
HAL Id: hal-01120793
https://hal.science/hal-01120793

Submitted on 26 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-QoS Tradeoffs in J2EE Hosting Centers
Aeiman Gadafi, Daniel Hagimont, Laurent Broto, Rémi Sharrock, Alain

Tchana, Noel Depalma

To cite this version:
Aeiman Gadafi, Daniel Hagimont, Laurent Broto, Rémi Sharrock, Alain Tchana, et al.. Energy-QoS
Tradeoffs in J2EE Hosting Centers. International Journal of Autonomic Computing, 2014, vol. 2 (n°
1), pp. 54-72. �10.1504/IJAC.2014.059112�. �hal-01120793�

https://hal.science/hal-01120793
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12508

To link to this article : DOI :10.1504/IJAC.2014.059112
URL : http://dx.doi.org/10.1504/IJAC.2014.059112

To cite this version : Gadafi, Aeiman and Hagimont, Daniel and
Broto, Laurent and Sharrock, Rémi and Tchana, Alain-Bouzaïde and
Depalma, Noel Energy-QoS Tradeoffs in J2EE Hosting Centers. (2014)
International Journal of Autonomic Computing, vol. 2 (n° 1). pp. 54-
72. ISSN 1741-8569

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://dx.doi.org/10.1504/IJAC.2014.059112
http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12508/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Energy-QoS tradeoffs in J2EE hosting centres

Aeiman Gadafi, Daniel Hagimont*,
Laurent Broto and Remi Sharrock

Institut de Recherche en Informatique de Toulouse,

118 route de Narbonne,

31062 Toulouse, France

E-mail: aeiman.gadafi@irit.fr

E-mail: daniel.hagimont@irit.fr

E-mail: laurent.broto@irit.fr

E-mail: remi.sharrock@irit.fr

*Corresponding author

Alain Tchana and Noel De Palma

INRIA Rhone-Alpes,

655 avenue de l’Europe

38334 Montbonnot, France

E-mail: alain.tchana@inria.fr

E-mail: noel.depalma@inrialpes.fr

Abstract: Nowadays, hosting centres are widely used to host various
kinds of applications (e.g., web servers or scientific applications). Resource
management is a major challenge for most organisations that run these
infrastructures. Many studies show that clusters are not used at their full
capacity which represents a significant source of waste. Autonomic
management systems have been introduced in order to dynamically adapt
software infrastructures according to runtime conditions. They provide support
to deploy, configure, monitor, and repair applications in such environments. In
this paper, we report our experiments in using an autonomic management
system to provide resource aware management for a clustered application. We
consider a standard replicated server infrastructure in which we dynamically
adapt the degree of replication in order to ensure a given QoS while minimising
energy consumption.

Keywords: administration; energy management; replication; autonomic
computing.

Reference to this paper should be made as follows: Gadafi, A., Hagimont, D.,
Broto, L., Sharrock, R., Tchana, A. and De Palma, N. (2014) ‘Energy-QoS
tradeoffs in J2EE hosting centres’, Int. J. Autonomic Computing, Vol. 2,
No. 1, pp.54–72.

Biographical notes: Aeiman Gadafi is a PhD student at the University of
Toulouse and researcher in the IRIT Laboratory. His main research topic is
power management in distributed infrastructures.

Daniel Hagimont is a Professor at Polytechnic National Institute of Toulouse
and a member of the IRIT Laboratory, where he leads a group working on
operating systems, distributed systems and middleware. He received his PhD
from Polytechnic National Institute of Grenoble in 1993. After a Postdoc at the
University of British Columbia, Vancouver in 1994, he joined INRIA Grenoble
in 1995. He took his Professor position in Toulouse in 2005.

Laurent Broto received his PhD from the University of Toulouse in 2008. After
a Postdoctoral stay at Oak Ridge National Laboratory, TN, USA, he was
recruited as an Associate Professor in Computer Science at the Polytechnic
National Institute of Toulouse, France.

Remi Sharrock received his PhD in Computer Science from the University of
Toulouse in 2010. After a Postdoctoral stay at the National Institute for
Research in Computer Science and Control (INRIA) in Bordeaux, he is
currently a Teacher-Researcher for the French Ministry of Industry working for
the Ecole des mines de Nantes. His main research topic is dynamic
reconfiguration in autonomic computing systems.

