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Fusion methods for speech enhancement
and audio source separation
Xabier Jaureguiberry, Emmanuel Vincent and Gaël Richard

Abstract—A wide variety of audio source separation techniques
exist and can already tackle many challenging industrial issues.
However, in contrast with other application domains, fusion
principles were rarely investigated in audio source separation
despite their demonstrated potential in classification tasks. In
this paper, we propose a general fusion framework which takes
advantage of the diversity of existing separation techniques in
order to improve separation quality. We obtain new source
estimates by summing the individual estimates given by different
separation techniques weighted by a set of fusion coefficients. We
investigate three alternative fusion methods which are based on
standard non-linear optimization, Bayesian model averaging or
deep neural networks. Experiments conducted for both speech
enhancement and singing voice extraction demonstrate that all
the proposed methods outperform traditional model selection.
The use of deep neural networks for the estimation of time-
varying coefficients notably leads to large quality improvements,
up to 3 dB in terms of signal-to-distortion ratio (SDR) compared
to model selection.

Index Terms—audio source separation, fusion, aggregation,
ensemble, deep neural networks, deep learning, variational Bayes,
model averaging, non-negative matrix factorization, speech en-
hancement, singing voice extraction

I. INTRODUCTION

Blind audio source separation aims at recovering the audio
signals, called sources, that compose a given mixture. The
most challenging situation is at stake when the number of
sources is greater than the number of observable channels in
the mixture. As such, the problem becomes underdetermined.
Numerous approaches have been proposed in the literature
[1], [2]. The sources can be modeled based on their sparsity
[3], [4], their redundancy [5], [6], their spatial diversity [7],
their morphological characteristics [8]–[10] or according to
perceptual grouping criteria [11]. Amongst the existing source
models, Non-negative Matrix Factorization (NMF) is one of
the most popular [12]–[14]. For example, it has achieved great
performance in the latest CHiME contest [14], [15] dedicated
to speech enhancement and has also been successfully imple-
mented for musical source separation [9]. More recently, the
progress made in training deep neural networks (DNNs) has
been exploited in order to estimate time-frequency masks [16]
or magnitude source spectrograms [17].

Faced with a given source separation problem to be solved,
one will typically either develop his/her own approach or
choose an existing technique and adapt it to the problem at
play. This choice is guided by the type of mixture and sources
to be separated and it often leads to a compromise between
separation quality and complexity of implementation. Once
a technique has been chosen, the quality of separation also
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depends on the tuning of its parameters which is often driven
by experience. For instance, the order of an NMF model is
known to have a great influence on separation quality [18].
Automatic tuning based on model-order selection principles
derived from information theory [19] or specific selection
criteria [20], [21] might be applied but with limited success
on real data [22]. Furthermore, since two distinct separation
methods may have complementary strengths and weaknesses,
selecting one method rather than another is expected to be
suboptimal.

Fusion techniques [23], also named ensemble or aggregation
techniques, precisely aim at combining several methods in
order to better solve a given problem. Transposed to the
context of source separation, fusion is opposed to selection as
it consists in using several separation methods and combining
their solutions rather than selecting the best solution according
to some criterion. Fusion has been particularly popular in clas-
sification [24] and has led to efficient concepts such as bagging
and boosting [25]. Despite being similar to a classification
problem [26], audio source separation has barely benefited
from fusion principles so far. Recently, the concept of bagging
for convolutive blind source separation was introduced in [27]
while the authors in [26], [28] proposed to combine time-
frequency masks in a way similar to classification.

Following our previous works [22], [26], [29], we here
propose a general framework for fusion in audio source
separation which only assumes that the considered separation
techniques lead to time-domain estimated signals. This allows
the combination of heterogeneous separation techniques as
well as identical techniques with different parameter settings.

In this study, we further extend our preliminary works [26],
[29] to a novel adaptive time-varying fusion rule in which the
fusion weights are adapted to each frame of the mixture to
be separated. As such, the general fusion framework that we
propose nicely handles all the previously introduced fusion
rules. The objective thus turns out to be the estimation of
either time-invariant or time-varying fusion coefficients, in a
static or adaptive way. Note that although it is here presented
for single channel signals, our fusion framework can be easily
extended to the multichannel case.

Compared to our previous works, we also introduce im-
proved learning methods for the time-invariant fusion case.
For time-varying fusion, we propose two distinct approaches.
The first one is based on variational Bayesian (VB) averaging
and the second one aims at learning time-varying fusion
coefficients with a neural network. Two source separation tasks
have been retained for experimental evaluation of our fusion
methods : a speech enhancement task and a singing voice
extraction task. For speech enhancement, the fusion of NMFs
and DNNs is studied. We particularly focus our analysis on
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the fusion of NMFs of different orders so as to compare all the
proposed methods, including VB averaging. Experiments on
the musical task further demonstrate that our fusion framework
can be used in different source separation contexts.

The structure of the rest of the paper is as follows. The
general framework is introduced in Section II. The estimation
of time-invariant static fusion coefficients is investigated in
Section III. A VB algorithm for the estimation of adaptive
time-invariant and time-varying fusion coefficients is presented
in Section IV. In Section V, we exploit neural networks to
determine time-varying adaptive fusion coefficients. The pro-
posed fusion rules are compared in Section VI in the context
of speech enhancement using both NMF-based and DNN-
based separators while the fusion of heterogeneous separation
techniques is studied in Section VII. Finally, conclusions are
drawn in Section VIII.

II. GENERAL FUSION FRAMEWORK

A. Single-channel source separation

Throughout this paper, we will consider the source separa-
tion problem which consists in estimating the J sources sj(t)
that compose an observable linear mixture x(t). The mixing
equation can be written in the Short-Time Fourier Transform
(STFT) domain as

xfn =

J∑
j=1

sj,fn + εfn (1)

in which f and n respectively denote the frequency bin
and the time frame. In the following, we refer to sfn =
[s1,fn ..., sJ,fn]ᵀ as the source vector and to εfn as the sensor
noise. Note that, here, we will not aim at dereverberating
the source signals, which is sometimes one of the source
separation objectives. Reverberation will not be neglected but
considered as part of the source signals sj,fn instead.

B. Fusion of different source estimates

Let us suppose that M distinct models and/or algorithms
can be used to estimate each of the J sources. We define a
new estimate of each source through a simple weighted sum
of the M estimated sources s̃jm,fn indexed by model m:

∀j, f, n, s̃j,fn =

M∑
m=1

αm,fn s̃jm,fn, (2)

in which ∀m, f, n, αm,fn ≥ 0 and
∑M
m=1 αm,fn = 1. In the

following, we refer to αfn = {αm,fn}m=1..M as the set of
fusion coefficients, or simply the fusion vector.

C. Time-invariant vs. time-varying fusion

Several special cases of the above general fusion rule can
be considered. One such special case, called time-invariant
fusion, is to assume that the fusion coefficients αm remain
independent of the time-frequency bin (f, n). This assumption
leads to a simplified expression of (2) which turns out to be
equivalent to a weighted sum of the estimated time-domain
source signals:

∀j, t, s̃j(t) =

M∑
m=1

αms̃jm(t). (3)

To go further, we propose in this work to investigate another
special case of the time-frequency fusion rule (2) in which the
fusion coefficients αm,n depend on time only:

∀j, f, n, s̃j,fn =

M∑
m=1

αm,n s̃jm,fn. (4)

Similarly to above, this fusion rule, called herein time-varying
fusion, can be rewritten in the time domain. Denoting s̃njm(t)
the mth estimation of source j within time frame n, that is the
inverse STFT of {s̃jm,fn}f=1..F , the resulting framed source
signal is expressed as

s̃nj (t) =

M∑
m=1

αm,ns̃
n
jm(t). (5)

Contrary to (3), the fusion coefficients now depend on the
frame n. The full estimated source s̃j(t) is then recovered by
summing s̃nj (t) over n in a traditional overlap-add manner.

