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Fusion Methods for Audio Source Separation
Xabier Jaureguiberry, Emmanuel Vincent and Gaël Richard

Abstract—A wide variety of audio source separation techniques
exists and can already tackle many challenging industrial issues.
However, by contrast to other application domains, fusion prin-
ciples were rarely investigated in audio source separation despite
their demonstrated potential in classification tasks. In this paper,
we propose a general fusion framework which takes advantage of
the diversity of existing separation techniques in order to improve
separation quality. Our approaches aim at obtaining a new source
estimate by summing the individual estimates given by different
separation techniques weighted by a set of fusion coefficients. We
investigate three alternative fusion methods which are based on
standard non-linear optimization, Bayesian model averaging or
deep neural networks. Experiments conducted on both speech
enhancement and singing-voice extraction demonstrate that the
proposed methods lead to diverse separation performance, yet all
outperform traditional model selection. The use of deep neural
networks for the estimation of time-varying coefficients notably
leads to great quality improvements, up to +3.3 dB in terms of
signal-to-distortion ratio (SDR) compared to model selection. As
such, our fusion framework is a practical and efficient way to get
rid of the need to choose and carefully tune a separation system
and it further allows the adaptation of existing techniques to
given separation problems and objectives.

Index Terms—Audio Source Separation, Fusion, Aggregation,
Ensemble, Deep Neural Networks, Deep Learning, Variational
Bayes, Model Averaging, Non-Negative Matrix Factorization,
Speech Enhancement, Singing Voice Extraction

I. INTRODUCTION

Blind audio source separation aims at recovering the audio
signals, called sources, that compose a given mixture. The
most challenging situation is at stake when the number of
sources is greater than the number of observable channels in
the mixture. As such, the problem becomes underdetermined.
Numerous approaches have been proposed in the literature
[1], [2]. The sources can be modeled based on their sparsity
[3], [4], their redundancy [5], [6], their spatial diversity [7],
their morphological characteristics [8]–[10] or according to
perceptual grouping criteria [11]. Amongst the existing source
models, Non-negative Matrix Factorization (NMF) is one of
the most popular [12]–[15]. For example, it has achieved
great performance in the latest CHiME contest [15], [16]
dedicated to speech enhancement. Apart from these model-
based methods, source separation can also be handled thanks
to more traditional data analysis techniques such as Indepen-
dent Component Analysis (ICA) [1] or Principal Component
Analysis (PCA) [17].

Faced with a given source separation problem to be solved,
one will tipically either develop his own approach or choose
an existing technique and adapt it to the problem at play.
This choice is guided by the type of mixture and sources
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to be separated and it often leads to a compromise between
separation quality and difficulty of implementation. Once a
technique has been chosen, the quality of separation also
depends on the tuning of its parameters which is often driven
by experience. For instance, the order of an NMF model is
known to have a great influence on separation quality [18].
Automatic tuning based on model-order selection principles
derived from information theory [19] or specific selection
criteria [20], [21] might be applied but with limited success
on real data [22]. Furthermore, since two distinct separation
methods may have complementary strengths and weaknesses,
selecting one method rather than another is expected to be
suboptimal.

Fusion techniques [23], also named ensemble or aggregation
techniques, refer to the combination of several methods in
order to better solve a given problem. Transposed to the
context of source separation, fusion is opposed to selection
as it consists in using several separation methods that differ
either by the technique itself or by its tuning and in combining
their results into a new solution. Fusion principles have been
particularly popular in classification [24] and have led to
efficient concepts such as bagging and boosting [25]. Despite
being similar to a classification problem [26], audio source
separation has barely benefited from fusion principles so far.
Recently, the concept of bagging for convolutive blind source
separation was introduced in [27] while the authors in [26],
[28] proposed to combine time-frequency masks in a way
similar to classification.

Following our previous works [22], [26], [29], we here
propose a general framework dedicated to fusion in audio
source separation which only assumes that all considered sep-
aration techniques lead to time-domain estimated signals, thus
allowing the combination of heterogeneous separation tech-
niques as well as identical techniques with different parameter
settings. In [26], we proposed a preliminary framework in
which the fusion rule consisted in summing the estimated
time-domain source signals weighted by static time-invariant
fusion coefficients. In [29], we proposed to adapt the fusion
coefficients to the signal by Bayesian model averaging, thus
turning the previous static rule into an adaptive one.

In the following, we further extend these works to a novel
adaptive time-varying fusion rule in which the fusion weights
are adapted to each frame of the mixture to be separated.
As such, this paper establishes a general framework which
handles all the aforementioned fusion rules. Although it is
presented for single channel signals, it can be easily extended
to the multichannel case. In addition, we propose improved
learning methods for time-invariant fusion and we introduce a
variational Bayesian (VB) approach and a deep neural network
(DNN) based approach for time-varying fusion. We evaluate
performance using two distinct objective functions, namely
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the Mean Square Error (MSE) and the Signal-to-Distortion
Ratio (SDR) of the source estimates. We compare all the
proposed methods on a speech enhancement task for the fusion
of source estimates obtained by NMFs with different numbers
of components. We also conduct additional experiments on
professionally-produced music signals to get new insight on
the combination of heterogeneous separation techniques.

The structure of the rest of the paper is as follows. The
general framework is introduced in Section II. The estimation
of time-invariant static fusion coefficients is investigated in
Section III. A VB algorithm for the estimation of adaptive
time-invariant and time-varying fusion coefficients is presented
in Section IV for the specific case of NMF. In Section V, we
exploit DNNs to determine time-varying adaptive fusion co-
efficients. The proposed fusion rules are compared in Section
VI in the context of speech enhancement using NMF models
while the fusion of heterogeneous separation techniques is
studied in Section VII. Finally, conclusions are drawn in
Section VIII.