Alain Tchana received his PhD in Computer Science from the University of
Toulouse in 2011. He is currently a Postdoctoral Fellow at the University of
Grenoble. His main research topic is autonomic management in cloud
infrastructures.

Noel De Palma received his PhD in Computer Science from the Grenoble
Institute of Technology in 2001. Since 2002, he has been an Associate
Professor in Computer Science at University of Grenoble INP. He is a member
of the Sardes research group at INRIA and LIG Laboratory, where he conducts
research on autonomic computing.

1 Introduction

Nowadays, medium or large-scale distributed infrastructures such as clusters and grids

are widely used to host various kinds of applications (e.g., web servers or scientific

applications). The development of cloud computing (Buyya et al., 2009) illustrates a

general trend towards the emergence of large-scale hosting centres.

Power consumption is becoming a major challenge for most organisations that run

these infrastructures. According to the US Environmental Protection Agency, it is

estimated that this sector consumed about 61 billion kilowatt-hours (kWh) in 2006

(1.5% of total US electricity consumption) for a total electricity cost of about $4.5 billion.

Moreover, energy consumption of these infrastructures is estimated to have doubled

between 2000 and 2006 and the development of hosting centres will amplify this

tendency.

In clustered infrastructures, a classical structuring pattern is to replicate servers in

order to enforce scalability. In this pattern, a given server is replicated statically at

deployment time and a frontend proxy acts as a load-balancer and distributes incoming

requests among the replicas. Such a design choice induces resource overbooking to face

load peaks while guaranteeing quality of service. As there is relatively little difference in

power consumption between an idle node and a fully used node, there is a penalty

(regarding energy) for keeping an idle node powered on. Moreover, such hosting

infrastructures require large cooling systems which also consume a considerable amount

of energy.

Autonomic management systems (Kephart and Chess, 2003) have been proposed as

one solution for the management of distributed infrastructures. Such systems can be used

to deploy and configure applications in a distributed environment. They can also monitor

the environment and react to events such as failures or overloads and reconfigure

applications accordingly and autonomously.

In this context, we aim at using an autonomic management system in order to

dynamically adapt the degree of replication according to the received load. This

adaptation is a mean to dynamically allocate or free machines, i.e., to dynamically turn

cluster nodes on – to be able to efficiently handle the load imposed on the system – and

off – to save power under lighter load. We implemented such a management policy for a

clustered database server in a J2EE application, and evaluated the benefits for energy

consumption.

Instead of turning machines on and off which is quite costly and slow, we use an

efficient suspension to RAM mechanism to quickly turn the machines in power saving

mode.

The rest of the paper is structured as follows: Section 2 presents the context of our

work and our motivations. Section 3 describes our approach. Section 4 presents the

experiments to evaluate our approach. After an overview of related works in Section 5,

we conclude in Section 6.

2 Context

In this section, we first present the application case that we use to illustrate our approach.

We then overview the autonomic management system that we used in our experiments.

2.1 Clustered J2EE application

As experimental environment, we made use of the J2EE, which defines a model for

developing web applications in a multi-tiered architecture. Such applications are typically

composed of a web server (e.g., Apache), an application server (e.g., Tomcat) and a

database server (e.g., MySQL). Upon an HTTP client request, either the request targets a

static web document, in this case the web server directly returns that document to the

client; or it refers to a dynamically generated document, in that case the web server

forwards the request to the application server. When the application server receives a

request, it runs one or more software components (e.g., Servlets, EJBs) that query a

database through a Java database connection driver (JDBC driver). Finally, the resulting

information is used to generate a web document on-the-fly that is returned to the web

client.

In this context, the increasing number of internet users has led to the need for highly

scalable and highly available services. To deal with high loads and provide higher

scalability of internet services, a commonly used approach is the replication of servers in

clusters. Such an approach (Figure 1) usually defines a particular software component in

front of each set of replicated servers, which dynamically balances the load among the

replicas. Here, different load balancing algorithms may be used, e.g., random,

round-robin, etc.

 Figure 1 Clustered J2EE servers (see online version for

colours)

In such an architecture, a difficult issue is to find the best degree of replication for each

tier, which should be sufficient to tolerate load peaks, but not too high to prevent resource

wasting.