D. Static vs. adaptive fusion

Two distinct study cases can already been derived from
(3) and (5) according to whether the fusion coefficients αm
depend on the observed mixture x(t) or not. In the following,
we will refer to static fusion when the fusion coefficients do
not depend on the mixture (see Section III) and to adaptive
fusion when the fusion coefficients are estimated according to
the mixture to be separated (see Sections IV and V).

E. Oracle estimation

In audio source separation, the quality of separation is often
measured by the Signal-to-Distortion Ratio (SDR) expressed
in decibels (dB) [30]. For instance, the SDR of the source
estimate s̃j(t) is given by

SDR [s̃j ] = 10 log10

∑
t ‖sj(t)‖

2∑
t ‖sj(t)− s̃j(t)‖

2 (6)

where sj(t) denotes the true source signal.
As the true sources are not available in practice, fusion

results which rely on their knowledge will be called oracle
[31], so as to emphasize that they do not account for achievable
results in practical situations but that they give instead an upper
bound on the performance that can be expected from a given
fusion rule.

As such, for a given mixture x(t), we define the oracle
time-invariant fusion coefficients as the coefficients αm that
maximize the SDR of the estimated source s̃j(t). They are
obtained by solving the following maximization problem under
linear equality and inequality constraints:

argmax
{αm}m=1..M

10 log10

∑
t‖sj(t)‖

2∑
t‖sj(t)−∑M

m=1 αms̃jm(t)‖2

subject to
{ ∀m, αm ≥ 0∑M

m=1 αm = 1
.

(7)

This turns out to be equivalent to the minimization of the
source mean square error (SMSE), i.e., the mean square error
(MSE) between the true source sj(t) and its fused estimate
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∑M
m=1 αms̃jm(t), which can be formulated as a standard

Quadratic Programming (QP) [32] problem in matrix form

argmin
α

cj + αᵀ G̃j α− 2 d̃ᵀ
j α

subject to
{ ∀m, αm ≥ 0∑M

m=1 αm = 1

(8)

in which α denotes the vector of fusion coefficients and αᵀ

its transpose. The matrix G̃j of size M ×M is the so-called
Gram matrix whose elements are the scalar products between
the estimated signals, i.e.,

∀m1,m2, G̃j,m1m2 =
∑
t

s̃jm1(t)s̃jm2(t). (9)

Similarly, the vector d̃j of length M is composed of the scalar
products between the estimated signals and the true source
signal and cj is the squared norm of the true source signal:

∀m, d̃j,m =
∑
t sj(t)s̃jm(t)

cj =
∑
t ‖sj(t)‖

2
.

(10)

Oracle results for time-varying fusion can be similarly
computed by replacing the estimated and the true sources by
their framed versions s̃njm(t) and snj (t). The components G̃j ,
d̃j and cj are thus to be computed on each frame n and not
on the whole signal.

III. STATIC FUSION

Assuming that we have defined a subset of M separa-
tion systems that are relevant for a given source separation
problem, static fusion aims at estimating a unique vector
of fusion coefficients for the whole signal, each coefficient
being independent of the mixture x(t) to be separated. In this
context, the time-invariant rule (3) and the time-varying rule
(5) are strictly equivalent. In this section, we propose three
distinct methods to estimate static fusion coefficients.

A. Static fusion by mean

The first, simplest method consists in taking the mean of
the M estimated signals s̃jm(t), which is equivalent to setting
∀m,αm = 1/M in (3). In the following, we will refer to this
approach as static fusion by mean.

B. Learned static fusion

As an alternative, we propose a learning method to de-
termine the static fusion coefficients from a representative
training dataset. To do so, we proposed in [26] to solve a QP
problem similar to (8) which was equivalent to minimizing the
MSE between the true and estimated sources on the training
dataset. Supposing that our training dataset is composed of L
mixtures x(l)(t) together with their true sources s(l)j (t), we
thus wish to solve the following minimization problem

argmin
α

∑
l cj,l + αᵀ (

∑
l G̃j,l)α− 2 (

∑
l d̃

ᵀ
j,l)α

subject to
{ ∀m, αm ≥ 0∑M

m=1 αm = 1
,

(11)

in which G̃j,l, d̃j,l and cj,l are defined as in (9) and (10)
but for each example l. In the following, the coefficients

thus obtained will be referred to as MSE-based static fusion
coefficients.

Here, to go further, we propose to optimize the coefficients
αm in order to maximize the average SDR on the training
dataset. This turns out to be equivalent to solving the following
minimization problem :

argmin
α

∑
l 10 log10

(
cj,l + αᵀ G̃j,lα− 2 d̃ᵀ

j,lα
)

subject to
{ ∀m, αm ≥ 0∑M

m=1 αm = 1
.

(12)

In the following, the fusion coefficients thus obtained will be
called SDR-based static fusion coefficients.

Both MSE-based and SDR-based static coefficients αm can
be used to separate any other mixture x(t) which is not
present in the training dataset. Note that alternative choices
for the objective function could also be considered such as
the Signal-to-Interference Ratio (SIR), the Signal-to-Artifacts
Ratio (SAR) or a combination of these measures [30].

IV. ADAPTIVE FUSION USING VARIATIONAL BAYESIAN
AVERAGING

The quality of separation can theoretically be improved by
adapting the fusion coefficients to the mixture to be separated.
In this context, Bayesian model averaging [33] is the reference
approach to combine several estimates of a given distribution.
In this section, we propose to introduce this principle in an
audio source separation context and to show how it fits in our
general fusion framework.

A. Bayesian model averaging principle

In the Bayesian paradigm, the sources to be estimated
are usually represented as random variables that we will
here symbolically denote as Sj . The objective of source
separation thus consists in estimating the posterior probabil-
ity of the sources Sj given some observations X and the
probabilistic model at stake Mm. Supposing that each source
Sj is represented by F × N independent random variables
sj,fn in the time-frequency domain, its posterior probability
can be factored as p(Sj |X,Mm) =

∏
fn p(sj,fn|X,Mm).

Given now that M models Mm are used to estimate M
such posterior probabilities, the computation of the posterior
probability of each model p(Mm|X) allows us to select the
best estimation p(Sj |X,Mm∗) (or equivalently the posteriors
p(sj,fn|X,Mm)) according to

m∗ = argmax
m

p(Mm|X). (13)

To go further, Bayesian model averaging proposes to av-
erage the M estimated posterior probabilities, each being
weighted by the posterior probability of the corresponding
model. As such, a new posterior probability can be formulated
as

p(sj,fn|X) =

M∑
m=1

p(Mm|X) p(sj,fn|X,Mm). (14)

Thanks to Bayes rule, the posterior probability p(Mm|X) of
a model can be obtained as

p(Mm|X) =
p(Mm) p(X|Mm)∑M

m′=1 p(Mm′) p(X|Mm′)
(15)
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where p(X|Mm) is the marginal likelihood of modelMm. By
denoting πm = p(Mm), s̃j,fn = E[p(sj,fn|X)] and s̃jm,fn =
E[p(sj,fn|X,Mm)], we can then notice that (14) turns out to
be equivalent to the general fusion rule (2) with

αm ∝ πm p(X|Mm). (16)

In a Bayesian framework, the estimation of time-invariant
fusion coefficients as defined in (3) is thus equivalent to the
estimation of the posterior probability of each model. As such,
the proposed fusion rule becomes adaptive.

