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Abstract: Nowadays, hosting centres are widely used to host various 
kinds of applications (e.g., web servers or scientific applications). Resource 
management is a major challenge for most organisations that run these 
infrastructures. Many studies show that clusters are not used at their full 
capacity which represents a significant source of waste. Autonomic 
management systems have been introduced in order to dynamically adapt 
software infrastructures according to runtime conditions. They provide support 
to deploy, configure, monitor, and repair applications in such environments. In 
this paper, we report our experiments in using an autonomic management 
system to provide resource aware management for a clustered application. We 
consider a standard replicated server infrastructure in which we dynamically 
adapt the degree of replication in order to ensure a given QoS while minimising 
energy consumption. 
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1 Introduction 

Nowadays, medium or large-scale distributed infrastructures such as clusters and grids 

are widely used to host various kinds of applications (e.g., web servers or scientific 

applications). The development of cloud computing (Buyya et al., 2009) illustrates a 

general trend towards the emergence of large-scale hosting centres. 

Power consumption is becoming a major challenge for most organisations that run 

these infrastructures. According to the US Environmental Protection Agency, it is 

estimated that this sector consumed about 61 billion kilowatt-hours (kWh) in 2006 

(1.5% of total US electricity consumption) for a total electricity cost of about $4.5 billion. 

Moreover, energy consumption of these infrastructures is estimated to have doubled 

between 2000 and 2006 and the development of hosting centres will amplify this 

tendency. 

In clustered infrastructures, a classical structuring pattern is to replicate servers in 

order to enforce scalability. In this pattern, a given server is replicated statically at 

deployment time and a frontend proxy acts as a load-balancer and distributes incoming 

requests among the replicas. Such a design choice induces resource overbooking to face 

load peaks while guaranteeing quality of service. As there is relatively little difference in 

power consumption between an idle node and a fully used node, there is a penalty 

(regarding energy) for keeping an idle node powered on. Moreover, such hosting 



infrastructures require large cooling systems which also consume a considerable amount 

of energy. 

Autonomic management systems (Kephart and Chess, 2003) have been proposed as 

one solution for the management of distributed infrastructures. Such systems can be used 

to deploy and configure applications in a distributed environment. They can also monitor 

the environment and react to events such as failures or overloads and reconfigure 

applications accordingly and autonomously. 

In this context, we aim at using an autonomic management system in order to 

dynamically adapt the degree of replication according to the received load. This 

adaptation is a mean to dynamically allocate or free machines, i.e., to dynamically turn 

cluster nodes on – to be able to efficiently handle the load imposed on the system – and 

off – to save power under lighter load. We implemented such a management policy for a 

clustered database server in a J2EE application, and evaluated the benefits for energy 

consumption. 

Instead of turning machines on and off which is quite costly and slow, we use an 

efficient suspension to RAM mechanism to quickly turn the machines in power saving 

mode. 

The rest of the paper is structured as follows: Section 2 presents the context of our 

work and our motivations. Section 3 describes our approach. Section 4 presents the 

experiments to evaluate our approach. After an overview of related works in Section 5, 

we conclude in Section 6. 

2 Context 

In this section, we first present the application case that we use to illustrate our approach. 

We then overview the autonomic management system that we used in our experiments. 

2.1 Clustered J2EE application 

As experimental environment, we made use of the J2EE, which defines a model for 

developing web applications in a multi-tiered architecture. Such applications are typically 

composed of a web server (e.g., Apache), an application server (e.g., Tomcat) and a 

database server (e.g., MySQL). Upon an HTTP client request, either the request targets a 

static web document, in this case the web server directly returns that document to the 

client; or it refers to a dynamically generated document, in that case the web server 

forwards the request to the application server. When the application server receives a 

request, it runs one or more software components (e.g., Servlets, EJBs) that query a 

database through a Java database connection driver (JDBC driver). Finally, the resulting 

information is used to generate a web document on-the-fly that is returned to the web 

client. 

In this context, the increasing number of internet users has led to the need for highly 

scalable and highly available services. To deal with high loads and provide higher 

scalability of internet services, a commonly used approach is the replication of servers in 

clusters. Such an approach (Figure 1) usually defines a particular software component in 

front of each set of replicated servers, which dynamically balances the load among the 

replicas. Here, different load balancing algorithms may be used, e.g., random, 

round-robin, etc. 