2.2 Component-based autonomic management systems

In the area of autonomic computing, many studies have relied on a component model to

provide an autonomic system support (Cheng et al., 2004; Hagimont et al., 2006; Oriezy

et al., 1999). Component-based management aims at providing a uniform view of a

software environment composed of different types of servers. Each managed server is

encapsulated in a component and the software environment is abstracted as a component

architecture. Therefore, deploying, configuring and reconfiguring the software

environment is achieved by using the tools associated with the choose component-based

middleware.

In previous projects, we designed and implemented several prototypes of such an

autonomic management system (Hagimont et al., 2009; Gadafi et al., 2010; Tchana et al.,

2010; Sharrock et al., 2010). In our approach, the component model is used to implement

a management layer on top of the legacy layer composed of the actual managed software

(Figure 2).

In the management layer, all components provide a management interface for the

encapsulated software, and the corresponding implementation is specific to each software

(e.g., the Apache web server). These interfaces are used to control uniformly the

components, they allow managing the component’s attributes or bindings with other

components, and controlling its internal configuration state.

These components interact with remote representatives for configuring the legacy

software instances on the remote hosts of the cluster.

 Figure 2 Management layer

Relying on this management layer, sophisticated administration programmes can be

implemented. However, we observed that the interfaces of a component middleware

are too low level and are therefore not appropriate for administrators. This led us

to the design of higher level language support for autonomic management policy

specification.

2.3 High level formalisms for policy specification

In order to allow the administration by non-experts, we developed TUNe (Broto et al.,

2008), which is a component-based autonomic management system that provides high

level formalisms for the description of the software architecture, its deployment and

reconfiguration policies. These formalisms are inspired by Unified Modelling Language

(UML) and are overviewed in the next sub-sections.

2.3.1 A UML profile for deployment scheme

TUNe introduces a UML profile based on the class diagram for graphically describing

deployment scheme. A deployment scheme describes the overall organisation of a

software infrastructure to be deployed. At deployment time, the scheme is interpreted to

deploy the component architecture. An example is depicted in Figure 3.

Figure 3 Deployment schema for J2EE

Each element of this diagram corresponds to a software which can be instantiated in

several component replicas. A link between two elements generates bindings between the

components instantiated from these elements. An element includes a set of configuration

attributes for the software. Most of these attributes are specific to the software, but few

attributes are predefined by TUNe and used for deployment, for example the initial

attribute which indicates the number of instances that have to be deployed initially, thus

each component may be replicated by adapting this attribute.

2.3.2 A WDL

Upon deployment, the above schema is parsed and for each element, the initial number of

components are created. These components implement some wrappers for the deployed

software, which provide control over the software. Each wrapper component is an

instance of a generic wrapper which is actually an interpreter of a Wrapping Description

Language (WDL) specification.

A WDL description defines a set of methods that can be invoked to configure or

reconfigure the wrapped software. The workflow of methods that have to be invoked in

order to configure and reconfigure the overall software environment is defined thanks to

an formalism introduced in Section 2.3.3.

Usually, a WDL specification provides start and stop methods for controlling the

activity of the software, and a configure method for reflecting the values of the attributes

(defined in the UML deployment schema) in the configuration files of the software. Note

that the values of these attributes can be modified dynamically at runtime. Other methods

can be defined according to the specific management requirements of the wrapped

software.

The methods described in a WDL specification are implemented in Java. Most of

these methods are generic and can therefore be reused, e.g., methods which access a

configuration file in a particular format.

2.3.3 A UML profile for (re)configuration procedures

TUNe introduces a UML profile based on state diagrams. These diagrams are used to

define workflows of operations that have to be performed during runtime for

reconfiguring the managed environment. Reconfigurations are triggered by events that

start the different workflows. An event can be generated by a specific monitoring

component, or even by a wrapped legacy software itself if it includes its own monitoring

functions. An operation in a state diagram can assign an attribute or a set of attributes of

components, create, deploy and destroy components, or can invoke a method or a set of

methods on components.

The deployment scheme implicitly defines a designation scheme for addressing the

deployed component instances. When an event is raised by a component (e.g., a probe),

the this keyword identifies this component and the designation scheme allows navigation

in the deployed architecture for invoking methods on components.