B. Adaptive fusion as Bayesian model averaging
It is well known that Bayesian inference is often intractable

in practice and that approximate inference is thus required.
Amongst approximate methods, Variational Bayesian (VB)
inference [34] is of particular interest for our study. Indeed,
VB inference gives an approximation of the log-marginal like-
lihood of a model through the so-called free-energy denoted as
Lm for model Mm (see Appendices A and B). The adaptive
Bayesian fusion coefficients can thus be approximated as

αm ∝ πm expLm . (17)

C. Controlling the shape of the model posterior
In practice, preliminary experiments conducted on the fu-

sion of NMF models of different order (see Section VI for
details) have shown that the fusion coefficients estimated
according to (17) practically result in a selection instead of a
fusion, i.e., one fusion coefficient is equal to 1 and the others
are equal to 0. Moreover, it turns out that the selected model
is not always the one which gives the best separation quality.
As a consequence, we propose to introduce a parameter β ≥ 1
that aims at controlling the shape of the posterior p(Mm|X)
by penalizing its entropy [35]. The fusion coefficients are thus
given by

αm ∝ πm expLm/β . (18)

D. Learning the priors and the shape parameter
The prior probabilities πm as well as the shape parameter

β must be learned in order to make (18) practicable. Similarly
to the learned static fusion approaches introduced in Section
III-B, we propose to learn them by optimizing either the MSE
or the SDR on a representative training dataset. With αl(π, β)
denoting the set of fusion coefficients for example l which
depends on the vector of prior probabilities π = (π1, ..., πM )ᵀ,
the shape parameter β and the vector of free energies Ll =

(L(l)
1 , ...,L(l)

M )ᵀ, the optimization problem can be written in
the MSE case as

argmin
π,β

∑
l

(
cj,l − 2 d̃ᵀ

j,lαl(π, β)

+αl(π, β)ᵀ G̃j,lαl(π, β)
)

subject to ∀m,πm ≥ 0

(19)

or in the SDR case as

argmin
π,β

∑
l 10 log10

(
cj,l − 2 d̃ᵀ

j,lαl(π, β)

+αl(π, β)ᵀ G̃j,lαl(π, β)
)

subject to ∀m,πm ≥ 0

(20)

Due to the introduction of the shape parameter β, solving
(19) and (20) on a given training dataset is much more complex
than for static fusion as the related optimization problems
become non-linear under non-linear constraints. However, trust
region algorithms [36] may reach satisfactory local minima.

E. Extension to time-varying fusion
The estimation of adaptive time-invariant fusion coefficients

that we have derived so far can also be extended to the esti-
mation of time-varying fusion coefficients. Indeed, as detailed
in Appendix B, the free energy Lm,n can be estimated for
each frame n of the observed mixture. Time-varying fusion
coefficients are then formulated for each frame n as

αm,n ∝ πm expLm,n/β . (21)

This time, the priors πm and the shape parameter β can be
learned on a representative dataset by replacing the summation
on l in (19) and (20) by a summation on both l and n.
Moreover, G̃j,l, d̃j,l and cj,l must be replaced by their framed
counterparts G̃j,l,n, d̃j,l,n and cj,l,n.

V. ADAPTIVE FUSION USING NEURAL NETWORKS

The adaptive fusion scheme presented in Section IV requires
a Bayesian treatment of source separation which may not be
available for other models than NMF. Moreover, as it will
be demonstrated in Section VI, adaptive time-varying fusion
as presented in Section IV-E does not improve the results
compared to time-invariant fusion, while oracle time-varying
fusion exhibits a great potential. As a consequence, we propose
in this section to resort to (potentially deep) neural networks
in order to determine time-varying fusion coefficients and get
closer to oracle performance.

A. Problem formulation
Given a representative training dataset composed of several

mixtures with the corresponding true and estimated sources,
we wish to estimate the fusion coefficients from the knowledge
of the mixture and the estimated sources only. Traditionally,
such an estimation is conducted in two steps. The first step
consists in computing some features of the inputs, namely
the mixture signal x(t) and the M estimated signals s̃jm(t).
The second step aims at mapping these features to the desired
output, here the oracle vector of fusion coefficients {αm,n}.

For the feature extraction step, the set of potential features
is extremely large and the selection of an appropriate subset
varies with respect to the type of mixture and sources at
play. For instance, we can name Mel-Frequency Cepstrum
Coefficients (MFCCs), Linear Prediction Coefficients (LPC),
chroma and so on. For the mapping step, Gaussian Mixture
Models (GMMs) have been widely used, notably in speech
recognition.

However, DNNs have now outperformed GMMs in many
fields [37]. The main advantage of DNNs is their ability
to perform the feature extraction step and the mapping step
jointly. Furthermore, the recent introduction of rectified linear
units (ReLUs) [38] replacing traditional hyperbolic tangent
and logistic activations has brought even more advantages such
as faster and more accurate convergence. Neural networks thus
seem to be quite promising in our case.
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B. Network architecture

Some considerations about the architecture of the neural
network required for such a task can already be discussed,
without any experimental context. Concerning the dimension-
ality of the problem, we can expect to have a small output
layer of size M (i.e., one neuron per fusion coefficient) but
a much larger input layer. In the following, we will consider
that the input is composed of the short-term power spectra of
the available signals.

More precisely, in our experiments detailed in Sections VI
and VII, the input relative to frame n is defined as follows:

|xn−C |2 · · · |xn|2 · · · |xn+C |2
|s̃j1,n−C |2 · · · |s̃j1,n|2 · · · |s̃j1,n+C |2

... · · ·
... · · ·

...
|s̃jm,n−C |2 · · · |s̃jm,n|2 · · · |s̃jm,n+C |2

... · · ·
... · · ·

...
|s̃jM,n−C |2 · · · |s̃jM,n|2 · · · |s̃jM,n+C |2


(22)

in which the first line refers to the mixture with xn =
[x1n, ..., xfn, ..., xFn] and the next M lines refer to the M es-
timated sources with s̃jm,n = [s̃jm,1n, ..., s̃jm,fn, ..., s̃jm,Fn].
Each line is composed of the power spectra of the current
frame, the C preceding frames and the C following frames.
We hence take advantage of the context of the central frame
n. Each frame being a vector of F frequency bins, the final
input which results from the flattening of matrix (22) into one
dimension is a vector of length F (2C + 1)(M + 1).

In order to decrease the size of the neural network, a
reduction of the input dimensionality is desirable. For this
purpose, Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA) are both commonly used to reduce
high-dimensional data while retaining relevant components of
the input [34]. For our experiments, we chose to use PCA
so as to keep a certain amount of data variance. Moreover,
the training data have been standardized, i.e., centered and
normalized to unit variance, before and after PCA.

The output layer, which corresponds to the M estimated
time-varying fusion coefficients α̃m,n, is composed of M neu-
rons, one for each coefficient. A softmax activation function is
used to ensure that ∀n,∑m α̃m,n = 1. Other layers are made
of ReLUs.