 Figure 1 Clustered J2EE servers (see online version for 

colours) 

In such an architecture, a difficult issue is to find the best degree of replication for each 

tier, which should be sufficient to tolerate load peaks, but not too high to prevent resource 

wasting. 

2.2 Component-based autonomic management systems 

In the area of autonomic computing, many studies have relied on a component model to 

provide an autonomic system support (Cheng et al., 2004; Hagimont et al., 2006; Oriezy 

et al., 1999). Component-based management aims at providing a uniform view of a 

software environment composed of different types of servers. Each managed server is 

encapsulated in a component and the software environment is abstracted as a component 

architecture. Therefore, deploying, configuring and reconfiguring the software 

environment is achieved by using the tools associated with the choose component-based 

middleware. 

In previous projects, we designed and implemented several prototypes of such an 

autonomic management system (Hagimont et al., 2009; Gadafi et al., 2010; Tchana et al., 

2010; Sharrock et al., 2010). In our approach, the component model is used to implement 

a management layer on top of the legacy layer composed of the actual managed software 

(Figure 2). 

In the management layer, all components provide a management interface for the 

encapsulated software, and the corresponding implementation is specific to each software 

(e.g., the Apache web server). These interfaces are used to control uniformly the 

components, they allow managing the component’s attributes or bindings with other 

components, and controlling its internal configuration state. 

These components interact with remote representatives for configuring the legacy 

software instances on the remote hosts of the cluster. 



 Figure 2 Management layer 

Relying on this management layer, sophisticated administration programmes can be 

implemented. However, we observed that the interfaces of a component middleware 

are too low level and are therefore not appropriate for administrators. This led us 

to the design of higher level language support for autonomic management policy 

specification. 

2.3 High level formalisms for policy specification 

In order to allow the administration by non-experts, we developed TUNe (Broto et al., 

2008), which is a component-based autonomic management system that provides high 

level formalisms for the description of the software architecture, its deployment and 

reconfiguration policies. These formalisms are inspired by Unified Modelling Language 

(UML) and are overviewed in the next sub-sections. 



2.3.1 A UML profile for deployment scheme 

TUNe introduces a UML profile based on the class diagram for graphically describing 

deployment scheme. A deployment scheme describes the overall organisation of a 

software infrastructure to be deployed. At deployment time, the scheme is interpreted to 

deploy the component architecture. An example is depicted in Figure 3. 

Figure 3 Deployment schema for J2EE 



Each element of this diagram corresponds to a software which can be instantiated in 

several component replicas. A link between two elements generates bindings between the 

components instantiated from these elements. An element includes a set of configuration 

attributes for the software. Most of these attributes are specific to the software, but few 

attributes are predefined by TUNe and used for deployment, for example the initial 

attribute which indicates the number of instances that have to be deployed initially, thus 

each component may be replicated by adapting this attribute. 

2.3.2 A WDL 

Upon deployment, the above schema is parsed and for each element, the initial number of 

components are created. These components implement some wrappers for the deployed 

software, which provide control over the software. Each wrapper component is an 

instance of a generic wrapper which is actually an interpreter of a Wrapping Description 

Language (WDL) specification. 

A WDL description defines a set of methods that can be invoked to configure or 

reconfigure the wrapped software. The workflow of methods that have to be invoked in 

order to configure and reconfigure the overall software environment is defined thanks to 

an formalism introduced in Section 2.3.3. 

Usually, a WDL specification provides start and stop methods for controlling the 

activity of the software, and a configure method for reflecting the values of the attributes 

(defined in the UML deployment schema) in the configuration files of the software. Note 

that the values of these attributes can be modified dynamically at runtime. Other methods 

can be defined according to the specific management requirements of the wrapped 

software. 

The methods described in a WDL specification are implemented in Java. Most of 

these methods are generic and can therefore be reused, e.g., methods which access a 

configuration file in a particular format. 

2.3.3 A UML profile for (re)configuration procedures 

TUNe introduces a UML profile based on state diagrams. These diagrams are used to 

define workflows of operations that have to be performed during runtime for 

reconfiguring the managed environment. Reconfigurations are triggered by events that 

start the different workflows. An event can be generated by a specific monitoring 

component, or even by a wrapped legacy software itself if it includes its own monitoring 

functions. An operation in a state diagram can assign an attribute or a set of attributes of 

components, create, deploy and destroy components, or can invoke a method or a set of 

methods on components. 

The deployment scheme implicitly defines a designation scheme for addressing the 

deployed component instances. When an event is raised by a component (e.g., a probe), 

the this keyword identifies this component and the designation scheme allows navigation 

in the deployed architecture for invoking methods on components. 