2.4 Motivations

One important autonomic management policy we target in this paper is the minimisation

of energy consumption while meeting the end user needs (i.e., keeping response time

acceptable). This management system aims at autonomously increasing/decreasing the

number of replicated resources used by the application when the load increases/decreases.

This has the effect of efficiently maximising resource utilisation (i.e., no resource

overbooking) and therefore minimising the overall energy consumption. Such a policy

would aim at:

guaranteeing the performance of the application by adapting its size as needed

reducing energy consumption by shutting down the unused nodes.

3 Autonomic approach to trading energy and QoS off

In this section, we present two management policies that we implemented in order to

manage energy consumption in a clustered J2EE architecture. These policies apply to the

database tier in the J2EE architecture.

3.1 Technical issues

3.1.1 Management of the replicated database tier

The load-balancer among replicated databases is MySQLProxy. The database load,

arriving from the web server is distributed by MySQLProxy to the DB replicas that can

be added and removed based on workload variations. In order to implement the

integration of a new database backend in a pool of replicas, we have to consider two

cases, according to whether the database can be modified or not.

Read-only access: In this simple case, all nodes (on or off) contain the same database

content and do not require any special care when integrating a new database server in

the database pool.

Read-write access: In this case, we have to take into account the current state of the

replicated database. The technique we use leverages the logging facilities of

MySQLProxy. For each new node activation, we execute a reconciliation operation

on the node, thus bringing it in the same state as all the database replicas. To

implement the reconciliation, the log file is used to replay all the SQL statements that

have been recorded since the last synchronisation state. This is a relatively fast

operation given the fact the read/write ratio is high; however it depends on the time

between state synchronisations and the number of writes during this time.

3.1.2 Suspension to RAM

Turning machines off, and especially on is quite costly. Indeed, we measured that such an

operation takes about 45 seconds on the average. Instead, we rely on suspension to

RAM, which allows to suspend and resume the activity of a machine at a low cost

(about four seconds on the average for resuming a machine) while saving as much energy

as if it were turned off (Talebi and Way, 2009). Suspend-to-RAM stores information on

the system configuration, the open applications, and the active files in main memory

(RAM), while most of the system’s other hardware is turned off. When a machine is

suspended, only the RAM and the network device are powered on.

3.2 Autonomic management policies

We aim at minimising energy consumption of the cluster, while ensuring acceptable QoS,

and being transparent to the end-users. As mentioned before, the management system

autonomously increases/decreases the number of replicated resources used by the

application when the load increases/decreases.

The J2EE architecture is initially deployed with one database server (MySQL). We

use probes to monitor some performance metrics on MySQL server nodes. These probes

periodically collect the informations on all the nodes where MySQL servers are

deployed. They compute a moving average of the collected data in order to remove any

artefact. They finally compute an average across all nodes, so as to observe a general load

indication of the whole replicated server pool. According to defined thresholds, the probe

will eventually generate an event to add or remove a replica.

We defined two different policies: the first provides the maximum QoS, while the

second allows the degradation of the QoS to save more energy.

First policy, maximum QoS: In this policy, we aim at minimising the consumed

energy while maintaining the maximum QoS that can be given by the system.

Addressing the energy and QoS tradeoff, we give priority to performance by

distributing the current workload onto a sufficient number of machines. This number

must be enough to serve end-users without effecting the QoS, while turning off the

unused machines to save energy.

To ensure the best QoS, the MySQL servers should never be saturated, thus we

monitor their status (i.e., CPU usage) and add more DB replicas to prevent

saturation.

From the end-users point of view, since there is no degradation of service, the

process of adding or removing a replica is completely transparent.

Second policy, degraded QoS: Instead of looking at MySQL servers’ status, we are

interested here in monitoring the QoS indicators, especially the response time.

If we allow application performance to be somewhat degraded, much greater energy

savings are possible. In this policy, the application’s performance is measured by a

service level agreement (SLA) related to response time. This allows to reduce the

amount of resources allocated to the applications to the point where the SLA goals

are just being met. More precisely, the SLA specifies the range where the response

time must be maintained. This range is obviously higher than the response time that

is obtained with the previous policy (response time is degradated), and it allows

managing the application with fewer DB servers. Figure 9 shows the occupancy rate

of machines during the experiments with the two implemented policies. If we

compare the occupancy rate of the static configuration with three database servers,

and the occupancy rate in the dynamic cases, we observe that the CPU-based policy

reduces the occupancy rate by 30%, while the latency-based policy reduces the

occupancy rate by 47%.

