
HAL Id: hal-01120551
https://hal.science/hal-01120551v1

Submitted on 26 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Organising LTL Monitors over Distributed Systems with
a Global Clock

Christian Colombo, Yliès Falcone

To cite this version:
Christian Colombo, Yliès Falcone. Organising LTL Monitors over Distributed Systems with a
Global Clock. 14th International Conference on Runtime Verification, Sep 2014, Toronto, Canada.
�10.1007/978-3-319-11164-3_12�. �hal-01120551�

https://hal.science/hal-01120551v1
https://hal.archives-ouvertes.fr

Organising LTL Monitors over
Distributed Systems with a Global Clock

Christian Colombo1 and Yliès Falcone2

1 Department of Computer Science, University of Malta
christian.colombo@um.edu.mt

2 Laboratoire d’Informatique de Grenoble, University of Grenoble-Alpes, France
ylies.falcone@ujf-grenoble.fr

Abstract. Users wanting to monitor distributed systems often prefer to abstract
away the architecture of the system, allowing them to directly specify correct-
ness properties on the global system behaviour. To support this abstraction, a
compilation of the properties would not only involve the typical choice of moni-
toring algorithm, but also the organisation of submonitors across the component
network. Existing approaches, considered in the context of LTL properties over
distributed systems with a global clock, include the so-called orchestration and
migration approaches. In the orchestration approach, a central monitor receives
the events from all subsystems. In the migration approach, LTL formulae transfer
themselves across subsystems to gather local information.
We propose a third way of organising submonitors: choreography — where mon-
itors are orgnized as a tree across the distributed system, and each child feeds
intermediate results to its parent. We formalise this approach, proving its cor-
rectness and worst case performance, and report on an empirical investigation
comparing the three approaches on several concerns of decentralised monitoring.

1 Introduction

Due to the end of regular increase of processor speed, more systems are being designed
to be decentralised to benefit from more of the multi-core feature of contemporary pro-
cessors. This change in processors poses a number of challenges in the domain of run-
time verification where performance is paramount.

In runtime verification one is interested in synthesizing a monitor to evaluate a
stream of events (reflecting the behaviour of a system) according to some correctness
properties. When the system consists of several computing units (referred to as com-
ponents in the sequel), it is desirable to decentralise the monitoring process for several
reasons (as seen in [1, 4, 5]). First, it is a solution to benefit from the plurality of comput-
ing units of the system if one can design decentralised monitors that are as independent
as possible. Second, it avoids introducing a central observation point in the system that
presupposes a modification of the system architecture, and it also generally reduces the
communication overhead in the system. See [4, 5] for more arguments along this line.

In this paper, we study these questions in the context of monitors synthesized from
LTL specifications by considering three approaches, namely orchestration, migration,
and choreography, to organise monitors (using terminology from [6]): (i) Orchestration
is the setting where a single node carries out all the monitoring processing whilst re-
trieving information from the rest of the nodes. (ii) Migration is the setting where the

2 C. Colombo and Y. Falcone

monitoring entity transports itself across the network, evolving as it goes along — doing
away with the need to transfer lower level (finer-grained) information. (iii) Choreogra-
phy is the setting where monitors are organised into a network and a protocol is used to
enable cooperation between monitors.

Note, there are two important assumptions in our study. First, we assume the exis-
tence of a global clock in the system (as in [4]). This assumption is realistic for many
critical industrial systems or when the system at hand is composed of several applica-
tions executing on the same operating system. Second, we assume that local monitors
are attached to the components of the system and that the monitors can directly com-
municate with each other through some network.

Contributions of this paper. First, we survey the work on LTL monitoring in the context
of distributed systems, classifying them under orchestration, choreography, and migra-
tion. Second, we introduce choreography-based decentralised monitoring. Third, we
propose an algorithm that splits the monitoring of an LTL formula into smaller moni-
tors forming a choreography. Fourth, we empirically compare orchestration, migration
(from [4]), and choreography using a benchmark implementation.

