unknowns and hence the number of 2D-model equations depends on the number N of homogenous layers. This statement is usually related to the fact that the known 2D-models of multilayered plates are usually based on the discrietization across the plate thickness into N homogeneous sublayers.

At the end of this contribution let us take into account nontrivial situation in which the heat ux is directed exclusively along Oz-axis. In this case we obtain system of ordinary differential equations for ( ) ( ) From the formula of this system of equations it follows that if f(t) = 0 then ( ) ( ) , ϑ ψ ⋅ ⋅ are constants.

  Fig. 1. A fragment of a cross section of the plate for x 2 = const

  uniquely determine the temperature eld, which should represent a suf ciently good approximation of the corresponding initial-boundary value problem for equations (1), (2).
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 2 Fig. 2. The scheme of the plate cross section for x 2 = const and the diagram of oscillating shape function for k 1 > k 2

  stand for left hand side and right hand side of the derivative of piece wise differentiable function respectively.
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  ⋅ is identi- cally equal to zero. Now let us introduce the extra assumption that the plate midplane is a material symmetry plane. It means that functions ( ) k ⋅ and ( ) c ⋅ are even. From the aforementioned extra assumption and taking into account the de nition of function ( )

	γ ⋅ formulated in γ ⋅ is the odd function. The proof of this previous Section it follows that the function ( )
	statement is rather simple. Equations (6) in this case reduce to the form:
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