3.3 Implementation with TUNe

Figure 3 shows the deployment schema for the J2EE architecture, which includes a

frontend web server (Apache), an application server (Tomcat), a database load-balancer

(MySQLProxy) and a database server (MySQL). The MySQL server is monitored by a

Probe programme which is parameterised by different attributes:

max: this parameter specifies the maximum threshold of the probed property

(e.g., CPU usage or latency) that can be reached before triggering the addition of a

replica

min: this parameter specifies the minimum threshold of the probed property that can

be reached before triggering the removal of a replicas

maxServerCount: this parameter specifies the maximum number of replica

policy: this parameter specifies the used policy, i.e., the probed property

(CPU usage or latency).

The probe will eventually generate an event to add or remove a replica, as we describe in

the next sections.

3.3.1 Adding a new replica

To add a new replica, we must ensure that the resulting load is higher than the value of

the min parameter to prevent removing the replica just after adding it. The condition to

add a new replica can therefore be formulated as:

 and
(1)

CL
min N maxServerCount

N

where CL is the current load, and N is the number of currently used servers.

When this event is generated, TUNe allocates a node from a list of available nodes for

this server, turns the allocated node on via a Wake-on-LAN notification, and applies the

reconfiguration diagram corresponding to the addition of a new server when the node is

ready.

Figure 4(a) shows the reconfiguration diagram for adding a new MySQL server. The

event (upsizeMySQL) is generated by a Probe component instance, therefore the this

variable is the name of this Probe component instance. Then:

this.stop invokes the stop method on the probing component to prevent the

generation of multiple events.

new=this.MySQL++ creates a new MySQL instance. Note that in order to designate

the component on which an operation should be performed, a dotted syntax allows to

navigate through the component architecture, e.g., here to follow the link between

the Probe and the MySQL elements. The ++ operator increases by one the number of

instances of the MySQL element.

new.start invokes the start method on the newly created MySQL component instance.

mysqlProxy.restart restarts the database load-balancer to take into account the newly

created MySQL server.

this.start restarts the probe.

Figure 4 State diagrams for adding/removing a MySQL server

(a) (b)

3.3.2 Removing a replica

To remove a replica, we must ensure that the resulting load is lower than the value of the

max parameter to prevent adding a replica just after removing it. So the condition to

remove a replica can be formulated as:

 and (1)
(1)

CL
max N

N

When this event is generated, TUNe applies the reconfiguration diagram which removes

a replica and frees the node (with a suspend-to-ram).

Figure 4(b) shows the reconfiguration diagram for removing a MySQL server.

4 Evaluation

In this section, we present the evaluation of our solution. First we introduce the

application we deployed (an auction website modelled over eBay), the software

environment on which we deployed the application (the J2EE platform) and the hardware

(a French grid). Then we describe the test configuration and how we evaluate the energy

consumption.

Testbed application

The evaluation has been realised with RUBiS (Amza et al., 2002), a J2EE application

benchmark based on servlets, which implements an auction site modelled over eBay. It

defines 26 web interactions, such as registering new users, browsing, buying or selling

items. RUBiS also provides a benchmarking tool that emulates web client behaviours and

generates a tunable workload. This benchmarking tool gathers statistics about the

generated workload and the web application behaviour.

Software environment

The nodes run version 2.6.30 of the Linux kernel. The J2EE application has been

deployed using open source middleware solutions: Jakarta Tomcat 6.0.20 for the web and

servlet servers, MySQL 5.1.36 for the database servers, MySQLProxy 0.7.2 for the

database load-balancer, Apache 2.2.14 for the application server load-balancer. We used

RUBiS 1.4.3 as the running J2EE application. These experiments have been realised with

Sun’s JVM JDK 1.6.0.05. We used the MySQL connector/J 5.1 JDBC driver to connect

the database load-balancer to the database servers.