Paper Organization. The rest of the paper is organised as follows. Section 2 intro-
duces some background. Sections 3 and 4 recall the orchestration and migration ap-
proaches for LTL monitoring, respectively. In Section 5, we introduce the setting of
choreography-based decentralised monitoring. Section 6 reports on our empirical eval-
uation and comparison of the three approaches using a benchmark implementation. Sec-
tion 7 compares this paper with related work. Finally, Section 8 concludes and proposes
future work.

2 Background

In this section, we formally define a distributed system and alphabet, followed by an
introduction to the syntax and semantics of LTL.

Distributed systems and alphabet. N is the set of natural numbers. Let a distributed
system be represented by a list of components: C = [C1, C2, . . . , Cn] for some n ∈ N \
{0}, and the alphabetΣ be the set of all events of the components:Σ = Σ1∪Σ2∪ . . .∪
Σn, whereΣi is the alphabet ofCi built over a set of local atomic propositions AP i. We
assume that the alphabets and sets of local atomic propositions are pair-wise disjoint3

and define function # returning the index of the component related to an event, if it
exists: # : Σ → N such that #a def

= i if ∃i ∈ [1;n] : a ∈ Σi and undefined otherwise.
The behavior of each componentCi is represented by a trace of events, which for t time
steps is encoded as ui = ui(0) · ui(1) · · ·ui(t − 1) with ∀t′ < t : ui(t

′) ∈ Σi. Finite
(resp. infinite) traces overΣ are elements ofΣ∗ (resp.Σω) and are denoted by u, u′, . . .
(resp.w,w′, . . .). The set of all traces isΣ∞ def

= Σ∗∪Σω . The finite or infinite sequence
wt is the suffix of the trace w ∈ Σ∞, starting at time t, i.e., wt = w(t) · w(t+ 1) · · · .

3 This assumption simplifies the presentation but does not affect the generality of the results.

Organising LTL Monitors over Distributed Systems with a Global Clock 3

Linear Temporal Logic. The system’s global behaviour, (u1, u2, . . . , un) can now be
described as a sequence of pair-wise union of the local events in component’s traces,
each of which at time t is of length t+ 1 i.e., u = u(0) · · ·u(t).

We monitor a system wrt. a global specification, expressed as an LTL [9] formula,
that does not state anything about its distribution or the system’s architecture. LTL for-
mulae can be described using the following grammar:

ϕ ::= p | (ϕ) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ,
where p ∈ AP . Additionally, we allow the following operators, each of which is

defined in terms of the above ones:> def
= p∨¬p,⊥ def

= ¬>, ϕ1∧ϕ2
def
= ¬(¬ϕ1∨¬ϕ2),

Fϕ
def
= >U ϕ, and Gϕ

def
= ¬ F (¬ϕ).

Definition 1 (LTL semantics [9]). LTL semantics is defined wrt. infinite traces. Let
w ∈ Σω and i ∈ N. Satisfaction of an LTL formula byw at time i is defined inductively:

wi |= p⇔ p ∈ w(i), for any p ∈ AP
wi |= ¬ϕ⇔ wi 6|= ϕ

wi |= ϕ1 ∨ ϕ2 ⇔ wi |= ϕ1 ∨ wi |= ϕ2

wi |= Xϕ⇔ wi+1 |= ϕ
wi |= ϕ1 U ϕ2 ⇔ ∃k ∈ [i,∞[· wk |= ϕ2 ∧ ∀l ∈ [i, k[: wl |= ϕ1

When w0 |= ϕ holds, we also write w |= ϕ.
Several approaches have been proposed for adapting LTL semantics for monitoring

purposes (cf. [2]). Here, we follow previous work [4] and consider LTL3 (introduced
in [3]).

Definition 2 (LTL3 semantics [3]). Let u ∈ Σ∗, the satisfaction relation of LTL3,
|=3: Σ

∗ × LTL→ B3, with B3
def
= {>,⊥, ?}, is defined as

u |=3 ϕ =

> if ∀w ∈ Σω : u · w |= ϕ,
⊥ if ∀w ∈ Σω : u · w 6|= ϕ,
? otherwise.