C. Training cost functions

A neural network is usually trained by gradient descent
together with backpropagation of errors with respect to a
given cost function to be minimized [39]. The cost function is
often defined as a function of the estimated output, here the
estimated coefficients {α̃m,n} for time frame n, and of the
desired output, here the oracle coefficients {αm,n} as defined
in Section II-E. A common choice is to minimize the mean
square error. For a given frame n, the MSE is defined as

ϕOMSE
n =

M∑
m=1

(αm,n − α̃m,n)
2
. (23)

In the following, we will refer to this cost as the Oracle MSE
(OMSE). Another common choice is to use the Cross-Entropy

(CE) generalized to non-binary multiclass problems which is
defined in our context as

ϕCE
n = −

M∑
m=1

αm,n log
α̃m,n
αm,n

. (24)

Note that both these cost functions require the oracle fusion
coefficients to be known in order to estimate the errors.

Hereafter, we propose two other cost functions that do not
require the knowledge of oracle fusion coefficients. Following
the SMSE optimization formulations of (11) and (19), the cost
function for training can be defined as the MSE between the
nth frame of the true source snj (t) and of its estimate s̃nj (t)
obtained from the corresponding estimated fusion coefficients,
i.e., the outputs of the network α̃m,n. For frame n, the cost
function is defined as

ϕSMSE
n = cj,n + α̃ᵀ

n G̃j,n α̃n − 2 d̃ᵀ
j,n α̃n (25)

where cj,n, d̃j,n and G̃j,n are defined in (9) and (10).
Following (12) and (20), the cost function can also be defined
as the SDR of the nth frame of source estimate s̃nj (t) obtained
from the estimated fusion coefficients α̃m,n. The cost function
thus becomes :

ϕSDR
n = 10 log10

(
cj,n + α̃ᵀ

n G̃j,n α̃n − 2 d̃ᵀ
j,n α̃n

)
. (26)

Note that in order to make the training as efficient as with
the two other cost functions, cj,n, G̃j,n and d̃j,n can be
precomputed for all frames n of the training dataset.

Finally, we shall remark that neural networks are usually
trained by iterative mini-batch gradient descent so that each
iteration aims at minimizing the mean cost function over a
small sample B of the training dataset, called a mini-batch.
The total cost function to be minimized at each iteration is
thus

ϕ =
1

|B|
∑
n∈B

ϕn (27)

in which |B| is the mini-batch size. As a consequence, in an
on-line setting, i.e., when |B| = 1, the source MSE cost (25)
and the SDR cost (26) are strictly equivalent. In the following
however, the mini-batch size has been fixed to |B| = 50. In this
case, note that the SDR cost (26) computed on a mini-batch
is different from the SDR of this mini-batch.

D. Other settings
At each iteration, the frames which compose a mini-batch

are randomly picked from the training dataset. At the end of
each epoch (i.e., when all training frames have been presented
exactly once), the performance of the current network is
evaluated on a validation dataset. According to the average
validation score, the learning rate is adapted for next epoch
and early stopping may be performed following the method
proposed in [40]. The training is stopped either when the
validation score does not evolve anymore or when a predefined
maximum number of epochs is attained. For networks with
more than one hidden layer, the discriminative pre-training
proposed in [41] has been used. The performance of the
final network is then evaluated on a test dataset. For our
experiments, the neural networks have been implemented
thanks to the Python library Theano [42], [43].
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VI. EXPERIMENTAL EVALUATION ON A SPEECH
ENHANCEMENT TASK

In this section, we propose to evaluate and compare all the
fusion techniques described in Sections III, IV and V on a
speech enhancement scenario. As Bayesian model averaging
introduced in Section IV requires to employ probabilistic
models only, we will first restrain our study to the fusion of
NMF-based separators. Afterwards, we will study the adaptive
fusion of both NMF-based and DNN-based separators.

A. CHiME corpus

For this experiment, we rely on the second CHiME chal-
lenge corpus [44]. The signals are composed of speech utter-
ances from 34 distinct speakers overlapped with noise signals
recorded in a real domestic environment.

We divided the data into four disjoint datasets :
• a clean training dataset which features 500 utterances

in clean conditions (i.e., reverberated but without back-
ground noise) for each speaker,

• a training dataset composed of 600 utterances, each
mixed with background noise at six different SNRs,

• a validation dataset composed of 300 utterances, each
mixed with background noise at six different SNRs,

• and a test dataset also composed of 300 utterances, each
mixed with background noise at six different SNRs.

The background noise has been randomly chosen
in order to reach the six different SNRs, namely
{−6 dB,−3 dB, 0 dB, 3 dB, 6 dB, 9 dB}. The clean training
dataset has been used to learn speaker-dependent NMF
models of different orders (see Section VI-B). These clean
utterances have also been mixed at six different SNRs with
background noise so as to train the DNN-based separators in
Section VI-H6. The training dataset has been used to learn
static fusion coefficients (see Section III), to learn the priors
πm and the shape parameter β (see Section IV) and to train
the neural networks (see Section IV). The validation set has
been used in the fusion scheme based on neural network in
order to perform early stopping and learning rate adaptation
according to [40]. Finally, the test set aims at evaluating and
comparing all proposed separation and fusion techniques.
Note that the test set has never been used either to learn the
fusion coefficients or to optimize the architecture of neural
networks.

B. NMF-based separators

Single-channel speech enhancement aims at cleaning up
a speech signal s1 from a background noise s2. Both the
speech and the noise signals are supposed to follow the mixing
equation (1). In order to compare all the proposed fusion
methods, the sources will be here modelled by NMF either
by using the standard maximum-likelihood formulation of
NMF (ML-NMF) presented in Appendix A or its variational
Bayesian formulation (VB-NMF) presented in Appendix B.

The separation performance obtained with NMF is known
to depend on the number of components, denoted as Kj ,
chosen to model each source [18], [26]. Few works [20], [21]
have implemented model selection principles in order to infer

the best number of components for a given problem. As an
alternative to these selection approaches, we here investigate
the use of fusion to combine several NMF models of different
orders.

As the background noise signal s2 exhibits less variability
than the speech signal s1, we will here keep the number of
components of the background model to a constant value, i.e.,
K2 = 32 and will only vary the number of components of the
speech model K1. Precisely, we will consider M = 7 possible
numbers of components K1m = 2m with m = 1..M . For
each mixture, the speaker is supposed to be known. For each
number of components K1m, the separation process is then
conducted in two stages. At first, an NMF of K1m components
is estimated on the concatenation of all speaker utterances
available in the clean training dataset. The dictionary W1m

thus learned forms a spectral model of K1m components
for this speaker. In parallel, a spectral model W2 of the
background noise is learned by NMF on the available noise
excerpts that precede and follow the utterance in the mixture.
In both cases, the dictionaries have been initialized by vector

quantization and the corresponding activation matrices have
been initialized randomly. In a second step, both the speech
NMF model and the background NMF model are re-estimated
on the mixture so as to estimate the speech signal s1 by tra-
ditional Wiener filtering [45]. To do so, the dictionaries W1m

and W2 are fixed to the spectral models learned at the previous
step. Their corresponding activation matrices are initialized
with the averaged values estimated at the previous step as well.
In both steps, the estimation process has been stopped after
50 iterations. In the end, by repeating this procedure for each
K1m, we have M different estimates s̃1m of the speech source,
based on different spectral models W1m that all describe
the same speaker but with different resolutions. For instance,
the model with K11 = 2 components gives a very rough
description of the speaker spectral characteristics whereas the
model with K17 = 128 components will give a much more
detailed description but with potential redundancies.