II. GENERAL FRAMEWORK

A. Single-channel source separation

Throughout this paper, we will assume that the source
separation problem we wish to address consists in estimating
the J sources sj(t) that compose an observable linear mixture
x(t). The mixing equation can be written in the Short-Time
Fourier Transform (STFT) domain as

xfn =

J∑
j=1

sj,fn + εfn (1)

in which f and n respectively denote the frequency bin
and the time frame. In the following, we refer to sfn =
[s1,fn ..., sJ,fn]T as the source vector and to εfn as the sensor
noise.

B. Fusion of different source estimates

Let us suppose that M distinct models and/or algorithms
can be used to estimate each of the J sources. We define a
new estimate of each source through a simple weighted sum
of the M estimated sources s̃jm,fn indexed by model m:

∀j, f, n, s̃j,fn =

M∑
m=1

αm,fn s̃jm,fn, (2)

in which ∀m, f, n, αm,fn ≥ 0 and
∑M
m=1 αm,fn = 1. In the

following, we refer to α = {αm,fn}m=1..M as the set of
fusion coefficients, or simply the fusion vector.

C. Time-invariant vs. time-varying fusion

Several special cases of the above general fusion rule can
be considered. One such special case, called time-invariant
fusion, is to assume that the fusion coefficients αm remain
independent of the time-frequency bin (f, n). This assumption
leads to a simplified expression of (2) which turns out to be

equivalent to a weighted sum of the estimated time-domain
source signals:

∀j, t, s̃j(t) =

M∑
m=1

αms̃jm(t). (3)

To go further, we propose in this work to investigate another
special case of the time-frequency fusion rule (2) in which the
fusion coefficients αm,n depend on time only:

∀j, f, n, s̃j,fn =

M∑
m=1

αm,n s̃jm,fn. (4)

Similarly to above, this fusion rule, called herein time-varying
fusion, can be rewritten in the time domain. Denoting s̃njm(t)
the mth estimation of source j within time frame n, that is the
inverse STFT of {s̃jm,fn}f=1..F , the resulting framed source
signal is expressed as

s̃nj (t) =

M∑
m=1

αm,ns̃
n
jm(t). (5)

Contrary to (3), the fusion coefficients now depend on the
frame n. The full estimated source s̃j(t) is then recovered by
summing s̃nj (t) over n in a traditional overlap-add manner.

D. Static vs. adaptive fusion

Two distinct study cases can already been derived from
(3) and (5) according to whether the fusion coefficients αm
depend on the observed mixture x(t) or not. In the following,
we will refer to static fusion when the fusion coefficients do
not depend on the mixture (see Section III) and to adaptive
fusion when the fusion coefficients are estimated according to
the mixture to be separated (see Sections IV and V).

E. Oracle estimation

In audio source separation, the quality of separation is often
measured by the Signal-to-Distortion Ratio (SDR) expressed
in decibels (dB) [30]. For instance, the SDR of the source
estimate s̃j(t) is given by

SDR [s̃j ] = 10 log10

∑
t ‖sj(t)‖

2∑
t ‖sj(t)− s̃j(t)‖

2 (6)

where sj(t) denotes the true source signal.
As the true sources are not available in practice, fusion

results which rely on their knowledge will be called oracle
[31], so as to emphasize that they do not account for achievable
results in practical situations but that they give instead an upper
bound on the performance that can be expected from a given
fusion rule.

As such, for a given mixture x(t), we define the oracle
time-invariant fusion coefficients as the coefficients αm that
maximize the SDR of the estimated source s̃j(t). They are
obtained by solving the following maximization problem under
linear equality and inequality constraints:

argmax
{αm}m=1..M

10 log10

∑
t‖sj(t)‖

2∑
t‖sj(t)−

∑M
m=1 αms̃jm(t)‖2

subject to
{
∀m, αm ≥ 0∑M
m=1 αm = 1

.
(7)
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This turns out to be equivalent to the minimization of the
mean square error (MSE) between the true source sj(t) and
its fused estimate

∑M
m=1 αms̃jm(t) which can be formulated

as a standard Quadratic Programming (QP) [32] problem in
matrix form

argmin
α

c+ αT G̃α− 2 d̃T α

subject to
{
∀m, αm ≥ 0∑M
m=1 αm = 1

(8)

in which α denotes the vector of fusion coefficients and αT

its transpose. The matrix G̃ of size M ×M is the so-called
Gram matrix whose elements are the scalar products between
the estimated signals, i.e.,

∀m1,m2, G̃m1m2 =
∑
t

s̃jm1(t)s̃jm2(t). (9)

Similarly, the vector d̃ of length M is composed of the scalar
products between the estimated signals and the true source
signal and the scalar c is the squared norm of the true source
signal:

∀m, d̃m =
∑
t sj(t)s̃jm(t)

c =
∑
t ‖sj(t)‖

2
.

(10)

Oracle results for time-varying fusion can be similarly
computed by replacing the estimated and the true sources by
their framed versions s̃njm(t) and snj (t). The components G̃,
d̃ and c are thus to be computed on each frame n and not on
the whole signal.

III. STATIC FUSION

Assuming that we have defined a subset of M separa-
tion systems that are relevant for a given source separation
problem, static fusion aims at estimating a unique vector
of fusion coefficients for the whole signal, each coefficient
being independent of the mixture x(t) to be separated. In this
context, the time-invariant rule (3) and the time-varying rule
(5) are strictly equivalent. In this section, we propose three
distinct methods to estimate static fusion coefficients.

A. Static fusion by mean

The first, simplest method consists in taking the mean of
the M estimated signals s̃jm(t), which is equivalent to setting
∀m,αm = 1/M in (3). In the following, we will refer to this
approach as static fusion by mean.