3 Orchestration

The idea of orchestration-based monitoring is to use a central observation point in the
network (see Fig. 1). The central observation point can be introduced as an additional
component or it can be a monitor attached to an existing component. In orchestration-
based monitoring, at any time t, the central observation point is aware of every event
ui(t) occurring on each component Ci, and has thus the information about the global

M: G (X(a1 and c1) or (b1 and b2))

Node A

M: a1

Node C

M: c1

Node B

M: b1, b2

Fig. 1. An example of orchestration architecture

4 C. Colombo and Y. Falcone

event u1(t) ∪ . . . ∪ un(t) occurring in the system. Several protocols can be used by
local monitors to communicate events. For instance, local monitors can send their local
event at every time instance. Alternatively, the protocol may exploit the presence of
a global clock in the system and just signal which propositions are true at any time
instance or those whose value has changed. From a theoretical perspective, putting aside
the instrumentation and communication, orchestration-based monitoring is not different
from typical centralised monitoring.

4 Migration

Migration-based monitoring was introduced in [4]. The idea of migration is to represent
(the state of) a monitor as an LTL formula that travels across a network. Upon the
reception of a new LTL formula, a component progresses it, i.e., it rewrites the formula
given the local observation, so that the resulting formula is the formula that has to
hold in the next computation step. Such formula may contain references to past time
instants if it has been progressed by components that could not evaluate some parts of
it. More precisely, rewriting a formula is done using the so-called progression, adapted
to the decentralised case, i.e., taking into account the fact that a component has only
information about the local propositions it has access to. For example, in Fig. 2 only
the valuations of b1 and b2 would be available for the monitor at component B. For
the other propositions whose valuation is not available, an obligation is recorded which
will have to be satisfied in a future time instant (by looking at the past). In the example,
note that Pa1 and Pc1 refer to the previous values of a1 and c1 respectively. The
rewritten formula is then sent to the most appropriate component — intuitively, the
component that has the information about the proposition whose obligation reaches
furthest into the past. The recipient component progresses the received formula using
its local observation but also using its local history of observations to evaluate the past
propositions. After sending a formula, a component is left with nothing to evaluate,
unless it receives a formula from another component.

Any verdict found by a component is an actual global verdict. However, since the
values of some propositions are known only one or more time instants later, the verdict
is typically reached with a delay depending on the size of the network. To keep this
delay to a minimum one can initially start monitoring the formula on all components,

M:

Node A

M:

Node B

M: G(X(a1 and c1) or (b1 and b2))

Node C

Migration takes place

M: G(X(a1 and c1) or (b1 and b2)) and G(X(Pa1 and Pc1))

Node A

M:

Node B

M:

Node C

Fig. 2. An example of migrating architecture

Organising LTL Monitors over Distributed Systems with a Global Clock 5

M: G(_ or (b1 and b2))

Node BNode A

M: a1

Node C

M: X(_ and c1)

Fig. 3. An example of choreography architecture

enabling different sequences of proposition processing. The downside, however, is that
this increases the number of messages as well as the number of progressions.

5 Choreography

Rather than having the whole formula at a single location (whether this is fixed as
in orchestration or variable as in migration), choreography breaks down the formula
across the network, forming a tree structure where results from subformulae flow up to
the parent formula.

5.1 Choreography at an Abstract Level

Figure 3 shows how formula G(X(a1 ∧ c1) ∨ b1 ∧ b2) is spread across a network
of three nodes A,B, and C with sets of local propositions {a1}, {b1, b2}, and {c1},
respectively. Note that each proposition is monitored in what we refer in the following
as its native node, i.e., each node is monitoring a subformula that contains reference
to either its local atomic propositions or place holders. Intuitively, place holders can
be understood as three-state propositions that represent the verdict (true, false, or no
verdict yet) of a remote subformula being evaluated on another component. Note also
that no node is aware of all the propositional values. The progression of a choreographed
monitoring network includes the following steps:

1. Progress the subformulae that do not have place holders, and forward the verdicts
to their parents.

2. Upon receiving all verdicts for place holders, parent subformulae perform their
progression potentially spawning new place holders (e.g., due to the progression of
the Until operator (defined later)).