The time-frequency representation used in this experiment
is the Quadratic Equivalent Rectangular Bandwidth (QERB)
transform [46] with half-overlapping sine windows of 1024
samples and F = 350 frequency bins. Indeed, the ERB
frequency scale (which is similar to the Mel scale) has been
shown to result in better separation performance than the STFT
[47]. This same representation has been used for both the
separation step and the computation of the neural network
inputs.

C. Evaluation measure

As mentioned above, the SDR is the most used evaluation
measure in audio source separation. Methods will thus be
compared with respect to the SDR of the estimated speech
signals. The performance on a given utterance is measured as
the global SDR on the whole utterance as defined in (6). It is
then averaged over all utterances in the test dataset. We have
also systematically measured the quality of separation through
the computation of the average MSE. Nevertheless, since the
MSE appeared to follow the same trends as the SDR, we will
only report the latter hereafter.
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Fig. 1. Separation performance of ML-NMF and VB-NMF as a function of
the number of components.

D. ML vs. VB inference for NMF

As a baseline, the SDRs of the speech signals estimated with
both ML-NMF and VB-NMF are drawn in Fig. 1, as a function
of the number of components M . The highest performance
is obtained using VB-NMF with 16 components (5.59 dB
on average). The graph also suggests that VB-NMF better
accommodates few components whereas ML-NMF performs
better for many components. However, as it requires more
parameters to be estimated, VB-NMF is less computationally
efficient than ML-NMF (14.5 seconds vs. 12.8 seconds on
average per utterance).

E. Oracle fusion

Oracle fusion requires the knowledge of the true sources
that compose each mixture. As such, it gives an upper bound
of the fusion performance that we can expect in practice.
Fig. 2 depicts the results of oracle fusion in both time-
invariant and time-varying cases. The times frames for time-
varying fusion have been computed with half-overlapping sine
windows of 1024 samples. Oracle fusion results are to be
compared with oracle selection results which are also drawn
in Fig. 2 and which consist in selecting for each utterance the
best performing model in terms of SDR instead of combining
the M models as in fusion. As expected, fusion outperforms
selection in all considered situations. The oracle time-invariant
fusion of ML-NMFs brings a gain of 0.7 dB SDR over oracle
time-invariant selection, while for VB-NMF, the gain is of
0.4 dB. Moreover, oracle time-varying fusion allows a gain of
nearly 3 dB SDR compared to oracle time-invariant fusion.

F. Static fusion

Contrary to oracle fusion, static fusion as introduced in
Section III does not require the knowledge of the true sources.
MSE-based and SDR-based static fusion results depicted in
Fig. 3 thus account for practical results in which the fusion
coefficients are learned on the training dataset by solving the
minimization problems (11) and (12) respectively. As in the
oracle case, we compare these results with SDR-based static
selection which consists in retaining the individual model that
performs best on the training dataset in terms of SDR. As an
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Fig. 2. Performance of oracle time-invariant and time-varying fusions
compared to oracle time-invariant and time-varying selections, for both ML-
NMF and VB-NMF.
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Fig. 3. Performance of static time-invariant fusion compared to static time-
invariant selection, for both ML-NMF and VB-NMF.

upper limit, the performance of oracle time-invariant fusion is
also recalled for both ML-NMF and VB-NMF.

While MSE-based static fusion does not improve separation
quality compared to SDR-based static selection, SDR-based
static fusion allows us to improve upon selection by 0.6 dB
with ML-NMF and 0.3 dB with VB-NMF. These results again
demonstrate the interest of fusion over selection.

Furthermore, it is worth noting that simple fusion by mean
gives interesting performance. Indeed, contrary to the others,
this fusion approach does not need any training and performs
similarly to SDR-based static selection.

G. Adaptive fusion using variational Bayesian averaging
The performance of static fusion methods are satisfactory

compared to traditional selection techniques but the adaptation
of the fusion coefficients to the mixture at play could allow us
to get closer to oracle performance. Fig. 4 depicts the results
obtained by adaptive time-invariant and time-varying fusion
using variational Bayesian averaging, as presented in Section
IV, for both MSE (19) and SDR (20) optimization. Similarly
to oracle and static fusion, we compared fusion results with
their corresponding selection approaches. Here, VB selection
consists in applying the Bayesian selection criterion (13), i.e.,
retaining for each utterance the model whose free energy is
maximum. As an upper limit, the performance of oracle time-
invariant and time-varying fusions are also recalled.
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Fig. 5. Shape of the order posterior obtained by VB fusion as a function of
the shape parameter β, for one utterance of the CHiME corpus.

We recall that VB selection is similar to VB fusion with
β = 1. To illustrate this, we have drawn in Fig. 5 the values
of the free energies Lm, the learned prior probabilities πm and
the resulting posterior probabilities (18) for different values of
β. For β = 1, it is clear that the posterior probability is equal
to 1 for K1m = 16, i.e., where the free energy is maximum.
When β → +∞, the posterior is equal to the prior. Thus, a
value β ∈ [1,+∞[ allows us to make a compromise between
the prior and the VB criterion.

The results of Fig. 4 demonstrate that the introduction of
the shape parameter β effectively allows us to outperform VB
selection. As for static fusion, we can notice that the learning
of the parameters with respect to the SDR is more efficient
than with respect to the MSE. In both the invariant and the
time-varying case, the gain in SDR is of 0.5 dB. Compared
to VB selection, the gain reaches up to 1.5 dB.

However, the overall performance of VB fusion is mixed
when compared with static fusion in Fig. 3. Indeed, VB selec-
tion is largely outperformed by SDR-based static selection and
fusion by mean by 1 dB SDR on average, which demonstrates
that the VB criterion does not correlate well with separation
quality. While the introduction of the shape parameter β partly
compensates for this defect, it turns out that both time-invariant
VB fusion and time-varying VB fusion perform similarly
to SDR-based static fusion. Two main reasons might be

responsible for these mixed results. At first, we shall recall that
the objective functions (19) and (20) that we wish to minimize
to learn the priors and the shape parameter are more complex
to optimize than the objective functions (11) and (12) at play
in the static case. Despite this, further experiments have shown
that the found minima are global. Therefore, these mixed
results are most probably due to the approximate inference
strategy that is required in the VB-NMF scheme and which
affects the quality of the Bayesian criterion. While it used
to be the reference approach in the literature [48], [49], our
experiments thus show that the VB criterion is ineffective to
selecting the best number of components in terms of separation
quality.

H. Adaptive time-varying fusion using neural networks

Adaptive time-varying fusion based on variational Bayesian
averaging has failed to improve separation performance com-
pared to its time-invariant counterpart. Yet, oracle time-varying
fusion results show that time-varying fusion has a great po-
tential. As we will show in this subsection, the adaptive time-
varying fusion framework based on neural networks, presented
in Section V, allows us to get closer to oracle performance.

The search for the best neural network architecture for
our problem has been conducted through the testing of
several architectures, from single-layer networks to deeper
networks. Notably, the number of hidden layers has been
varied from one to four layers and the number of units
per layer has been defined as multiples of the output
layer size M . We have tested 11 layer sizes, namely
{7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168}. We here
considered the ML-NMF formulation as the resulting oracle
time-varying performance is greater than for VB-NMF. These
architectures will be reviewed in the next subsections. To start
with, let us introduce the architecture with a unique hidden
layer that performs best.

