
First International Competition on
Software for Runtime Verification

Ezio Bartocci1, Borzoo Bonakdarpour2, and Yliès Falcone3

1 Vienna University of Technology, Austria
2 McMaster University, Canada

3 Université Grenoble-Alpes, Laboratoire d’Informatique de Grenoble, France

Abstract. We report on the process of organizing the First Interna-
tional Competition on Software for Runtime Verification (CSRV). This
includes the procedures, participating teams, submitted benchmarks, and
evaluation process. The competition was held as a satellite event of of
the 14th International Conference on Runtime Verification (RV’14). The
Competition was organized in three tracks: offline monitoring, online
monitoring of C programs, and online monitoring of Java programs.

1 Introduction

Runtime Verification (RV) is a lightweight yet powerful formal specification-
based technique for offline analysis (e.g., for testing) as well as runtime monitor-
ing of software. RV is based on extracting information from a running system
and checking if the observed behaviors satisfy or violate the properties of in-
terest. During the last decade, many important tools and techniques have been
developed and successfully employed. However, due to lack of standard bench-
mark suites as well as scientific evaluation methods to validate and test new
techniques, we believe our community is in pressing need to have an organized
venue whose goal is to provide mechanisms for comparing different aspects of
existing tools and techniques.

For these reasons, inspired by the success of similar events in other areas
of computer-aided verification (e.g., SV-COMP, SAT, SMT), we organized the
First International Competition on Software for Runtime Verification (CSRV
2014) with the aim to foster the process of comparison and evaluation of software
runtime verification tools. The aim of CSRV’14 was the following:

– To stimulate the development of new efficient and practical runtime verifi-
cation tools and the maintenance of the already developed ones.

– To produce benchmark suites for runtime verification tools, by sharing case
studies and programs that researchers and developers can use in the future
to test and to validate their prototypes.

– To discuss the metrics employed for comparing the tools.
– To compare different aspects of the tools running with different benchmarks

and evaluating them using different criteria.



Tool Ref. Contact person Affiliation
RiTHM [12] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
E-ACSL [8] J. Signoles CEA LIST, France
RTC P. Pirkelbauer University of Alabama at Birmingham, USA

Table 1. Tools participating in online monitoring of C programs track.

– To enhance the visibility of presented tools among different communities
(verification, software engineering, distributed computing and cyber secu-
rity) involved in software monitoring.

CSRV’14 was held in September 2014, in Toronto, Canada, as a satellite
event of the 14th International conference on Runtime Verification (RV’14). The
event was organized in three tracks: (1) offline monitoring, (2) online monitoring
of C programs, and (3) online monitoring of Java programs. The competition
included three phases for each track:

1. collection of benchmarks,

2. training and monitor submissions,

3. evaluation.

This report presents the procedures, rules, and participating teams of CSRV’14.
The final results of the competition are planned to be announced during the
RV’14 conference.

2 Format of the Competition

In this section we describe in detail the phases of the competition.

2.1 Declaration of Intent and Submission of Benchmarks and
Specifications

The competition was announced in relevant mailing lists starting from October
2013. Potential participants were requested to declare their intent for participat-
ing in CSRV by December 15, 2013.

For each of the three main tracks (offline, C and Java), the tools participating
in the competition listed in alphabetical order in Tables 1, 2, and 3, respectively.

Subsequently, participants were asked to prepare benchmark/specification
sets. These were collected in a shared repository4. The deadline was June 1st,
2014. The benchmarks were collected and classified into a hierarchy of folders
representing the competition tracks and participating teams.

4 https://bitbucket.org/borzoob/csrv14

https://bitbucket.org/borzoob/csrv14


Tool Ref. Contact person Affiliation
Larva [4] C. Colombo University of Malta, Malta
jUnitRV [6] N. Decker ISP, University of Lübeck, Germany
jUnitRV (MMT) [7] N. Decker ISP, University of Lübeck, Germany
JavaMop [11] G. Rosu Univ. of Illinois at Urbana Champaign, USA
prmj4 [13] E. Bodden TU Darmstadt, Germany
QEA [1] G. Reger University of Manchester, UK

Table 2. Tools participating in online monitoring of Java programs track.