2.4 Motivations 

One important autonomic management policy we target in this paper is the minimisation 

of energy consumption while meeting the end user needs (i.e., keeping response time 



acceptable). This management system aims at autonomously increasing/decreasing the 

number of replicated resources used by the application when the load increases/decreases. 

This has the effect of efficiently maximising resource utilisation (i.e., no resource 

overbooking) and therefore minimising the overall energy consumption. Such a policy 

would aim at: 

guaranteeing the performance of the application by adapting its size as needed

reducing energy consumption by shutting down the unused nodes.

3 Autonomic approach to trading energy and QoS off 

In this section, we present two management policies that we implemented in order to 

manage energy consumption in a clustered J2EE architecture. These policies apply to the 

database tier in the J2EE architecture. 

3.1 Technical issues 

3.1.1 Management of the replicated database tier 

The load-balancer among replicated databases is MySQLProxy. The database load, 

arriving from the web server is distributed by MySQLProxy to the DB replicas that can 

be added and removed based on workload variations. In order to implement the 

integration of a new database backend in a pool of replicas, we have to consider two 

cases, according to whether the database can be modified or not. 

Read-only access: In this simple case, all nodes (on or off) contain the same database

content and do not require any special care when integrating a new database server in

the database pool.

Read-write access: In this case, we have to take into account the current state of the

replicated database. The technique we use leverages the logging facilities of

MySQLProxy. For each new node activation, we execute a reconciliation operation

on the node, thus bringing it in the same state as all the database replicas. To

implement the reconciliation, the log file is used to replay all the SQL statements that

have been recorded since the last synchronisation state. This is a relatively fast

operation given the fact the read/write ratio is high; however it depends on the time

between state synchronisations and the number of writes during this time.

3.1.2 Suspension to RAM 

Turning machines off, and especially on is quite costly. Indeed, we measured that such an 

operation takes about 45 seconds on the average. Instead, we rely on suspension to 

RAM, which allows to suspend and resume the activity of a machine at a low cost 

(about four seconds on the average for resuming a machine) while saving as much energy 

as if it were turned off (Talebi and Way, 2009). Suspend-to-RAM stores information on 

the system configuration, the open applications, and the active files in main memory 

(RAM), while most of the system’s other hardware is turned off. When a machine is 

suspended, only the RAM and the network device are powered on. 



3.2 Autonomic management policies 

We aim at minimising energy consumption of the cluster, while ensuring acceptable QoS, 

and being transparent to the end-users. As mentioned before, the management system 

autonomously increases/decreases the number of replicated resources used by the 

application when the load increases/decreases. 

The J2EE architecture is initially deployed with one database server (MySQL). We 

use probes to monitor some performance metrics on MySQL server nodes. These probes 

periodically collect the informations on all the nodes where MySQL servers are 

deployed. They compute a moving average of the collected data in order to remove any 

artefact. They finally compute an average across all nodes, so as to observe a general load 

indication of the whole replicated server pool. According to defined thresholds, the probe 

will eventually generate an event to add or remove a replica. 

We defined two different policies: the first provides the maximum QoS, while the 

second allows the degradation of the QoS to save more energy. 

First policy, maximum QoS: In this policy, we aim at minimising the consumed

energy while maintaining the maximum QoS that can be given by the system.

Addressing the energy and QoS tradeoff, we give priority to performance by

distributing the current workload onto a sufficient number of machines. This number

must be enough to serve end-users without effecting the QoS, while turning off the

unused machines to save energy.

To ensure the best QoS, the MySQL servers should never be saturated, thus we

monitor their status (i.e., CPU usage) and add more DB replicas to prevent

saturation.

From the end-users point of view, since there is no degradation of service, the

process of adding or removing a replica is completely transparent.

Second policy, degraded QoS: Instead of looking at MySQL servers’ status, we are

interested here in monitoring the QoS indicators, especially the response time.

If we allow application performance to be somewhat degraded, much greater energy

savings are possible. In this policy, the application’s performance is measured by a

service level agreement (SLA) related to response time. This allows to reduce the

amount of resources allocated to the applications to the point where the SLA goals

are just being met. More precisely, the SLA specifies the range where the response

time must be maintained. This range is obviously higher than the response time that

is obtained with the previous policy (response time is degradated), and it allows

managing the application with fewer DB servers. Figure 9 shows the occupancy rate

of machines during the experiments with the two implemented policies. If we

compare the occupancy rate of the static configuration with three database servers,

and the occupancy rate in the dynamic cases, we observe that the CPU-based policy

reduces the occupancy rate by 30%, while the latency-based policy reduces the

occupancy rate by 47%.