3. Verdicts continue to propagate from the leaves to the root of the tree until the root
reaches a true or false verdict.

In what follows, we formalise the progression of a choreographed monitoring network,
and prove two properties of the proposed choreography: the maximum number of nested
place holders and the correctness of the verdict reached.

5.2 Formalizing Choreography

In the rest of this section, we formally define an instantiation of the choreography ap-
proach, starting with the distribution of an LTL formula across a network and subse-
quently showing how interactions take place to reach the verdict for a particular trace.
We extend LTL syntax with one modality to support distribution.

6 C. Colombo and Y. Falcone

Definition 3 (Distributed LTL). Distributed LTL formulae, in LTLD, are defined as
follows:

ϕD ::= ϕ | 〈|x, y|〉ϕ, where x, y ∈ N and ϕ ∈ LTL

A distributed LTL formula is either an LTL formula or a place holder of the form
〈|x, y|〉ϕ where natural numbers x, y act as a pointer to a subformula in the LTL net-
work, while the LTL formula is kept as a copy.

Remark 1. The modality related to distribution is only used in our definitions and func-
tions. The end user, i.e., the one writing properties, does not need to be aware of it.

Given a distributed LTL formula, we define a scoring function that returns a natural
number representing the desirability of placing the monitor for that LTL formula on
some particular component i. To choose where to place a given LTL formula, we choose
the one with the highest score.

Definition 4 (Choosing component). The scoring and choice functions are defined as
follows:

– The scoring function scori : LTLD → N is defined as follows (using ∼ and � to
range over unary and binary LTL operators, resp.):

scori(ϕ) = match ϕ with
| ∼ψ → scori(ψ) | ψ � ψ′ → scori(ψ) + scori(ψ

′)

| p →
{
1 if #p = i
0 otherwise | _ → 0

– The choice function chc : LTLD → N is defined as follows:
chc(ϕ)

def
= i such that scori(ϕ) = max(scor1(ϕ), . . . , scorn(ϕ))

Note that this definition of chc might have several solutions but we leave it up to the
implementer to choose any component with a high score, either randomly or through
some other strategy.

An important condition for choreography to function correctly is to ensure that for
any proposition p, chc(p) = #p holds since the value of p can only be resolved at
component #p. In what follows we assume this is always the case.

Remark 2. There are several ways of varying the scoring function. The following two
are just examples: (i) Vary the weighting of binary operators’ operands, e.g., in the
case of the Until the right subformula is given more weighting than the left; (ii) Giving
more weight to a particular component, e.g., to create an orchestration where the whole
formula except the remote propositions are on a single component.

Given a list of components making up a system, a monitor network is a corresponding
list of monitors (with one monitor per component) where each monitor has certain LTL
formulae.

Definition 5 (LTL network). An LTL network is a function M : N → N → LTL
which given a component identifier, returns the component’s monitor, which in turn is a
function which given the formula identifier, returns the formula.

Organising LTL Monitors over Distributed Systems with a Global Clock 7

We use M,N,O, P to range over the set of networksM. As abbreviations we use Mi

to refer to M(i), i.e., the i-th component in network M , and M j
i to refer to Mi(j), i.e.,

the j-th formula of the i-th component in M . Moreover, |Mi| = |dom(Mi)| refers to
the size of the domain of Mi, while M j

i 7→ ϕ is used as abbreviation for M † [i 7→
Mi ∪ [(j 7→ ϕ)]] and M∗i as abbreviation for M |Mi|

i , where † is the classical map
override operator.4

Intuitively, distributing a formula across a network requires two operations: modi-
fying the formula to point to its subparts which are in another part of the network, and
inserting the formula with pointers inside the network. The function net defined below
handles the latter aspect while the former is handled by distr. In turn distr (through
recurs) recursively calls itself on subformulae until it encounters a subpart which be-
longs to a different component (due to the scoring function). In this case, function net is
called once more so that the remote subformula is inserted in the network accordingly.
Using function chc, the sub parts of a formula that “choose” a different component
from their parent’s can be marked as distributed using LTLD modalities and placed at a
different point in the network.