B. Learned static fusion

As an alternative, we propose a learning method to de-
termine the static fusion coefficients from a representative
training dataset. To do so, we proposed in [26] to solve a QP
problem similar to (8) which was equivalent to minimizing
the Mean Square Error (MSE) between the true and estimated
sources on the training dataset. Supposing that our training
dataset is composed of L mixtures x(l)(t) together with their

true sources s
(l)
j (t), we thus wish to solve the following

minimization problem

argmin
α

∑
l cl + αT (

∑
l G̃l)α− 2 (

∑
l d̃

T
l )α

subject to
{
∀m, αm ≥ 0∑M
m=1 αm = 1

,
(11)

in which G̃l, d̃l and cl are defined as in (9) and (10) but for
each example l. In the following, the coefficients thus obtained
will be referred to as MSE-based static fusion coefficients.

Here, to go further, we propose to optimize the coefficients
αm in order to maximize the average SDR on the training
dataset. This turns out to be equivalent to the following
minimization problem :

argmin
α

∑
l 10 log10

(
cl + αT G̃lα− 2 d̃Tl α

)
subject to

{
∀m, αm ≥ 0∑M
m=1 αm = 1

.
(12)

In the following, the fusion coefficients thus obtained will be
called SDR-based static fusion coefficients.

Both MSE-based and SDR-based static coefficients αm can
be used to separate any other mixture x(t) which is not
present in the training dataset. Note that alternative choices
for the objective function could also be considered such as
the Signal-to-Interference Ratio (SIR), the Signal-to-Artifacts
Ratio (SAR), a combination of these measures [30], or any
other objective function relevant to a given source separation
problem.

IV. ADAPTIVE FUSION USING VARIATIONAL BAYESIAN
AVERAGING

The quality of separation can be improved by adapting
the fusion coefficients to the mixture to be separated. In that
context, we propose to exploit the principle of Bayesian model
averaging [33] and apply it to NMF in order to derive adaptive
fusion coefficients.

A. Non-negative matrix factorization

1) Maximum-likelihood formulation: Historically, NMF
has been proposed as an optimization problem aiming at de-
composing a non-negative observation matrix into the product
of two other non-negative matrices [34]. When using NMF
for audio source separation [35], it is usually assumed that the
Power Spectral Density (PSD) vj,fn of each source at time n
and frequency f can be modeled as the result of NMF

vj,fn =

Kj∑
k=1

wj,fkhj,kn, (13)

in which the coefficients {wj,fk}
k=1..Kj

f=1..F form the dictionary
of spectral templates characterizing the spectral content of
the jth source and {hj,kn}n=1..N

k=1..Kj
are the so-called activation

coefficients which indicate the amplitude of activation of each
spectral template across time. Kj is the number of components,
i.e., the number of spectral templates chosen to model source
j.
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Fig. 1. Graphical model for Bayesian NMF

Parameter estimation is performed by iterative multiplicative
update rules which minimize a certain divergence d between
the mixture PSD |xfn|2 on the one hand, and the sum of the
J source PSDs vj,fn and the noise PSD σ2 on the other hand:

argmin
w,h

∑
fn

d

|xfn|2
∣∣∣∣∣∣
J∑
j=1

vj,fn + σ2

 . (14)

In the following, we consider the Itakura-Saito (IS) divergence:

dIS(x|y) =
x

y
− log

x

y
− 1. (15)

Once the model parameters have been estimated, the source
STFT coefficients are estimated as:

s̃j,fn =
vj,fn∑J

j′=1 vj′,fn + σ2
xfn. (16)

This original formulation of NMF can also be seen as a
maximum likelihood (ML) problem [21]. In that case, each
source sj,fn is assumed to follow a circularly-symmetric
complex normal distribution

sj,fn ∼ N (0, vj,fn) (17)

whose variance vj,fn is the result of NMF as defined in (13).
εfn is supposed to follow a Gaussian distribution of zero
mean and of variance σ2 so that εfn ∼ N

(
0, σ2

)
. The source

estimate given in (16) is thus justified as being the Minimum
Mean Square Error (MMSE) estimate of source j [36].

The results of separations obtained with NMF highly depend
on the number of components Kj that is chosen for each
source [18], [26]. Assuming that the separation process has
been conducted for M different numbers of components Kjm

leading to M estimates s̃jm(t) of each source j, a new source
estimate can be obtained using (2).

2) Variational Bayesian formulation: To go further, we
propose to consider the generative model of NMF depicted
in Fig. 1, which allows full Bayesian treatment. Both the
dictionary and the activation coefficients are seen as random
variables and assumed to follow Gamma priors [37]:

wj,fk ∼ Γ(a, a) and hj,kn ∼ Γ(b, b). (18)

The goal of Bayesian inference is to estimate the posterior
probability over all model parameters. As this is generally
intractable, some approximation is required. VB is a practical
inference algorithm which has been successfully applied to
this generative model [37], [38] in particular.

In this context, the posterior probability of the source
vector sfn is identified as a multivariate complex Gaussian
distribution denoted as q(sfn) = N (µs,fn,Σs,fn). The STFT
coefficients of the sources are then given by the expectation
µs,fn of this posterior distribution, which can be expressed in
a similar form as (16) with

s̃j,fn = µsj,fn
=

Cj,fn∑J
j′=1 Cj′,fn + σ2

xfn. (19)

The term Cj,fn depends on the NMF parameters of source j
through the expectation

Cj,fn =

Kj∑
k=1

E
[

1

wj,fkhj,kn

]−1
(20)

in which E denotes the expectation over the variational poste-
riors q(wj,fk) and q(hj,kn) which turn out to be generalized
inverse Gaussian (GIG) distributions. For the detailed expres-
sions of Σs,fn, q(wj,fk), q(hj,kn) and Cj,fn, see [29].

B. Adaptive fusion as variational Bayesian averaging

Practically, VB proposes to approximate the marginal like-
lihood of a model by the so-called free energy, which can then
be used to select the most likely model [39], [40] amongst a
set of possible models. VB has been notably applied to NMF
in order to infer the best number of components [37], [41]. To
go further, we propose here to use the free energy to achieve
fusion instead of simple selection.