Hardware environment

The experimental evaluation was carried out using the Grid’5000 experimental testbed.1

The experiments required up to 14 nodes: one node for TUNe management platform, one

node for web server (Apache), six nodes for servlet servers (Tomcat), one node for

database load-balancer (MySQLProxy), up to three nodes for database servers (MySQL),

two nodes for RUBiS client emulators (which emulate up to 3,000 clients). The number

of nodes actually used during these experiments varies, according to the dynamic changes

of the workload, resulting in the dynamic resizing of the application. All the nodes are

connected through a 100 Mbps ethernet LAN to form a cluster.

Test configuration

In this evaluation, we provide measurements for the database replicated tier only. The

RUBiS benchmark is configured to send read-only queries. The parameters that control

adding/removing servers are shown in Table 1.

Table 1 Test configuration

Parameter name CPU-based policy Latency-based policy

max 80% 6,000 milliseconds

min 30% 20 milliseconds

Evaluation scenario

We aim at showing that dynamic allocation and deallocation of nodes in response to

workload variations allows energy saving.

In our benchmark, the load increases progressively up to 3,000 emulated clients:

50 new clients every 30 seconds. We configured RUBiS client to run for 31 minutes, so

the total time of the experiments is about one hour. During the experiment, the probe

monitors the MySQL server nodes.

The J2EE architecture is initially deployed with one database server (MySQL) and

TUNe reacts to the load variation by allocating and freeing nodes, as described in

Section 3.3

We compare the QoS (e.g., latency) variable and the energy consumption

(e.g., occupancy rate of machines) in two situations:

Static configuration of the J2EE architecture. We measure the performance

(regarding QoS and energy consumption) with one, two and three database servers.

Fewer servers will save energy but with a degradation of QoS. More servers will

optimise QoS, but with energy wasting.

Dynamic configuration of the J2EE architecture. TUNe is used to dynamically adapt

the number of database servers as described above. Therefore, quality of service is

guaranteed without wasting energy. We then compare the two policies described in

Section 3.2.

Energy evaluation

The first experiment we conducted was to measure the energy consumption of one node

according to its load. To do this we used a framework that collects energy usage

information in Grid’50002. This measurement is shown in Table 2.

Table 2 Energy consumption for one node

CPU usage (%) Energy consumption (watts)

0% 204

50% 211

100% 224

From these measurements, we can see that keeping a machine on when it is not used has

a high cost. This means that powering off machines is the most effective way to save

energy.

4.1 Results

4.1.1 Static configuration

In a first evaluation, we measured the latency and the CPU usage of the J2EE application

when it is statically configured with one, two and three MySQL servers. These

measurements are given in Figures 5 and 6.

We observe that when we use one database server, it becomes saturated between

times 750 and 2,950 (Figure 5). This saturation has an impact on the quality of service as

shown by Figure 6. Indeed, when the server is saturated, the latency increases at

the same time. We observe the same behaviour when we used two servers (between times

1,500 and 2,200). The configuration with three database servers can maintain the quality

of service (the latency is not increasing) for all the experiment’s time.

Figure 5 CPU usage in static configuration (see online version for colours)

Figure 6 Latency in static configuration (see online version for colours)

For the static configuration mode, we can see that maintaining the quality of service,

particularly during the peak load, requires three database servers, but these three servers

are not required during the whole experiment. Indeed, regarding the CPU usage in

Figure 5 and the latency in Figure 6, only one server is required from time 0 to 600 and

time 3,200 to 4,000. Only two servers are also required from times 600 to 1,400 and

times 2,400 to 3,200. Therefore, up to two servers could be switched off to save energy.

4.1.2 Dynamic configuration

With TUNe, we dynamically turn cluster nodes on – to be able to handle load peaks – and

off – to save power under lighter load. We only use nodes (and consume energy) when

needed.

Figure 7 shows the CPU load and the latency when using TUNe configured with the

CPU-based policy. To ensure the best QoS we do not allow server saturation. We start

with only one MySQL server, when this server approaches the saturation point (when the

CPU load reaches 80%), TUNe adds a new server to the architecture. This occurs twice

in our experiment: at times 690 and 1,400. We observe that using this policy ensures the

maximum quality of service regarding the latency, which is relatively stable during all the

experiment.

Figure 8 shows the CPU load and the latency when using TUNe configured with the

latency-based policy. Unlike the previous case, we allow QoS to be degraded in order to

save more energy. We observe this performance degradation regarding the latency. When

the latency reaches the predefined threshold (6,000 milliseconds) TUNe adds a new

server to the architecture. This occurs twice at times 1,030 and 1,930.