Tool Ref. Contact person Affiliation
ZOT+SOLOIS [3] D. Bianculli Politecnico di Milano, Italy

S. Krstic University of Luxembourg, Luxembourg
LogFire [10] K. Havelund NASA JPL, USA
RiTHM2 [12] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
MonPoly [2] E. Zalinescu ETH Zurich, Switzerland
LOLA [5] N. Decker ISP, University of Lübeck, Germany
Breach [9] A. Donzé University of California, Berkeley, USA
QEA [1] G. Reger University of Manchester, England

Table 3. Tools participating in the offline monitoring track.

Online monitoring of Java and C programs tracks. In the case of Java and C
tracks, each benchmark contribution was required to be structured as follows:

– Program package containing the program source code, a script to compile it,
a script to run the executable, and an English description of the functionality
of the program.

– Specification package is a collection of files, each containing a property that
contains a formal representation of it, informal explanation and the expected
verdict (the evaluation of the property on the program), instrumentation
information, and an English description.

The instrumentation information maps the events referred in the properties
to concrete program events. A property consists of a formally defined object
(e.g., an automaton, logical formula, etc), an informal description, and whether
the program satisfies the property (i.e., the expected verdict). Instrumentation
is a mapping from concrete events (in the program) to abstract events (in the
specification). For instance, if one considers the HasNext property on iterators,
the mapping should indicate that the hasNext event in the property refers to a
call to the hasNext() method on an Iterator object. We allow for several concrete
events to be associated to one abstract event.

Offline monitoring track. In the case of offline track, each benchmark contribu-
tion should consist of:

– a trace in either XML, CSV, or JSON format



– a specification package, which consists of a collection of files, each contain-
ing the formal representation of a property, informal explanation and the
expected verdict (the evaluation of the property on the program), instru-
mentation information, and a brief description explanation.

Below we present some examples, where an event name ranges over the set of
possible event names, a field name ranges over the set of possible field names,
a value ranges over the set of possible runtime values.

JSON format:

an_event_name

a_field_name = a_value

a_field_name = a_value

an_event_name

a_field_name = a_value

a_field_name = a_value

CSV format:

an_event_name, a_field_name = a_value, a_field_name = a_value

an_event_name, a_field_name = a_value, a_field_name = a_value

XML format

<log>

<event>

<name>an_event_name</name>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

</event>

<event>

<name>EVR</name>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>



</event>

</log>

2.2 Training Phase and Monitor Collection phase

After a sanity check of the benchmarks performed by the organisers, the training
phase started on June 18, 2014. During this phase, all participants are supposed
to train their tools with the all the available benchmarks in the repository. This
phase was scheduled to be completed by July 20, 2014, when the participants
will submit the monitored versions of benchmarks. In this phase, a contribution
consists of a the source of a program and a list of pairs of program and property
identifier. That is, a contribution is related to a program and contains monitors
for the properties of this program. Each monitor is related to one property. A
monitor consists of two scripts, one for building the (monitored version of) the
program, one for running the monitored version of the program. This report is
written during this phase.

2.3 Benchmark Evaluation Phase.

The competition experiments for evaluation will be performed on DataMill
(http://datamill.uwaterloo.ca), a distributed infrastructure for computer
performance experimentation targeted at scientists that are interested in perfor-
mance evaluation. DataMill aims to allow the user to easily produce robust and
reproducible results at low cost. DataMill executes experiments on real hardware
and incorporates results from existing research on how to setup experiments and
hidden factors.

Each participant will have the possibility to setup and try directly their
tool using DataMill. The final evaluation will be performed by the competition
organizers. In the next section we present in detail the algorithm to calculate
the final score for each tool.