Indeed, the above VB formulation of NMF gives a straight-
forward interpretation of the fusion rule expressed in (5). We
here assume that the separation process has been indepen-
dently conducted for M different NMF models, each model
being defined by the set of numbers of components chosen to
model the J sources and denoted as Km = {K1m, ...,KJm}.
Kjm refers to the number of components chosen in model
m for source j. Bayesian model averaging [33] proposes to
average the M source posterior distributions qm(sfn) as

q(sfn) =

M∑
m=1

p(Km|x) qm(sfn), (21)

in which p(Km|x) is the posterior probability of model
m. Taking the expectation of (21) leads to the following
expression of the fused source

s̃j,fn =

M∑
m=1

p(Km|x) s̃jm,fn. (22)

Thanks to Bayes rule, the posterior over Km can be
expressed as the product of its prior probability πm and its
likelihood p(x|Km), up to a normalization constant. As this
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Fig. 2. Shape of the order posterior as a function of the shape parameter β,
for one example of the CHiME corpus

likelihood is intractable in practice, we replace it with the free
energy given by VB inference and denoted as Lm:

Lm =
∑
fn E [log p(x|sfn)]

+
∑
j,fn (E [log p(sj,fn|wj , hj)]− E [log q(sj,fn)])

+
∑
j,fk (E [log p(wj,fk)]− E [log q(wj,fk)])

+
∑
j,kn (E [log p(hj,kn)]− E [log q(hj,kn)]) .

(23)

Here, the operator E denotes the expectation over the varia-
tional distributions of each parameter, i.e., q(sj,fn), q(wj,fk)
and q(hj,kn). For details on their computation, refer to [38].
Once the free energy has been computed for each model m,
the fusion coefficients introduced in (2) are identified as the
posterior probability of Km:

αm ∝ πm expLm . (24)

Due to the approximate inference strategy and because
the data do not strictly adhere to any of the M models,
we have observed in preliminary experiments that the fusion
coefficients estimated according to (24) practically result in a
selection instead of a fusion, i.e., one fusion coefficient is equal
to 1 and the others are equal to 0. Moreover, it turns out that
the selected model is not always the one which gives the best
separation quality. As a consequence, we propose to introduce
a parameter β ≥ 1 that aims at controlling the shape of the
posterior of Km by penalizing its entropy [42]. The fusion
coefficients are now given by

αm ∝ πm expLm/β . (25)

As shown in Fig. 2, when β = 1, the proposed fusion turns
out to select the model with the highest free energy Lm.
On the contrary, when β tends towards infinity, the posterior
distribution tends towards the prior probabilities πm. A value
of β between these two extreme values allows us to achieve a
suitable compromise between the prior and the likelihood of
each model.

C. Learning the priors and the shape parameter

The prior probabilities πm as well as the shape parameter
β must be learned. Similarly to the learned static fusion
approaches introduced in Section III-B, we propose to learn
them by optimizing the MSE or the SDR on a representative
training dataset. This time, the optimization problem can be
written in the MSE case as

argmin
π,β

∑
l

(
cl − 2 d̃Tl

(
π ◦ eLl/β

)
+
(
π ◦ eLl/β

)T
G̃l

(
π ◦ eLl/β

) )
subject to

{
∀l,m, πm eL

(l)
m /β ≥ 0

∀l,
∑
m πm eL

(l)
m /β = 1

,

(26)

or in the SDR case as

argmin
π,β

∑
l 10 log10

(
cl − 2 d̃Tl

(
π ◦ eLl/β

)
+
(
π ◦ eLl/β

)T
G̃l

(
π ◦ eLl/β

) )
subject to

{
∀l,m, πm eL

(l)
m /β ≥ 0

∀l,
∑
m πm eL

(l)
m /β = 1

.

(27)

In both cases, π denotes the vector of priors πm, Ll the vector
composed of the M free energies L(l)

m for example l and ◦
the Hadamard (or element-wise) product operator. Due to the
introduction of the shape parameter β, solving (26) and (27) on
a given training database is much more complex than for static
fusion as the related optimization problems become non-linear
under non-linear constraints. However, trust region algorithms
[32], [43] may reach satisfactory local minima.

D. Extension to time-varying fusion

The approach of Section IV-B can be extended to the
estimation of time-varying fusion coefficients. To that aim,
the free energy for frame n is defined as

Lm,n =
∑
f E [log p(x|sfn)]

+
∑
j,f (E [log p(sj,fn|wj , hj)]− E [log q(sj,fn)])

+
∑
j,fk (E [log p(wj,fk)]− E [log q(wj,fk)])

+
∑
j,k (E [log p(hj,kn)]− E [log q(hj,kn)]) .

(28)

Time-varying fusion coefficients are then estimated for each
frame n as

αm,n ∝ πm expLm,n/β (29)

in which the priors πm and the shape parameter β can be
learned on a representative dataset by replacing the summation
on l in (26) and (27) by a summation on both l and n.
Moreover, G̃l, d̃l and cl must be replaced by their framed
counterparts G̃l,n, d̃l,n and cl,n.

V. ADAPTIVE FUSION USING NEURAL NETWORKS

The adaptive fusion scheme presented in Section IV requires
a Bayesian treatment of source separation which may not be
available for other models than NMF. Moreover, as it will be
demonstrated in Section VI, adaptive time-varying averaging
as exposed in Section IV-B leads to unsatisfactory results com-
pared to oracle fusion. As a consequence, we propose in this
section to resort to DNNs in order to determine time-varying
fusion coefficients and get closer to oracle performance.
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A. Problem formulation
Given a representative training dataset composed of several

mixtures with the corresponding true and estimated sources,
we wish to estimate the fusion coefficients from the knowledge
of the mixture and the estimated sources only. Traditionally,
such an estimation is conducted in two steps. The first step
consists in computing some features of the inputs, namely
the mixture signal x(t) and the M estimated signals s̃jm(t).
The second step aims at mapping these features to the desired
output, here the oracle vector of fusion coefficients {αm,n}.