Definition 6 (Generating an LTL network). Thus, we define function net : M ×
LTL → M, which given an (initially empty) network, distributes the LTL formula ac-
cording to the scoring function as follows:

net(M,ϕ) = let c = chc(ϕ) in
let M ′, ϕ′ = distrc(M,ϕ) in M ′∗c 7→ ϕ′

where distri(M,ϕ) = match (M,ϕ) with
| ∼ψ → let N,ψ′ = recursi(M,ψ) in N,∼ψ′
| ψ � ψ′ → let N,ψ′′ = recursi(M,ψ) in

let O,ψ′′′ = recursi(N,ψ
′) in O,ψ′′ � ψ′′′

| ψ →M,ψ

and recursi(M,ϕ) = let j = chc(ϕ) in
{
distri(M,ϕ) if j = i
net(M,ϕ), 〈|j, |Mj ||〉ϕ otherwise.

Note that, starting with an empty network (ME = {1 7→ {}, . . . , n 7→ {}}) where n is
the number of components), this function returns a tree structure with LTL subformulae
linked to their parent. We abbreviate net(ME , ϕ) to net(ϕ). To denote the root of the
tree for the network of an LTL formula ϕ, i.e., the main monitor, we use M̂ , which is
defined as M |Mc|−1

c where c = chc(ϕ).

Example 1. Consider the scenario of constructing a network for formula ϕ = aU b for
a decentralised system with two components, A and B (numbered 1 and 2 resp.), with
the former having proposition a at its disposal while the latter having proposition b.

Starting with a call to net, we note that chc(ϕ) may return either 1 or 2 depending on
the definition of maximum. In this case, we assume the former and call the distribution
function on an empty network: distr1(ME , ϕ). Starting with the basic definitions, the
example works out as follows:

4 For two functions f and g, for any element e, (f † g)(e) is g(e) if e ∈ dom(g), f(e) if
e ∈ dom(f), and undef otherwise.

8 C. Colombo and Y. Falcone

N,ϕ′ = recurs1(ME , a) = distr1(ME , a)
= {1 7→ {}, 2 7→ {}}, a

O, ψ′ = recurs1(N, b) = net(N, b), 〈|2, 0|〉b
= {1 7→ {0 7→ b}, 2 7→ {}}, 〈|2, 0|〉b

distr1(ME , ϕ) = {1 7→ {}, 2 7→ {0 7→ b}}, aU 〈|2, 0|〉b
net(ME , ϕ) = {1 7→ {0 7→ aU 〈|2, 0|〉b}, 2 7→ {0 7→ b}}

At each time step, starting from the main monitor, the network performs one chore-
ographed progression step.

Definition 7 (Choreographed Progression). Given an LTL network M , the index j of
a formula in monitor i, and the current observation σ, the choreographed progression
function progi :M× N×Σ →M, returns the resulting LTL network:

progi(M, j, σ) = match M j
i with

| > | ⊥ →M

| p →
{
M j
i 7→ > if p ∈ σ

M j
i 7→ ⊥ otherwise

| ¬ϕ → ¬
(
progi(M, j, σ)ji

)
| Xϕ →M j

i 7→ ϕ

| ϕ� ψ → let N = progi(M
j
i 7→ ϕ, j, σ) in

let O = progi(N
j
i 7→ ψ, j, σ) in

let P,ϕ′ = distri(O,ϕU ψ) in{
Oji 7→ N j

i ∨O
j
i when M j

i = ϕ ∨ ψ
P ji 7→ Oji ∨ (N j

i ∧ ϕ′) when M j
i = ϕU ψ

| 〈|x, y|〉ϕ → let N = progx(M,y, σ) in{
N j
i 7→ Ny

x if Ny
x ∈ {>,⊥}

N otherwise

Finally, due to the call to distri from the progression function, we overload the function
to handle distributed LTL formulae by adding the following line enabling the respawn-
ing of distributed formulae:

distri(M, 〈|x, y|〉ϕ)
def
= net(M,ϕ), 〈| chc(ϕ), |Mchc(ϕ)||〉ϕ

The progression mechanism in the choreography context is similar to normal LTL.
However, due to remote subparts of a formula, the network may change in several parts
when progressing a single formula. Thus, when handling LTL operators, subformulae
should first be applied one by one on the network, each time operating on the updated
network (hence N and O). Slightly more complex is the Until case where a fresh copy
of any distributed subparts have to be respawned across the network. P handles this by
calling the distribution function on the progressed network O.