3 Evaluation - Calculating Scores

Let us consider one of the three competition tracks (Java, C, and offline). Let N
be the number of tools participating in the considered track and L be the total
number of benchmarks provided by all teams. The total number of experiments
for the track will be N × L. Then, for each tool Ti (1 ≤ i ≤ N) w.r.t. each
benchmark Bj (1 ≤ j ≤ L), we assign three different scores: the correctness
score Ci,j , the overhead score Oi,j , and the memory utilization score Mi,j . In
case of online monitoring, let Ej be the execution time of benchmark Bj (without
monitor). Note, in the following, for simplicity of notation, we assume that all
participants of a track want to compete on benchmark Bj . Participants can of
course decide not to qualify on a benchmark of their track. In this case, the
following score definitions can be adapted easily.

http://datamill.uwaterloo.ca


3.1 Correctness Score

The correctness score Ci,j for a tool Ti running a benchmark Bj is calculated as
follows:

– Ci,j = 0, if the property associated with benchmark Bj cannot be expressed
in the specification language of Ti.

– Ci,j = −10, if the property can be expressed, but the monitored program
crashes.

– Ci,j = −5, if, in case of online monitoring, the property can be expressed
and no verdict is reported after 10× Ej .

– Ci,j = −5, if, in case of offline monitoring, the property can be expressed,
but the monitor crashes.

– Ci,j = −5, if the property can be expressed, the tool does not crash, and the
verification verdict is incorrect.

– Ci,j = 10, if the tool does not crash, it allows to express the property of
interest, and it provides the correct verification verdict.

Note that in case of a negative correctness score there is no evaluation w.r.t
the overhead and memory utilization scores for the pair (Ti, Bj).

3.2 Overhead Score

The overhead score Oi,j for a tool Ti running a benchmark Bj is related to
the timing performance of the tool for detecting the (unique) verdict. For all
benchmarks, a fixed total number of points O is allocated when evaluating the
tools on a benchmark. Thus, the scoring method for overhead ensures that

N∑
i=1

L∑
j=1

Oi,j = O.

The overhead score is calculated as follows. First, we compute the overhead
index oi,j , for tool Ti running a benchmark Bj , where the larger overhead index,
the better.

– In the case of offline monitoring, for the overhead, we consider the elapsed
time till the property under scrutiny is either found to be satisfied or violated.
If monitoring (with tool Ti) of the trace of benchmark Bj executes in time
Vi, then we define the overhead as

oi,j =

{ 1
Vi

if Ci,j > 0

0 otherwise

– In the case of online monitoring (C or Java), the overhead associated with
monitoring is a measure of how much longer a program takes to execute due



to runtime monitoring. If the monitored program (with monitor from tool
Ti) executes in Vi,j time units, we define the overhead index as

oi,j =


N
√∏N

l=1 Vl,j

Vi,j
if Ci,j > 0

0 otherwise

In other words, the overhead index for tool Ti evaluated on benchmark Bj

is the geometric mean of the overheads of the monitored programs with all
tools over the overhead of the monitored program with tool Ti.

Then, the overhead score Oi,j for a tool Ti w.r.t benchmark Bj is defined as
follows:

Oi,j = O × oi,j∑N
l=1 ol,j

.

For each tool, the overhead score is a harmonization of the overhead index so
that the sum of overhead scores is equal to O.

3.3 Memory Utilization Score

The memory utilization score Mi,j is calculated similarly to the overhead score.
For all benchmarks, a fixed total number of points O is allocated when evaluating
the tools on a benchmark. Thus the scoring method for memory utilization
ensures that

N∑
i=1

L∑
j=1

Mi,j = M.

First, we measure the memory utilization index mi,j for tool Ti running a
benchmark Bj , where the larger memory utilization index, the better.

– In the case of offline monitoring, we consider the maximum memory allo-
cated during the tool execution. If monitoring (with tool Ti) of the trace of
benchmark Bj uses a quantity of memory Di, then we define the overhead
as

mi,j =

{ 1
Di

if Ci,j > 0

0 otherwise

That is, the memory utilization index for tool Ti evaluated on benchmark Bj

is the geometric mean of the memory utilizations of the monitored programs
with all tools over the memory utilization of the monitored program with
tool Ti.

– In the case of online monitoring (C or Java tracks), memory utilization
associated with monitoring is a measure of the extra memory the monitored



program needs (due to runtime monitoring). If the monitored program uses
Di, we define the memory utilization as

mi,j =


N
√∏N

l=1 Dl,j

Di,j
if Ci,j > 0

0 otherwise

Then, the memory utilization score Mi,j for a tool Ti w.r.t. a benchmark Bj is
defined as follows:

Mi,j = M × mi,j∑N
l=1 ml,j

.