For the feature extraction step, the set of potential features
is extremely large and the selection of an appropriate subset
varies with respect to the type of mixture and sources at
play. For instance, we can name Mel-Frequency Cepstrum
Coefficients (MFCCs), Linear Prediction Coefficients (LPC),
chroma and so on [44].

For the mapping step, Gaussian Mixture Models (GMMs)
have been widely used [45]. However, DNNs have now
outperformed GMMs in many fields [46]. The main advantage
of DNNs is their ability to automatically learn features from
the input and map them to the desired output. The recent
introduction of rectified linear units [47] replacing traditional
hyperbolic tangent and logistic activations has brought even
more advantages such as faster and more accurate conver-
gence. Neural networks thus seem to be a good solution to
handle both feature and mapping steps jointly.

B. Network architecture
Some considerations about the architecture of the neural

network required for such a task can already be discussed,
without any experimental context. Concerning the dimension-
ality of the problem, we can expect to have a small output
layer of size M (i.e., one neuron per fusion coefficient) but
a much larger input layer. In the following, we will consider
that the input is composed of short-term power spectra of the
available signals.

More precisely, in our experiments detailed in Sections VI
and VII, we propose that the input relative to frame n is
defined as follows:

|xn−C |2 · · · |xn|2 · · · |xn+C |2
|s̃j1,n−C |2 · · · |s̃j1,n|2 · · · |s̃j1,n+C |2

... · · ·
... · · ·

...
|s̃jm,n−C |2 · · · |s̃jm,n|2 · · · |s̃jm,n+C |2

... · · ·
... · · ·

...
|s̃jM,n−C |2 · · · |s̃jM,n|2 · · · |s̃jM,n+C |2


(30)

in which the first line refers to the mixture with xn =
[x1n, ..., xfn, ..., xFn] and the next M lines refer to the M es-
timated sources with s̃jm,n = [s̃jm,1n, ..., s̃jm,fn, ..., s̃jm,Fn].
Each line is composed of the power spectra of the current
frame, the C preceding frames and the C following frames.
We hence take advantage of the context of the central frame
n. Each frame being a vector of F frequency bins, the final
input which results from the flattening of matrix (30) into one
dimension is a vector of length F (2C + 1)(M + 1).

In order to decrease the size of the neural network, a reduc-
tion of the input dimensionality might thus be needed. For this

purpose, Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA) are both commonly used to reduce
high-dimensional data while retaining relevant components of
the input [48]. For our experiments, we chose to use PCA
so as to keep a certain amount of data variance. Moreover,
the training data have been standardized, i.e., centered and
normalized to unit variance, before and after PCA.

The output layer, which corresponds to the M estimated
time-varying fusion coefficients α̃m,n, is composed of M
neurons, one for each coefficient. Each output neuron uses
a softmax function as activation in order to ensure that
∀n,

∑
m α̃m,n = 1. Other layers are made of Rectified Linear

Units (ReLUs).

C. Training cost functions

A neural network is usually trained by gradient descent
together with backpropagation of errors with respect to a
given cost function to be minimized [49]. The cost function is
often defined as a function of the estimated output, here the
estimated coefficients {α̃m,n} for time frame n, and of the
desired output, here the oracle coefficients {αm,n} as defined
in Section II-E. A common choice is to minimize the mean
square error. For a given frame n, the MSE is defined as

ϕOMSE
n =

M∑
m=1

(αm,n − α̃m,n)
2
. (31)

In the following, we will refer to this cost as the Oracle MSE
(OMSE) to distinguish it from the source MSE cost already
introduced in (8), (11) and (26). Another common choice
is to use the Cross-Entropy (CE) generalized to non-binary
multiclass problems which is defined in our context as

ϕCE
n = −

M∑
m=1

αm,n log
α̃m,n
αm,n

. (32)

Both these cost functions require the oracle fusion coefficients
to be known in order to estimate the errors.

Hereafter, we propose two other cost functions that do not
require the knowledge of oracle fusion coefficients. Following
the MSE optimization formulations of (11) and (26), the cost
function for training can be defined as the MSE between the
nth frame of the true source snj (t) and of its estimate s̃nj (t)
fused with its corresponding estimated fusion coefficients, i.e.,
the outputs of the network α̃m,n. For frame n, the cost function
is defined as

ϕSMSE
n = cn + α̃Tn G̃n α̃n − 2 d̃Tn α̃n (33)

where cn, d̃n and G̃n are defined in (9) and (10). Following
(12) and (27), the cost function can also be defined as the SDR
of the nth frame of source estimate s̃nj (t) fused with estimated
fusion coefficients α̃m,n. The cost function thus becomes :

ϕSDR
n = 10 log10

(
cn + α̃Tn G̃n α̃n − 2 d̃Tn α̃n

)
. (34)

Note that in order to make the training as efficient as
with the two other cost functions, cn, G̃n and d̃n can be
precomputed for all frames n of the training dataset.
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Finally, we shall remark that neural networks are usually
trained by iterative mini-batch gradient descent so that each
iteration aims at minimizing the mean cost function over a
small sample B of the training dataset, called a mini-batch.
The total cost function to be minimized at each iteration is
thus

ϕ =
1

|B|
∑
n∈B

ϕn (35)

in which |B| is the mini-batch size. As a consequence, in an
on-line setting, i.e., when |B| = 1, the source MSE cost (33)
and the source SDR cost (34) are strictly equivalent. In the
following however, the mini-batch size has been fixed to |B| =
50.

D. Other settings

At each iteration, the frames which compose a mini-batch
are randomly picked from the training dataset. At the end of
each epoch (i.e., when all training frames have been presented
exactly once), the performance of the current network is
evaluated on a validation dataset. According to the average
validation score, the learning rate is adapted for next epoch
and early stopping may be performed following the method
proposed in [50]. The training is stopped either when the
validation score does not evolve anymore or when a predefined
maximum number of epochs is attained. The performance of
the final network is then evaluated on a test dataset. For our ex-
periments, the neural networks have been implemented thanks
to the Python library Theano [51], [52] which enables to
compile mathematical expressions for optimized computation
either on a Central Processing Unit (CPU) or on a Graphics
Processing Unit (GPU).