3.3 Implementation with TUNe 

Figure 3 shows the deployment schema for the J2EE architecture, which includes a 

frontend web server (Apache), an application server (Tomcat), a database load-balancer 

(MySQLProxy) and a database server (MySQL). The MySQL server is monitored by a 

Probe programme which is parameterised by different attributes: 

max: this parameter specifies the maximum threshold of the probed property

(e.g., CPU usage or latency) that can be reached before triggering the addition of a

replica

min: this parameter specifies the minimum threshold of the probed property that can

be reached before triggering the removal of a replicas

maxServerCount: this parameter specifies the maximum number of replica

policy: this parameter specifies the used policy, i.e., the probed property

(CPU usage or latency).

The probe will eventually generate an event to add or remove a replica, as we describe in 

the next sections. 

3.3.1 Adding a new replica 

To add a new replica, we must ensure that the resulting load is higher than the value of 

the min parameter to prevent removing the replica just after adding it. The condition to 

add a new replica can therefore be formulated as: 

   and  
( 1)

CL
min N maxServerCount

N

where CL is the current load, and N is the number of currently used servers. 

When this event is generated, TUNe allocates a node from a list of available nodes for 

this server, turns the allocated node on via a Wake-on-LAN notification, and applies the 

reconfiguration diagram corresponding to the addition of a new server when the node is 

ready. 

Figure 4(a) shows the reconfiguration diagram for adding a new MySQL server. The 

event (upsizeMySQL) is generated by a Probe component instance, therefore the this 

variable is the name of this Probe component instance. Then: 

this.stop invokes the stop method on the probing component to prevent the

generation of multiple events.

new=this.MySQL++ creates a new MySQL instance. Note that in order to designate

the component on which an operation should be performed, a dotted syntax allows to

navigate through the component architecture, e.g., here to follow the link between

the Probe and the MySQL elements. The ++ operator increases by one the number of

instances of the MySQL element.

new.start invokes the start method on the newly created MySQL component instance.



mysqlProxy.restart restarts the database load-balancer to take into account the newly

created MySQL server.

this.start restarts the probe.

Figure 4 State diagrams for adding/removing a MySQL server 

(a) (b) 

3.3.2 Removing a replica 

To remove a replica, we must ensure that the resulting load is lower than the value of the 

max parameter to prevent adding a replica just after removing it. So the condition to 

remove a replica can be formulated as: 

   and  ( 1)
( 1)

CL
max N

N
 

When this event is generated, TUNe applies the reconfiguration diagram which removes 

a replica and frees the node (with a suspend-to-ram). 

Figure 4(b) shows the reconfiguration diagram for removing a MySQL server. 

4 Evaluation 

In this section, we present the evaluation of our solution. First we introduce the 

application we deployed (an auction website modelled over eBay), the software 

environment on which we deployed the application (the J2EE platform) and the hardware 

(a French grid). Then we describe the test configuration and how we evaluate the energy 

consumption. 



Testbed application 

The evaluation has been realised with RUBiS (Amza et al., 2002), a J2EE application 

benchmark based on servlets, which implements an auction site modelled over eBay. It 

defines 26 web interactions, such as registering new users, browsing, buying or selling 

items. RUBiS also provides a benchmarking tool that emulates web client behaviours and 

generates a tunable workload. This benchmarking tool gathers statistics about the 

generated workload and the web application behaviour. 

Software environment 

The nodes run version 2.6.30 of the Linux kernel. The J2EE application has been 

deployed using open source middleware solutions: Jakarta Tomcat 6.0.20 for the web and 

servlet servers, MySQL 5.1.36 for the database servers, MySQLProxy 0.7.2 for the 

database load-balancer, Apache 2.2.14 for the application server load-balancer. We used 

RUBiS 1.4.3 as the running J2EE application. These experiments have been realised with 

Sun’s JVM JDK 1.6.0.05. We used the MySQL connector/J 5.1 JDBC driver to connect 

the database load-balancer to the database servers. 