3.4 Final Score

The final score Fi for tool Ti is then computed as follows:

Fi =

L∑
j=1

Si,j

where:

Si,j =

{
Ci,j if Ci,j ≤ 0,
Ci,j + Oi,j + Mi,j otherwise.

=======

4 Concluding Remarks

As mentioned earlier, this report is written during the training phase. Once this
phase is complete, the organizers will evaluate all the submitted monitors using
the formula proposed in Section 3. The results of the competition is expected to
be announced during the RV 2014 conference in Toronto, Canada. This report
is published to assist future organizers of CSRV to build on the efforts made to
organize CSRV 2014.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
Event Automata: Towards Expressive and Efficient Runtime Monitors. In: Gian-
nakopoulou, D., M., D. (eds.) FM 2012: Formal Methods, Lecture Notes in Com-
puter Science, vol. 7436, pp. 68–84. Springer Berlin Heidelberg (2012)

2. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: Monitoring Usage-
control Policies. In: Proceedings of RV 2011: the Second International Conference
on Runtime Verification. pp. 360–364. RV’11, Springer-Verlag, Berlin, Heidelberg
(2012)

3. Bianculli, D., Ghezzi, C., San Pietro, P.: The Tale of SOLOIST: A Specification
Language for Service Compositions Interactions. In: Formal Aspects of Component
Software, Lecture Notes in Computer Science, vol. 7684, pp. 55–72. Springer Berlin
Heidelberg (2013)



4. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java
programs (tool paper). In: Proceedings of the 2009 Seventh IEEE International
Conference on Software Engineering and Formal Methods. pp. 33–37. SEFM ’09,
IEEE Computer Society, Washington, DC, USA (2009), http://dx.doi.org/10.
1109/SEFM.2009.13

5. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Proceedings of TIME 2005: the 12th International Symposium on
Temporal Representation and Reasoning. pp. 166–174 (2005)

6. Decker, N., Leucker, M., Thoma, D.: jUnitrv-adding runtime verification to ju-
nit. In: Proceedings of NFM 2013: 5th International Symposium of NASA Formal
Methods, Moffett Field, CA, USA, May 14-16, 2013. Lecture Notes in Computer
Science, vol. 7871, pp. 459–464. Springer (2013)

7. Decker, N., Leucker, M., Thoma, D.: Monitoring Modulo Theories. In: Proceedings
of TACAS 2014: 20th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Grenoble, France, April 5-13, 2014. p. To
Appear. Lecture Notes in Computer Science, Springer (2014)

8. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static
and dynamic analysis of c programs. In: Proceedings of SAC ’13: the 28th Annual
ACM Symposium on Applied Computing. pp. 1230–1235. ACM (2013)

9. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hy-
brid systems. In: Proceedings of CAV (2010), http://dx.doi.org/10.1007/

978-3-642-14295-6_17

10. Havelund, K.: Rule-based Runtime Verification Revisited. International Journal
on Software Tools for Technology Transfer (STTT) p. To appear (2014)

11. Jin, D., Meredith, P.O., Lee, C., Roşu, G.: JavaMOP: Efficient Parametric Runtime
Monitoring Framework. In: Proceedings of ICSE 2012: THE 34th International
Conference on Software Engineering, Zurich, Switzerland, June 2-9. pp. 1427–1430.
IEEE Press (2012)

12. Navabpour, S., Joshi, Y., Wu, C.W.W., Berkovich, S., Medhat, R., Bonakdarpour,
B., Fischmeister, S.: RiTHM: a tool for enabling time-triggered runtime verification
for c programs. In: ACM Symposium on the Foundations of Software Engineering
(FSE). pp. 603–606 (2013)

13. Parzonska, M.: A Library-Based Approach to Efficient Parametric Runtime Mon-
itoring of Java Programs. Master’s thesis, TU Darmstadt, Germany (2013)

http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/978-3-642-14295-6_17

	First International Competition on Software for Runtime Verification