Figure 7 CPU-based policy (see online version for colours)

 Figure 8 Latency-based policy (see online version

for colours)

Figure 9 Static configuration (see online version for colours)

Figure 9 shows the occupancy rate of machines during the experiments with the two

implemented policies. If we compare the occupancy rate of the static configuration with

three database servers, and the occupancy rate in the dynamic cases, we observe that the

CPU-based policy reduces the occupancy rate by 30%, while the latency-based policy

reduces the occupancy rate by 47%.

5 Related work

Many works have addressed the issue of power management. Most of them have

focussed on energy management for electronic devices powered by electric battery, and

few have addressed this issue in grid or cluster infrastructures.

Many research works which aim at managing energy for a single processor system

can be used to optimise energy consumption independently on each node of a cluster. It

includes optimisations of the use of the processor, memory or input/outputs (disk or

network).

Most of the research that focuses on cluster-wide energy management deals with

resource allocation. We can mention some examples of such works:

Load balancing: in this category, we can cite the work of Pinheiro et al. (2001) who

developed an algorithm which makes load balancing decisions by considering both

the total load imposed on the cluster and the power and performance implications of

turning nodes off.

Virtualisation: in this category, we can cite the work of Hermenier et al. (2006) who

developed a system which relies on virtual machine migration for transparently

relocating any application in the cluster. The placement policy takes into account the

CPU and memory usages, in order to concentrate the workload on fewer nodes of the

cluster, thus allowing unused nodes to be shutdown. We are currently cooperating

with them to integrate our autonomic management system with their work.

Simulation: we can here cite the work of Khargharia et al. (2008). They present a

theoretical framework and methodology for autonomic power and performance

management in data centres. They rely on simulation to apply their approach to two

case studies, a multi-chip memory system and a high performance server cluster.

Our work is orthogonal to these contributions. While most of the works made in this

domain is specific to energy management, our autonomic computing approach is generic,

as it can be used to define any management policy for any distributed software

architecture. The field of energy management was not previously addressed by our

autonomic management system, but the experiments reported in this paper show that our

approach can by used to define a specific energy management autonomic policy.

The closest work to our is that of Das et al. (2008) who proposed a multi-agent

approach for managing power and performance in server clusters by turning off servers

under low-load conditions. Instead of relying on components and architectures, their

autonomic system follows a multi-agent paradigm. Our approach differs from this work

in several respects. First, multi-agent paradigms are programmed to manage specifically

the dynamicity of systems. Our approach focuses more on managing in a generic way

legacy systems that are intrinsically static (for example web servers or database servers).

Second, we differ from previous approaches that use multicriteria utility functions in that

we employ high level policies descriptions to dynamically reconfigure the managed

systems. This allows multiple goals definitions and goals combinations like repairing or

dynamic sizing. Because we offer a complete implementation of an autonomic manager

that takes into account multiple goals, we show in this paper that both the application

performance metrics and hardware power consumption metrics can be used to optimise

the system. Finally, these reconfiguration policies are externalised (not related to a

specific application but more generic and high level) and can be applied to other

applications or changed easily, which is not the case with a multi-agent system.

6 Conclusions and future work

Nowadays, medium or large-scale distributed infrastructures such as clusters and grids

are widely used to host various kinds of applications. Power consumption has become a

major challenge for most organisations that run these infrastructures. Many studies show

that they are not used at their full capacity and that there are therefore a significant source

of wasted power. Autonomic management systems have been recognised as a convenient

solution for management of distributed infrastructures.

The experiments that we conducted show that the autonomic computing approach can

be used for energy management in a distributed infrastructure. This approach meets the

needs of energy aware computing, as it can minimise power consumption without

affecting the performance of the system. In our experiments, we were able to obtain for a

typical web application benchmark a reduction of the power consumption between 30%

and 47% according to the used policy.

This paper reported on preliminary work. In the near future, we aim at evaluating

much deeply our prototype through more elaborated power management policies, which

would include other parameters, for example, network traffic information. We also wish

to integrate virtualisation techniques in our prototype, as it would enable transparent

process (VM) migration between hardware nodes.