Hardware environment 

The experimental evaluation was carried out using the Grid’5000 experimental testbed.1 

The experiments required up to 14 nodes: one node for TUNe management platform, one 

node for web server (Apache), six nodes for servlet servers (Tomcat), one node for 

database load-balancer (MySQLProxy), up to three nodes for database servers (MySQL), 

two nodes for RUBiS client emulators (which emulate up to 3,000 clients). The number 

of nodes actually used during these experiments varies, according to the dynamic changes 

of the workload, resulting in the dynamic resizing of the application. All the nodes are 

connected through a 100 Mbps ethernet LAN to form a cluster. 

Test configuration 

In this evaluation, we provide measurements for the database replicated tier only. The 

RUBiS benchmark is configured to send read-only queries. The parameters that control 

adding/removing servers are shown in Table 1. 

Table 1 Test configuration 

Parameter name CPU-based policy Latency-based policy 

max 80% 6,000 milliseconds

min 30% 20 milliseconds

Evaluation scenario 

We aim at showing that dynamic allocation and deallocation of nodes in response to 

workload variations allows energy saving. 

In our benchmark, the load increases progressively up to 3,000 emulated clients: 

50 new clients every 30 seconds. We configured RUBiS client to run for 31 minutes, so 



the total time of the experiments is about one hour. During the experiment, the probe 

monitors the MySQL server nodes. 

The J2EE architecture is initially deployed with one database server (MySQL) and 

TUNe reacts to the load variation by allocating and freeing nodes, as described in 

Section 3.3 

We compare the QoS (e.g., latency) variable and the energy consumption 

(e.g., occupancy rate of machines) in two situations: 

Static configuration of the J2EE architecture. We measure the performance

(regarding QoS and energy consumption) with one, two and three database servers.

Fewer servers will save energy but with a degradation of QoS. More servers will

optimise QoS, but with energy wasting.

Dynamic configuration of the J2EE architecture. TUNe is used to dynamically adapt

the number of database servers as described above. Therefore, quality of service is

guaranteed without wasting energy. We then compare the two policies described in

Section 3.2.

Energy evaluation 

The first experiment we conducted was to measure the energy consumption of one node 

according to its load. To do this we used a framework that collects energy usage 

information in Grid’50002. This measurement is shown in Table 2. 

Table 2 Energy consumption for one node 

CPU usage (%) Energy consumption (watts) 

0% 204

50% 211

100% 224

From these measurements, we can see that keeping a machine on when it is not used has 

a high cost. This means that powering off machines is the most effective way to save 

energy. 

4.1 Results 

4.1.1 Static configuration 

In a first evaluation, we measured the latency and the CPU usage of the J2EE application 

when it is statically configured with one, two and three MySQL servers. These 

measurements are given in Figures 5 and 6. 

We observe that when we use one database server, it becomes saturated between 

times 750 and 2,950 (Figure 5). This saturation has an impact on the quality of service as 

shown by Figure 6. Indeed, when the server is saturated, the latency increases at 

the same time. We observe the same behaviour when we used two servers (between times 

1,500 and 2,200). The configuration with three database servers can maintain the quality 

of service (the latency is not increasing) for all the experiment’s time. 



Figure 5 CPU usage in static configuration (see online version for colours) 

Figure 6 Latency in static configuration (see online version for colours) 



For the static configuration mode, we can see that maintaining the quality of service, 

particularly during the peak load, requires three database servers, but these three servers 

are not required during the whole experiment. Indeed, regarding the CPU usage in 

Figure 5 and the latency in Figure 6, only one server is required from time 0 to 600 and 

time 3,200 to 4,000. Only two servers are also required from times 600 to 1,400 and 

times 2,400 to 3,200. Therefore, up to two servers could be switched off to save energy. 

4.1.2 Dynamic configuration 

With TUNe, we dynamically turn cluster nodes on – to be able to handle load peaks – and 

off – to save power under lighter load. We only use nodes (and consume energy) when 

needed. 

Figure 7 shows the CPU load and the latency when using TUNe configured with the 

CPU-based policy. To ensure the best QoS we do not allow server saturation. We start 

with only one MySQL server, when this server approaches the saturation point (when the 

CPU load reaches 80%), TUNe adds a new server to the architecture. This occurs twice 

in our experiment: at times 690 and 1,400. We observe that using this policy ensures the 

maximum quality of service regarding the latency, which is relatively stable during all the 

experiment. 