VI. EXPERIMENTAL EVALUATION ON A SINGLE-CHANNEL
SPEECH ENHANCEMENT TASK

In this section, we propose to evaluate and compare all
the fusion techniques described in Sections III, IV and V.
As the probabilistic fusion framework of Section IV has been
introduced in the context of NMF models, we restrain our
study to a speech enhancement scenario in which the sources
will be exclusively modelled by NMF.

A. CHiME corpus

For this experiment, we rely on the CHiME corpus [53].
The signals are composed of speech from 34 distinct speakers
overlapped with noise signals recorded in a real domestic
environment.

We divided the data into four disjoint datasets :
• a clean training dataset which features 500 utterances

in clean conditions (i.e., reverberated but without back-
ground noise) for each speaker,

• a training dataset composed of 600 utterances per
speaker, each mixed with background noise at six dif-
ferent SNRs,

• a validation dataset composed of 34 utterances (one for
each speaker), each mixed with background noise at six
different SNRs,

• and a test dataset also composed of 34 utterances, each
mixed with background noise at six different SNRs.

The background noise has been randomly chosen
in order to reach the six different SNRs, namely
{−6 dB,−3 dB, 0 dB, 3 dB, 6 dB, 9 dB}. The clean training
dataset has been used to learn speaker-dependent dictionaries
W1m for each number of components K1m = 2m. The
training dataset has been used to train the neural networks
(see Section IV), to learn static fusion coefficients (see Section
III) and to learn the priors πm and the shape parameter β
(see Section IV). The validation set has been used in the deep
learning approach in order to perform early stopping and
learning rate adaptation according to [50]. Finally, the test set
aims at evaluating and comparing the proposed techniques.
Note that the test set has never been used either to learn the
fusion coefficients or to optimize the architecture of neural
networks.

B. Algorithm settings

Single-channel speech enhancement aims at cleaning up a
speech signal s1 from a background noise s2. Both the speech
and the noise signals are modelled by NMF either by using
the ML formulation of Section IV-A1 or the VB formulation
of Section IV-A2.

In this context, the signal of interest is the speech signal
s1. As such, we propose in the following to keep the number
of components of the background model to a constant value
K2 = 32 and to vary the number of components of the speech
model K1 only. We consider M = 7 possible numbers of
components K1m = 2m with m = 1..M . The time-frequency
representation used in this experiment is the Quadratic Equiva-
lent Rectangular Bandwidth (QERB) transform [54] with half-
overlapping windows of 1024 samples and F = 350 frequency
bins, in place of the traditional STFT.

C. Evaluation measure

As aforementioned, the SDR is the most used measure
in audio source separation. Methods will thus be compared
with respect to the SDR of the estimated speech signals. The
performance on a given example is measured as the global
SDR on the whole example signal as defined in (6). It is then
averaged across all examples of the test (resp. validation) set.

D. ML vs. VB inference for NMF

As a baseline, the SDRs of the speech signals estimated
with both ML-NMF and VB-NMF and are drawn on Fig. 3,
as a function of the M number of components. The highest
performance is obtained using VB-NMF with 16 components
(5.85 dB in average). The graph also suggests that VB-
NMF better accommodates with low numbers of components
whereas ML-NMF performs better for higher numbers of
components. However, as it has more parameters to estimate,
note that VB-NMF is less computationally efficient than ML-
NMF (14.5 seconds vs. 12.8 seconds in average per excerpt).
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Fig. 3. Separation performance of ML-NMF and VB-NMF as a function of
the number of components
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Fig. 4. Separation performance of static time-invariant fusion compared to
oracle time-invariant fusion, for both ML-NMF and VB-NMF

E. Static fusion

Hereafter, the results of static fusion methods introduced in
Section III are presented and compared to traditional selection
results.

1) Selection vs. fusion: Fig. 4 depicts the results given by
oracle time-invariant fusion. These are to be compared with
oracle time-invariant selection which is also shown on Fig.
4 and which consists in selecting for each example the best
performing model instead of combining the M models as in
fusion. In both ML and VB cases, oracle time-invariant fusion
outperforms oracle time-invariant selection (+0.54 dB for ML-
NMF and +0.31 dB for VB-NMF), thus demonstrating the
interest of fusion over simple selection.

2) Learned fusion and fusion by mean: This is confirmed
by the results of practical learning-based techniques also
depicted in Fig. 4.

MSE SDR
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Fig. 5. Separation performance of adaptive time-invariant and time-varying
fusions using variational Bayesian averaging, for both MSE and SDR opti-
mization

Usually, only one model is used for source separation and
this model is chosen by an experimental assessment. SDR-
based static selection simulates such a choice by retaining the
individual model that best performs on the training dataset in
terms of SDR. MSE-based static fusion is obtained by solving
the minimization problem (11) whereas SDR-based static
fusion is obtained by solving (12). We notice that optimizing
the MSE on the training set fails to determine static fusion
coefficients that improve separation quality in terms of SDR
compared to standard SDR-based static selection. However,
optimizing the average SDR on the training set allows us to
improve SDR-based static selection by 0.54 dB and 0.74 dB
with ML-NMF and VB-NMF respectively.

Finally, it is worth noting that simple fusion by mean gives
interesting performance. Indeed, contrary to the others, this
fusion approach can be applied in situations where a training
dataset is not available. Despite this, it outperforms SDR-based
static selection by 0.57 dB in the VB-NMF scheme.