Acknowledgements

The work reported in this paper benefited from the support of the French National

Research Agency through project SelfXL (ANR-08-SEGI-017-04).

References

Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J., Rajamani, K. and
Zwaenepoel, W. (2002) ‘Specification and implementation of dynamic web site benchmarks’,
5th Workshop on Workload Characterization, pp.3–13.

Broto, L., Hagimont, D., Stolf, P., Depalma, N. and Temate, S. (2008) ‘Autonomic management
policy specification in Tune’, Proceedings of the 2008 ACM Symposium on Applied
Computing, SAC ‘08, Fortaleza, Ceara, Brazil, pp.1658–1663, ACM, New York, NY, USA,
ISBN 978-1-59593-753-7, DOI 10.1145/1363686.1364080 [online] http://doi.acm.org/
10.1145/1363686.1364080 (accessed 16 October 2012).

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. (2009) ‘Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility’,
Computer Future Generation Systems, Vol. 25, No. 6, pp.599–616.

Cheng, S.W., Huang, A.C., Garlan, D., Schmerl, B. and Steenkiste, P. (2004) ‘Rainbow:
architecture-based self-adaptation with reusable infrastructure’, International Conference on
Autonomic Computing, pp.276–277.

Das, R., Kephart, J., Lefurgy, C., Tesauro, G., Levine, D. and Chan, H. (2008) ‘Autonomic multi-
agent management of power and performance in data centers’, 7th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp.107–114.

Gadafi, A., Broto, L., Sayah, A., Hagimont, D. and Depalma, N. (2010) ‘Autonomic energy
management in a replicated server system’, 6th IEEE International Conference on Autonomic
and Autonomous Systems.

Hagimont, D., Bouchenak, S., De Palma, N. and Taton, C. (2006) ‘Autonomic management of
clustered applications’, IEEE International Conference on Cluster Computing, pp.1–11.

Hagimont, D., Stolf, P., Broto, L. and Palma, N. (2009) ‘Component-based autonomic management
for legacy software’, in Zhang, Y., Yang, L.T. and Denko, M.K. (Eds.): Autonomic Computing
and Networking, pp.83–104, Springer, USA, ISBN 978-0-387-89828-5 [online]
http://dx.doi.org/10.1007/978-0-387-89828-5_4 (accessed 16 October 2012).

Hermenier, F., Loriant, N. and Menaud, J.M. (2006) ‘Power management in grid computing with
Xen’, Frontiers of High Performance Computing and Networking ISPA 2006 Workshops,
pp.407–416.

Kephart, J.O. and Chess, D.M. (2003) ‘The vision of autonomic computing’, IEEE Computer
Magazine, Vol. 36, No. 1, pp.41–50.

Khargharia, B., Hariri, S. and Yousif, M. (2008) ‘Autonomic power and performance management
for computing systems’, Cluster Computing, Vol. 11, No. 2, pp.167–181.

Oriezy, P., Gorlick, M., Taylor, R., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D. and
Wolf, A. (1999) ‘An architecture-based approach to self-adaptive software’, IEEE Intelligent
Systems, Vol. 14, No. 3, pp.54–62.

Pinheiro, E., Bianchini, R., Carrera, E. and Heath, T. (2001) ‘Load balancing and unbalancing for
power and performance in cluster-based systems’, Workshop on Compilers and Operating
Systems for Low Power.

Sharrock, R., Monteil, T., Stolf, P., Hagimont, D. and Broto, L. (2010) ‘Non-intrusive autonomic
approach with self-management policies applied to legacy infrastructures for performance
improvements’, International Journal of Adaptive, Resilient and Autonomic Systems IGI
Global, Vol. 2, No. 2, pp.1–20.

Talebi, M. and Way, T. (2009) ‘Methods, metrics and motivation for a green computer science
program’, 40th ACM Technical Symposium on Computer Science Education, pp.362–366.

Tchana, A., Temate, S., Broto, L. and Hagimont, D. (2010) ‘Autonomic resource allocation in a
J2EE cluster’, 1st International Conference on Utility and Cloud Computing.

Notes

1 An initiative from the French Ministry of Research through the ACI GRID incentive action,
INRIA, CNRS and RENATER and other contributing partners (see https://www.grid5000.fr).