1) Best single-layer architecture: The best architecture has
been selected according to its performance on the validation
dataset. The input was composed as defined in Sections V-B
and VI-B. We chose a context of size C = 2. We computed
a PCA on the whole input in order to keep 85 % of the
variance, which allows us to reduce the input dimensionality
from 14000 to 154. The data have also been standardized,
i.e., centered and normalized to unit variance, before and
after PCA. The best results on the validation set have been
obtained using the SDR cost as defined in Section V-C with a
single-layer network composed of 1792 hidden units. As one
might expect, the performance monotonically increases with
the number of hidden units from 7 to 1792 hidden units and
decreases afterward.

This best single-layer network finally leads to an average
SDR of 8.15 dB on the test set. Adaptive fusion using
neural networks thus outperforms all aforementioned fusion
techniques and allows a gain of 3 dB SDR compared to SDR-
based static selection. It even outperforms oracle time-invariant
fusion by almost 0.9 dB.

2) Influence of the architecture: As mentioned above,
deeper architectures have been investigated. We have varied
the number of hidden layers from 2 to 4. In each case, the
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Fig. 6. Influence on the test SDR of other architecture parameters.

number of neurons has been fixed for all hidden layers to
the same value amongst the set of 11 different values given
above. However, none of these architectures outperformed the
best single-layer network described earlier.
The influence of the pre-training phase has also been investi-

gated. The results obtained with and without pre-training are
drawn in Fig. 6a for networks with 1792 neurons per layer.
We can notice that the increase of the number of hidden layers
tends to slightly degrade the performance of fusion. These
results also show that the pre-training phase allows a gain of
0.1 dB SDR on average.
Though it can be surprising with respect to the recent progress
brought by deep learning in speech recognition, we think that
this behaviour is explained by the type of problem we want to
solve. The same behaviour has been observed in [50] in the
context of multimedia event detection. The authors suggest
that single-layer networks might outperform deeper ones for
learning tasks which require a high level of abstraction, which
is typically the case in our situation. Moreover, in a source
separation context, recent works such as [16] have shown
that single-layer networks already perform well and that the
improvement brought by deeper networks is marginal.

3) Influence of the training cost functions: The results
obtained by varying the cost function used for training have
been drawn in Fig. 6c. It is shown that both the SDR (26) and
SMSE (25) cost functions which are related to the separation
objective bring a gain of 0.2 dB SDR compared to the more
standard cost functions (23) and (24).

4) Influence of the type of input: The influence of the choice
of the input is depicted in Fig. 6b. While the first bar refers
to our reference architecture with takes the full matrix (22) as
an input to the PCA, the second bar refers to a neural network
whose input only takes into account the mixture, i.e., the very
first line of matrix (22). Similarly, the third bar refers to a
network whose input only takes into account the estimated
sources, i.e., the M last lines of matrix (22). Both these
results are outperformed by our best architecture by 0.3 dB

Training cost function Number of hidden layers Test SDR (dB)
MSE 1 8.13
MSE 2 8.83
MSE 3 8.85
SA 1 8.32
SA 2 8.28
SA 3 8.53

MSE+SA 1 8.34
MSE+SA 2 8.98
MSE+SA 3 9.01

TABLE I
SDR (DB) ACHIEVED BY DNN-BASED MASK ESTIMATION.

and 0.1 dB respectively. The very last bar of this graph shows
that keeping all the variance of the input, i.e., not reducing
the dimensionality of the full matrix (22) by PCA, brings an
improvement of 0.07 dB. Note that this tiny improvement is
obtained at the expense of a much longer training time (3
hours and 45 minutes without PCA against 38 minutes with
PCA on a 64-bit Linux machine with an NVIDIA Quadro 600
GPU and a quad-core Intel Xeon CPU).

5) Influence of the context size: Finally, Fig. 6d illustrates
the influence of the context size. It shows that a network in
which no context is taken into account (C = 0) leads to a drop
of 0.35 dB SDR in comparison with our baseline architecture
whose context size is C = 2. More surprisingly, a larger
context size of C = 5 also gives worse performance than
our baseline.

6) Fusion of heterogeneous methods: Until now, we have
studied the fusion of NMF-based separators only so as to com-
pare all our fusion methods, including VB averaging. Recently,
DNNs have been applied to the direct estimation of time-
frequency masks [16], [17]. Such DNN-based separators now
seem to outperform NMF-based ones. As such, we propose
in this section to compare their separation performance and to
study if fusion can still help improving separation quality.

For this experiment, we have retained the feed-forward
solution proposed by [16]. We have trained 9 such DNNs
that vary either by the cost function that has been used for
training (MSE, SA or MSE+SA, see [16] for details) or by
the number of hidden layers (from 1 to 3). The DNNs have
been trained on a different training set than for the fusion
step, i.e., the original training set of the CHiME corpus [44].
Separation results are reported in Table I. The best separation
performance reaches 9.01 dB SDR, which is indeed far beyond
the best results obtained by NMF-based separation.

We have then studied the fusion of these DNN-based
separators. Oracle and practical results are reported in Table
II. The first three lines recall the results obtained in the case
of the fusion of NMFs only. The performance of the best
NMF separator is recalled so as to highlight the improve-
ment brought by fusion. The 95 % confidence intervals are
also given to assess the significance of given SDRs and of
relative SDR improvements. The three following lines refer
to the fusion of the 9 DNN-based separators. As for the
fusion of NMF, we have tested several architectures and we
report here the one that gave the best performance on the
validation dataset. The so-called best architecture is a single-
layer network of 2304 hidden units which has been optimized
with respect to the SDR cost function and whose input is
obtained by PCA of the full matrix (22) with a context of
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Sep. Fusion approach SDR (dB) SDRI (dB)
Best individual separator 5.12± 0.20 –

NMFs Adaptive time-varying fusion 8.15± 0.16 3.03± 0.13
Oracle time-varying fusion 10.33± 0.15 5.21± 0.13
Best individual separator 9.01± 0.17 –

DNNs Adaptive time-varying fusion 9.30± 0.17 0.30± 0.03
Oracle time-varying fusion 10.26± 0.15 1.25± 0.15

DNNs Best individual separator 9.01± 0.17 –
+ Adaptive time-varying fusion 9.50± 0.16 0.49± 0.06

NMFs Oracle time-varying fusion 11.71± 0.14 2.70± 0.15

TABLE II
TEST SDRS AND SDR IMPROVEMENTS (SDRIS) IN DB AND WITH 95 %

CONFIDENCE INTERVALS FOR ORACLE SELECTION AND ORACLE AND
ADAPTIVE TIME-VARYING FUSIONS OF DIFFERENT SETS OF SEPARATORS

(SEP. IN FIRST COLUMN) : NMFS ONLY, DNNS ONLY OR NMFS AND
DNNS. THE SDRI IS COMPUTED WITH RESPECT TO THE BEST

INDIVIDUAL SEPARATOR.

C = 2. It leads to a gain of 0.3 dB SDR in comparison with
the best DNN-based separator. Note that this improvement is
statistically significant. Moreover, oracle time-varying fusion
results that are also reported in Table II show a potential
room for improvement of 1 dB. Both these results interestingly
demonstrate that adaptive time-varying fusion of homogeneous
separators can still help improving separation quality when
considering other types of separators than the previously
studied NMFs.

Results for the heterogeneous fusion of both NMF-based
and DNN-based separators are finally reported in the last
lines of Table II. The potential given by the oracle time-
varying fusion performance is about 1.5 dB greater than for
the fusion of NMFs only and the fusion of DNNs only, which
demonstrates that heterogeneous fusion can take advantage of
the diversity of the separators to be combined. In practice,
adaptive time-varying fusion finally reaches 9.50 dB SDR on
the test set, which accounts for an improvement of 0.49 dB
with respect to the best DNN-based separator.