F. Adaptive fusion using variational Bayesian averaging

The performance of static fusion methods are satisfactory
compared to traditional selection techniques but the adaptation
of the fusion coefficients to the mixture at play could allow
us to get closer to oracle time-invariant performance. Fig.
5 depicts the results obtained by adaptive time-invariant and
time-varying fusions using variational Bayesian averaging, as
exposed in Section IV, for both MSE (26) and SDR (27) opti-
mizations. For comparison, static time-invariant fusion is also
depicted. Once again, SDR optimization leads to better results
than MSE optimization. SDR-based time-invariant adaptive
fusion allows an improvement of 0.2 dB SDR with respect to
its static counterpart. However, learned adaptive time-varying
fusion which allows to adapt the fusion at the time frame
level is not as efficient as we expect. It is even outperformed
by adaptive time-invariant fusion, which is probably due to
better minima found for (26) and (27) in the time-invariant
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case than in the time-varying case. Furthermore, the overall
mixed performance of these methods based on variational
Bayesian averaging can be explained on the one hand by
the approximations needed to estimate the free energy (23)
of each model, and on the other hand by the complexity of
the functions (26) and (27) to be optimized which does not
guarantee a good local minimum.

G. Adaptive time-varying fusion using DNNs

Adaptive time-varying fusion based on variational Bayesian
averaging has failed to improve separation performance com-
pared to its time-invariant counterpart. Yet, oracle time-varying
fusion results show that it has a great potential as the average
SDR that could be reached on our test set equals 10.35 dB
with ML-NMF and 9.99 dB with VB-NMF. As we will show
in this subsection, the adaptive time-varying fusion framework
based on DNNs, exposed in Section V, allows us to outperform
adaptive fusion based on variational Bayesian averaging.

The search for the best DNN architecture for our prob-
lem has been conducted through the testing of several
DNN architectures, from single-layer networks to deeper
networks. Notably, the number of hidden layers has been
varied from one to four layers and the number of units
per layer has been defined as multiples of the output
layer size M . We have tested 11 layer sizes, namely
{7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168}. We here
used the ML-NMF formulation as the resulting oracle time-
varying performance is higher than for VB-NMF. These ar-
chitectures will be reviewed in the next subsections. To start
with, let us introduce the architecture with a unique hidden
layer that performs best.

1) Best single-layer architecture: The best architecture has
been selected according to its performance on the validation
dataset. The input was composed as exposed in Sections V-B
and VI-B. According to (30), we chose a context of size
C = 2, which means that we considered the two frames
that precede and the two frames that follow the central frame
n for each input signal. We computed a PCA on the whole
input in order to keep 85 % of the variance, which allows us
to reduce the input dimensionality from 14000 to 154 input
units. Remember that the data have also been standardized,
i.e., centered and normalized to unit variance, before and after
PCA. The best results have been obtained using the SDR cost
as defined in Sec. V-C.

The results for neural networks with a unique hidden layer
have been plotted in Fig. 6 with respect to the number of
hidden units for both the validation and the test datasets. The
best performing network on the validation set has 896 hidden
units and leads to a SDR of 8.46 dB on the test set. Adaptive
fusion using DNNs thus outperforms all aforementioned fusion
techniques and allows a gain of 3.3 dB SDR compared to
SDR-based static selection. It even outperforms oracle time-
invariant fusion by almost 0.9 dB.

We might notice that DNNs with half and twice as many
hidden units as the best architecture perform equivalently.
From 7 to 896 hidden units, the performance monotonically
increases with the number of hidden units. Starting from 1792

Number of Number of Number of SDR
hidden layers units per layer parameters (dB)

1

224 36,295 8.32
448 72,583 8.46
896 145,159 8.46
1792 290,311 8.47
3584 580,615 8.41

2 224 86,695 8.29
448 273,735 8.32

3 224 137,095 8.22
448 474,887 8.24

4 224 187,495 5.66
448 676,039 5.66
TABLE I

NUMBER OF NETWORK PARAMETERS AND PERFORMANCE ON TEST SET
OF SOME ARCHITECTURES
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Fig. 6. SDRs obtained with different number of units with the best architecture
on both validation and test sets

hidden units, the performance then drastically decreases. In
these cases, the network tends to overfit the training data
and thus loses its ability to generalize well. This tendency
to overfitting is confirmed when comparing the number of
network parameters to be estimated, given in Table I, and the
size of our training dataset which is made of 200, 424 frames.
Indeed, we can notice that the performance starts to decrease
when the number of network parameters becomes larger than
the number of training examples.

2) Influence of the number of layers: Deeper networks, i.e.,
with more than one hidden layer, have also been tested. Some
selected results are given in Table I. In particular, it emphasizes
that networks with two and three hidden layers give slightly
worst performance than the single-layer best architecture for
comparable numbers of parameters. It also shows that the
tested architectures comprising four hidden layers are suffering
from overfitting.

3) Influence of the other parameters: Fig. 7 compares other
architectures with the best one defined in the first subsection,
for both the validation and the test set. SDRs are only
represented for networks of one hidden layer composed of
896 units. For both validation and test, each bar of the graph
refers to a neural network in which only one parameter has
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Fig. 7. Influence on the test SDR of other architecture parameters

been changed with respect to the best architecture.
The second, third and fourth bars, which respectively refer

to networks using the oracle MSE, the cross-entropy and the
source MSE as cost functions, show that choosing the SDR
by frame as our objective function brought an appreciable
improvement of approximately 0.1 to 0.2 dB SDR on the test
set.

The remaining bars focus on the influence of the type of
input. The fifth bar refers to a neural network whose input is
composed of the mixture only, i.e., the very first line of matrix
(30), whereas the sixth bar refers to a network whose input is
composed of the estimated sources only, i.e., the M last lines
of matrix (30). Both these results are outperformed by our
best architecture. Similarly, the seventh bar which refers to a
network in which no context is taken into account (C = 0)
demonstrates that the handling of neighbouring frames can
help improving fusion results by almost 0.35 dB SDR. Finally,
the last bar shows that keeping all the variance of the input,
i.e., not reducing the input dimensionality by PCA, brings an
improvement of 0.07 dB only. Note that this tiny improvement
is obtained at the expense of a much longer training (3 days,
9 hours and 50 minutes without PCA against 1 hour and 30
minutes with PCA on a 64-bit Linux machine with an NVIDIA
Quadro 600 GPU and a quad-core Intel Xeon CPU).