Figure 8 shows the CPU load and the latency when using TUNe configured with the 

latency-based policy. Unlike the previous case, we allow QoS to be degraded in order to 

save more energy. We observe this performance degradation regarding the latency. When 

the latency reaches the predefined threshold (6,000 milliseconds) TUNe adds a new 

server to the architecture. This occurs twice at times 1,030 and 1,930. 

Figure 7 CPU-based policy (see online version for colours) 



 Figure 8 Latency-based policy (see online version 

for colours) 

Figure 9 Static configuration (see online version for colours) 



Figure 9 shows the occupancy rate of machines during the experiments with the two 

implemented policies. If we compare the occupancy rate of the static configuration with 

three database servers, and the occupancy rate in the dynamic cases, we observe that the 

CPU-based policy reduces the occupancy rate by 30%, while the latency-based policy 

reduces the occupancy rate by 47%. 

5 Related work 

Many works have addressed the issue of power management. Most of them have 

focussed on energy management for electronic devices powered by electric battery, and 

few have addressed this issue in grid or cluster infrastructures. 

Many research works which aim at managing energy for a single processor system 

can be used to optimise energy consumption independently on each node of a cluster. It 

includes optimisations of the use of the processor, memory or input/outputs (disk or 

network). 

Most of the research that focuses on cluster-wide energy management deals with 

resource allocation. We can mention some examples of such works: 

Load balancing: in this category, we can cite the work of Pinheiro et al. (2001) who

developed an algorithm which makes load balancing decisions by considering both

the total load imposed on the cluster and the power and performance implications of

turning nodes off.

Virtualisation: in this category, we can cite the work of Hermenier et al. (2006) who

developed a system which relies on virtual machine migration for transparently

relocating any application in the cluster. The placement policy takes into account the

CPU and memory usages, in order to concentrate the workload on fewer nodes of the

cluster, thus allowing unused nodes to be shutdown. We are currently cooperating

with them to integrate our autonomic management system with their work.

Simulation: we can here cite the work of Khargharia et al. (2008). They present a

theoretical framework and methodology for autonomic power and performance

management in data centres. They rely on simulation to apply their approach to two

case studies, a multi-chip memory system and a high performance server cluster.

Our work is orthogonal to these contributions. While most of the works made in this 

domain is specific to energy management, our autonomic computing approach is generic, 

as it can be used to define any management policy for any distributed software 

architecture. The field of energy management was not previously addressed by our 

autonomic management system, but the experiments reported in this paper show that our 

approach can by used to define a specific energy management autonomic policy. 

The closest work to our is that of Das et al. (2008) who proposed a multi-agent 

approach for managing power and performance in server clusters by turning off servers 

under low-load conditions. Instead of relying on components and architectures, their 

autonomic system follows a multi-agent paradigm. Our approach differs from this work 

in several respects. First, multi-agent paradigms are programmed to manage specifically 

the dynamicity of systems. Our approach focuses more on managing in a generic way 

legacy systems that are intrinsically static (for example web servers or database servers). 

Second, we differ from previous approaches that use multicriteria utility functions in that 



we employ high level policies descriptions to dynamically reconfigure the managed 

systems. This allows multiple goals definitions and goals combinations like repairing or 

dynamic sizing. Because we offer a complete implementation of an autonomic manager 

that takes into account multiple goals, we show in this paper that both the application 

performance metrics and hardware power consumption metrics can be used to optimise 

the system. Finally, these reconfiguration policies are externalised (not related to a 

specific application but more generic and high level) and can be applied to other 

applications or changed easily, which is not the case with a multi-agent system. 

6 Conclusions and future work 

Nowadays, medium or large-scale distributed infrastructures such as clusters and grids 

are widely used to host various kinds of applications. Power consumption has become a 

major challenge for most organisations that run these infrastructures. Many studies show 

that they are not used at their full capacity and that there are therefore a significant source 

of wasted power. Autonomic management systems have been recognised as a convenient 

solution for management of distributed infrastructures. 

The experiments that we conducted show that the autonomic computing approach can 

be used for energy management in a distributed infrastructure. This approach meets the 

needs of energy aware computing, as it can minimise power consumption without 

affecting the performance of the system. In our experiments, we were able to obtain for a 

typical web application benchmark a reduction of the power consumption between 30% 

and 47% according to the used policy. 

This paper reported on preliminary work. In the near future, we aim at evaluating 

much deeply our prototype through more elaborated power management policies, which 

would include other parameters, for example, network traffic information. We also wish 

to integrate virtualisation techniques in our prototype, as it would enable transparent 

process (VM) migration between hardware nodes. 
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