7) Diversity of separators: As expected, our study tends
to show that fusion takes advantage of the diversity of the
separators. While diversity might be easily obtained by consid-
ering different types of separators as in heterogeneous fusion,
the results in Table II suggest that considering a unique kind
of separator and varying its parameters as in homogeneous
fusion can also lead to satisfying diversity and interesting
fusion performance. Indeed, the individual performance of
NMF-based separators as depicted in Fig. 1 features a lot
of variability in the measured SDRs. As a consequence,
oracle time-varying fusion shows a potential gain of more
than 5 dB compared to the best individual separator. On the
contrary, the individual performance of DNN-based separators
as reported in Table I is far less variable, which seems to
lower the potential of time-varying fusion down to 1.3 dB
only. As such, both heterogeneous and homogeneous fusion
are of interest. Finally, it is important to note that, in some
situations, homogeneous fusion might be the only practicable
scheme as some specific source separation problems cannot
be solved with several separators. Moreover, implementing
several methods for one source separation problem might be
too time consuming, while homogeneous fusion might feature
enough diversity to reach interesting fusion performance.

VII. EXPERIMENTAL EVALUATION ON MUSIC

In this section, we propose to evaluate our approach for the
fusion of heterogeneous separation methods on a singing voice
extraction task. The goal is to separate the main voice signal
from its musical accompaniment.

A. Music dataset

In [6], a musical dataset has been gathered from the
community music remixing website ccMixter1. It features 49
full-length stereo tracks from diverse musical genres. For
our experiments, the tracks have been randomly divided into
5 groups of similar size in order to evaluate our fusion
techniques by cross-validation. Furthermore, each of the 49
tracks has been cut into non-overlapping chunks of length
comprised between 20 and 30 seconds, which results in a total
of 308 excerpts.

For learning purposes, three of the five groups form the
learning dataset whereas the two remaining groups respec-
tively account for the validation and test sets. In order to
evaluate our fusion techniques on all tracks, all experiments
have been repeated five times so that each group of tracks has
been used as a validation test and a test set once, following
the principle of cross-validation.

B. Separation and fusion techniques

Each excerpt has been processed with four different sepa-
ration techniques, namely : the Instantaneous Mixture Model
(IMM) proposed in [51], Robust Principal Component Analy-
sis (RPCA) presented in [52], the Repeating Pattern Extraction
Technique based on similarity (REPETsim) of [53] and the
Kernel Additive Model (KAM) described in [6].

We here propose to compare static time-invariant fusion
introduced in Section III to adaptive time-varying fusion using
neural networks introduced in Section V, as the considered
separation techniques do not fit in a common probabilistic
framework in order to apply adaptive Bayesian fusion as
presented in Section IV.

C. Results

All results are gathered in Table III. They are given in terms
of SDR and averaged across all excerpts of each group and, in
the last column, across all excerpts of the database. The four
first lines present the results obtained with the four considered
separation methods. The IMM outperforms other methods for
each group as well as on average. As a consequence, it is the
separator that would have been chosen by traditional static
selection. Amongst the static fusion methods presented in
the next three lines, both MSE-based and SDR-based time-
invariant fusion outperform the IMM separator, by respectively
0.57 dB and 0.64 dB on average.

The results of adaptive time-varying fusion using neural
networks have been obtained with a single-layer network
composed of 512 hidden units. As in Section VI, the input
data was composed as defined in (22) with a context of size
C = 2. We used the QERB transform as well with half-
overlapping windows of 2048 samples and F = 350 frequency

1http://www.ccmixter.org
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Method Group 1 Group 2 Group 3 Group 4 Group 5 Average
IMM 3.49 4.33 3.16 2.55 2.83 3.30
RPCA -0.92 -1.69 -3.65 -2.18 -1.22 -1.90
KAM 2.17 2.03 0.07 0.11 1.57 1.24
REPETsim 3.19 2.44 1.12 1.78 2.38 2.21
Fusion by mean 3.62 3.47 1.94 2.34 3.08 2.92
MSE-based time-invariant fusion 4.44 4.61 3.31 3.15 3.70 3.87
SDR-based time-invariant fusion 4.38 4.5 3.55 3.17 3.67 3.94
Oracle time-invariant fusion 5.07 5.18 4.03 3.53 4.22 4.44
Adaptive time-varying fusion using neural networks (SMSE) 4.92 5.01 3.81 3.35 3.91 4.20
Adaptive time-varying fusion using neural networks (SDR) 4.27 5.06 3.68 3.15 3.71 4.01
Oracle time-varying fusion 6.88 7.07 5.89 5.28 6.08 6.28

TABLE III
PERFORMANCE OF SEPARATION AND FUSION METHODS ON CCMIXTER TEST SETS.

bins. The data have been furthermore standardized and the
input dimensionality has been reduced via PCA. The average
separation performance is given for both the SMSE (25) and
the SDR (26) cost functions.

Here again, adaptive time-varying fusion using neural
networks outperforms all other proposed fusion techniques,
namely fusion by mean, SDR-based time-invariant fusion and
MSE-based time-invariant fusion by 1.3, 0.3 and 0.25 dB
respectively. Compared to the experiments in Section VI, the
gain in terms of SDR is less important, which can be explained
by the task complexity. Indeed, even if the size of the training
set (approximately 200,000 frames per group) is comparable
to the size of the training set in the speech enhancement task,
we must highlight that the ccMixter database features much
more variability in its contents because it mixes music excerpts
from very heterogeneous genres.

Finally, we note that, contrary to the speech enhancement
experiment, the SMSE training cost function resulted in a
gain of 0.2 dB compared to the SDR cost function. If this
result might be surprising, we must recall that the proposed
SDR cost function averages the SDRs computed on each
frame of the mini-batch. This differs from computing the
SDR of the mini-batch itself, which could be seen as an
alternative to the so-called SMSE and SDR cost functions
here studied. Nonetheless, this experiment confirms that using
a training cost function related to the separation objective can
help improving separation performance and suggests that the
choice of the training cost function remains data-dependent in
practice.

VIII. CONCLUSION

In this paper, we introduced a general fusion framework that
aims at combining several source estimates. Our framework is
flexible in that it makes limited assumptions on the type of
separators to be fused, so that both estimates obtained from a
single separation technique with different parameter settings
and estimates obtained from distinct separation techniques
can be considered. We presented three different ways to
determine the fusion coefficients, depending on whether the
fusion coefficients are adapted or not to the signal to be
separated. Moreover, we proposed to operate the fusion either
on the whole signal or at the time frame level.

All our fusion techniques have been evaluated and compared
to state-of-the-art model selection techniques on a speech
enhancement task handled with NMF-based separators. In this
context, fusion turned out to be always more efficient than

selection. In particular, the method based on neural networks
allowed us to gain 3 dB SDR compared to simple selection.
These experiments also demonstrated that, while Bayesian
inference is the reference approach in model selection, it did
eventually not outperform the simpler static fusion rule.