4) Other attempts: The implementation of the dropout tech-
nique [55] has allowed to avoid overfitting for architectures
with large numbers of parameters but at the expense of a
higher training time and without outperforming single-layered
networks. Recurrent neural networks composed of Bidirec-
tional Long Short Term Memory (BLSTM) units have also
been tested thanks to the CURRENNT toolkit [56]. However,
their performance on the test set never exceeded 7.93 dB SDR.

VII. EXPERIMENTAL EVALUATION ON MUSIC

The previous experimental section was dedicated to the
evaluation of our fusion techniques on a speech enhancement
task in which the models to be fused where all NMF-based. In
this section, we finally propose to evaluate these techniques for

the fusion of heterogeneous separation methods. We here focus
on a singing voice extraction task which aims at separating the
main vocal signal from its musical accompaniment.

A. Music database

In [6], a musical database has been gathered from the
community music remixing website ccMixter1. It features 49
full-length stereo tracks from diverse musical genres. For
our experiments, the tracks have been randomly divided into
5 groups of similar size in order to evaluate our fusion
techniques by cross-validation. Furthermore, each of the 49
tracks has been cut into non-overlapping chunks of length
comprised between 20 and 30 seconds, which results in a total
of 308 excerpts.

For learning purposes, three of the five groups form the
learning dataset whereas the two remaining groups respec-
tively account for the validation and test sets. In order to
evaluate our fusion techniques on all tracks, all experiments
have been repeated five times so that each group of tracks has
been used as a validation test and a test set once.

B. Separation techniques

Each excerpt has been processed with four different sepa-
ration techniques, namely : the Instantaneous Mixture Model
(IMM) proposed in [57], Robust Principal Component Analy-
sis (RPCA) presented in [17], the Repeating Pattern Extraction
Technique based on similarity (REPETsim) of [58] and the
Kernel Additive Model (KAM) described in [6].

C. Fusion techniques

We here propose to compare static time-invariant fusion
introduced in Section III to adaptive time-varying fusion using
neural networks exposed in Section V, as the considered
separation techniques do not fit in a common probabilistic
framework in order to apply adaptive fusion as presented in
Section IV.

D. Results

All results are gathered in Table II. They are evaluated in
terms of SDR and averaged across all excerpts of each group
and, in the last column, across all excerpts of the database.
The four first lines present the results obtained with the four
considered separation methods. The IMM outperforms other
methods for each group as well as in average. Amongst the
static fusion methods presented in the next three lines, MSE-
based time-invariant fusion is the only one to outperform IMM,
by 0.57 dB in average.

The results of adaptive time-varying fusion using DNN have
been obtained with a single-layer network composed of 512
hidden units. As in Section VI, the input data was composed
as defined in (30) with a context of size C = 2. We used
the QERB transform as well with half-overlapping windows
of 2048 samples and F = 350 frequency bins. The data have
been furthermore standardized and the input dimensionality

1http://www.ccmixter.org
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Method Group 1 Group 2 Group 3 Group 4 Group 5 Average
IMM 3.49 4.33 3.16 2.55 2.83 3.30
RPCA -0.92 -1.69 -3.65 -2.18 -1.22 -1.90
KAM 2.17 2.03 0.07 0.11 1.57 1.24
REPETsim 3.19 2.44 1.12 1.78 2.38 2.21
Fusion by mean 3.62 3.47 1.94 2.34 3.08 2.92
SDR-based time-invariant fusion 3.99 3.59 2.36 3.11 2.67 3.17
MSE-based time-invariant fusion 4.44 4.61 3.31 3.15 3.70 3.87
Oracle time-invariant fusion 5.07 5.18 4.03 3.53 4.22 4.44
Adaptive time-varying fusion using DNN 4.27 5.06 3.68 3.15 3.71 4.01
Oracle time-varying fusion 6.88 7.07 5.89 5.28 6.08 6.28

TABLE II
PERFORMANCE OF SEPARATION AND FUSION METHODS ON CCMIXTER TEST SETS

has been reduced via PCA. The training cost function was the
source SDR as defined in (34).

Here again, adaptive time-varying fusion using DNN out-
performs all other proposed fusion techniques, namely fusion
by mean, SDR-based time-invariant fusion and MSE-based
time-invariant fusion by 1.09, 0.84 and 0.15 dB respectively.
Compared to the experiments in Section VI, the gain in terms
of SDR is less important, which can be explained by the
task complexity. Indeed, even if the size of the training set
(approximately 200,000 frames per group) is comparable to
the size of the training set in the speech enhancement task, we
must highlight that the ccMixter database features much more
variability in its contents because it mixes music excerpts from
very heterogeneous genres. As such, we might thus improve
fusion performance either by growing the database with more
diverse examples or by reducing its variability.

VIII. CONCLUSION

In this paper, we introduced a general fusion framework that
aims at combining several source estimates obtained either
from a single separation technique with different parameter
settings or from several distinct separation techniques. The
proposed fusion rules is expressed in the time-domain and
allows us to fuse a wide variety of separation techniques.
We proposed three different ways to determine the fusion
coefficients so that they can be adapted to the signal to be
separated, according to a criterion expressed on the whole
signal or at the time frame level. Our fusion techniques
have been compared to standard selection in two different
experiments. On a speech enhancement task, the method based
on neural networks allowed us to gain more than 3 dB SDR
by fusing several NMFs of different orders instead of selecting
a unique one. The experiments conducted on a singing-voice
extraction task furthermore showed that this learning method
is also viable for fusing heterogeneous separation techniques.

To go further, we propose in the future to study other
objective functions for the determination of fusion coefficients.
Moreover, we plan to extend our fusion framework to the han-
dling of frequency-varying and time-frequency-varying fusion
rules.
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