Additional experiments have shown that variability plays an
important role in fusion. The study of the fusion of both DNN-
based and NMF-based separators demonstrated that increased
variability in the source estimates to be fused can boost the
potential of fusion. However, the experiments conducted on a
singing voice extraction task suggested that such variability is
not sufficient to reach satisfying practical fusion performance
and that the training dataset has to be representative enough
of the learning task at stake. Indeed, an insightful look at the
values of the oracle time-varying fusion coefficients highlights
that their distribution is much more spread in the music
scenario than in the speech one, which makes the learning task
more complex. As such, we believe that the success of adaptive
time-varying fusion based on neural networks depends on both
the variability of the estimates and the quality of the training
dataset. To confirm this, we will consider in future works other
source separation tasks as well as some alternatives to neural
networks such as GMMs.

To extend this work, we will also study other objective
functions for the determination of fusion coefficients. These
functions could be any measure relevant to a given source
separation problem, such as the SIR, the SAR or even a
combination of these measures. We also plan to extend our
fusion framework to the handling of frequency-varying and
time-frequency-varying fusion rules.

APPENDIX
NON-NEGATIVE MATRIX FACTORIZATION

A. Maximum-likelihood formulation

When using NMF for audio source separation [45], it is
usually assumed that the Power Spectral Density (PSD) vj,fn
of each source at time n and frequency f can be modeled as
the result of NMF [54]

vj,fn =

Kj∑
k=1

wj,fkhj,kn, (28)

in which the coefficients {wj,fk}k=1..Kj

f=1..F form the dictionary
of spectral templates characterizing the spectral content of
the jth source and {hj,kn}n=1..N

k=1..Kj
are the so-called activation
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coefficients which indicate the amplitude of activation of each
spectral template across time. Kj is the number of components,
i.e., the number of spectral templates chosen to model source j.

Parameter estimation is performed by iterative multiplicative
update rules which minimize a certain divergence d between
the mixture PSD |xfn|2 on the one hand, and the sum of the
J source PSDs vj,fn and the noise PSD σ2 on the other hand:

argmin
w,h

∑
fn

d

|xfn|2
∣∣∣∣∣∣
J∑
j=1

vj,fn + σ2

 . (29)

In the following, we consider the Itakura-Saito (IS) divergence:

dIS(x|y) =
x

y
− log

x

y
− 1. (30)

Once the model parameters have been estimated, the source
STFT coefficients are estimated as:

s̃j,fn =
vj,fn∑J

j′=1 vj′,fn + σ2
xfn. (31)

It can be shown that s̃j,fn is also the Minimum Mean Square
Error (MMSE) estimate of source j [45], assuming that sj,fn
follows a circularly-symmetric complex normal distribution
sj,fn ∼ N (0, vj,fn).

The results of separation obtained with NMF highly depend
on the number of components Kj chosen for each source [18],
[26]. In a fusion context, assuming that the separation process
has been conducted for M different numbers of components
Kjm leading to M estimates s̃jm(t) of each source j, a new
source estimate can be obtained using (2).

B. Variational Bayesian formulation

To go further, we consider the generative model of NMF
introduced in [48] which allows full Bayesian treatment. Both
the dictionary and the activation coefficients are seen as
random variables and assumed to follow Gamma priors :

wj,fk ∼ Γ(a, a) and hj,kn ∼ Γ(b, b). (32)

The goal of Bayesian inference is to estimate the posterior
probability over all model parameters. As this is generally
intractable, some approximation is required. VB is a practical
inference algorithm which has been successfully applied to
this generative model [48], [49] in particular.

In this context, the posterior probability of the source
vector sfn is identified as a multivariate complex Gaussian
distribution denoted as q(sfn) = N (µs,fn,Σs,fn). The STFT
coefficients of the sources are then given by the expectation
µs,fn of this posterior distribution, which can be expressed in
a similar form as (31) with

s̃j,fn = µsj,fn
=

Cj,fn∑J
j′=1 Cj′,fn + σ2

xfn. (33)

The term Cj,fn depends on the NMF parameters of source j
through the expectation

Cj,fn =

Kj∑
k=1

E
[

1

wj,fkhj,kn

]−1
(34)

in which E denotes the expectation over the variational poste-
riors q(wj,fk) and q(hj,kn) which turn out to be generalized

inverse Gaussian (GIG) distributions. For the detailed expres-
sions of Σs,fn, q(wj,fk), q(hj,kn) and Cj,fn, see [29].

Practically, VB proposes to approximate the marginal like-
lihood of a model by the so-called free energy, which can then
be used to select the most likely model [55], [56] amongst a
set of possible models. We propose here to use the free energy
to achieve fusion instead of simple selection as in [48], [57].

To that aim, we replace the log-likelihood log p(X|Mm)
(equation (14)) with the free energy given by VB inference
and denoted as Lm:

Lm =
∑
fn E [log p(x|sfn)]

+
∑
j,fn (E [log p(sj,fn|wj , hj)]− E [log q(sj,fn)])

+
∑
j,fk (E [log p(wj,fk)]− E [log q(wj,fk)])

+
∑
j,kn (E [log p(hj,kn)]− E [log q(hj,kn)]) .

(35)

Here, the operator E denotes the expectation over the varia-
tional distributions of each parameter, i.e., q(sj,fn), q(wj,fk)
and q(hj,kn). For details on their computation, refer to [49].

The free energy can also be computed for each frame of
the signal to be separated for time-varying fusion. The free
energy for frame n is then defined as

Lm,n =
∑
f E [log p(x|sfn)]

+
∑
j,f (E [log p(sj,fn|wj , hj)]− E [log q(sj,fn)])

+
∑
j,fk (E [log p(wj,fk)]− E [log q(wj,fk)])

+
∑
j,k (E [log p(hj,kn)]− E [log q(hj,kn)]) .

(36)
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[49] K. Adilŏglu and E. Vincent, “Variational Bayesian inference for source
separation and robust feature extraction,” Inria, Tech. Rep. RT-0428,
2012.

[50] M. Ravanelli, B. Elizalde, J. Bernd, and G. Friedland, “Insights into
audio-based multimedia event classification with neural networks,” in
Proc. of the Workshop on Community-Organized Multimodal Mining:
Opportunities for Novel Solutions, 2015, pp. 19–23.

[51] J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid-
level representation for pitch estimation and musical audio source
separation,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, no. 6, pp. 1180–1191, 2011.

[52] P.-S. Huang, S. D. Chen, P. Smaragdis, and M. Hasegawa-Johnson,
“Singing-voice separation from monaural recordings using robust prin-
cipal component analysis,” in Proc. of IEEE International Conference
on Audio, Speech and Signal Processing (ICASSP), 2012, pp. 57–60.

[53] Z. Rafii and B. Pardo, “Music/voice separation using the similarity
matrix,” in Proc. of International Symposium on Music Information
Retrieval (ISMIR), 2012, pp. 583–588.

[54] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” Advances in Neural Information Processing Systems,
vol. 13, pp. 556–562, 2001.

[55] A. Corduneanu and C. M. Bishop, “Variational Bayesian model selection
for mixture distributions,” in Proc. of the 8th International Workshop on
Artificial Intelligence and Statistics, 2001, pp. 27–34.

[56] J. M. Bernardo et al., “The variational Bayesian EM algorithm for
incomplete data: with application to scoring graphical model structures,”
in Proc. of Valencia International Meeting on Bayesian Statistics, 2002,
pp. 453–462.

[57] A. T. Cemgil, “Bayesian inference for nonnegative matrix factorisation
models,” Computational Intelligence and Neuroscience, 2009, article ID
785152.



14

Xabier Jaureguiberry received the State Engineer-
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(formerly ENST) in 1990, the Ph.D. degree from
LIMSI-CNRS, University of Paris-XI, in 1994 in
speech synthesis, and the Habilitation à Diriger des
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