Example 2. Building upon the previous example, a U b, assuming a trace {a} · {b},
starting with network {1 7→ {0 7→ a U 〈|2, 0|〉}, 2 7→ {0 7→ b}}, and noting that the
main monitor resides at (1, 0), progression would evolve as follows (again starting with
the basic definitions):

Organising LTL Monitors over Distributed Systems with a Global Clock 9

1. First element of the trace: {a}

N = prog1({1 7→ {0 7→ a}, 2 7→ {0 7→ b}}, 0, {a})
= {1 7→ {0 7→ >}, 2 7→ {0 7→ b}}

O = prog1({1 7→ {0 7→ 〈|2, 0|〉b}, 2 7→ {0 7→ b}}, 0, {a})
= {1 7→ {0 7→ ⊥}, 2 7→ {0 7→ ⊥}}

P,ϕ′ = distr1({1 7→ {0 7→ ⊥}, 2 7→ {0 7→ ⊥}}, aU 〈|2, 0|〉b)
= {1 7→ {0 7→ ⊥}, 2 7→ {0 7→ ⊥, 1 7→ b}}, aU 〈|2, 1|〉b

prog1({1 7→ {0 7→ aU 〈|2, 0|〉b}, 2 7→ {0 7→ b}}, 0, {a})
= {1 7→ {0 7→ ⊥ ∨ (> ∧ aU 〈|2, 1|〉b)}, 2 7→ {0 7→ ⊥, 1 7→ b}}

2. Second element of the trace: {b}. (Note that the main formula has been simplified
using normal LTL simplification rules and unused subformulae garbage collected.)

N = prog1({1 7→ {0 7→ a}, 2 7→ {1 7→ b}}, 0, {b})
= {1 7→ {0 7→ ⊥}, 2 7→ {1 7→ b}}

O = prog1({1 7→ {0 7→ 〈|2, 1|〉b}, 2 7→ {1 7→ b}}, 0, {b})
= {1 7→ {0 7→ >}, 2 7→ {1 7→ >}}

P,ϕ′ = distr1({1 7→ {0 7→ >}, 2 7→ {1 7→ >}}, aU 〈|2, 1|〉b)
= {1 7→ {0 7→ >}, 2 7→ {1 7→ >, 2 7→ b}}, aU 〈|2, 2|〉b

prog1({1 7→ {0 7→ aU 〈|2, 1|〉b}, 2 7→ {1 7→ b}}, 0, {b})
= {1 7→ {0 7→ > ∨ (⊥ ∧ aU 〈|2, 2|〉b)}, 2 7→ {1 7→ >, 2 7→ b}}

Through simplification and garbage collection, the network resolves to {1 7→ {0 7→
>}, 2 7→ {}}, i.e., the main formula is now >, meaning that a verdict has been reached
as defined below.

Definition 8 (Decentralised semantics). The satisfaction relation for choreographed
monitors is given according to the verdict reached by the topmost monitor as follows:

u �C ϕ
def
=

> if M̂ = >
⊥ if M̂ = ⊥
? otherwise

For the purpose of guaranteeing the maximum number of indirections in a chore-
ographed LTL network, we define two depth-measuring functions: one which measures
the maximum number of nesting levels in a formula, and another which measures the
number of indirections in the network (typically starting from the main formula).

Definition 9 (Depth). The depth-measuring function dpth : LTLD → N is defined as:

dpth(ϕ) = match ϕ with
| ∼ψ → 1 + dpth(ψ)
| ψ � ψ′ → 1 + max(dpth(ψ),dpth(ψ′))
| _ → 1

The function measuring the depth of nested distribution modalities, taking a network
and an x and y pointer to a formula: dpthD :M× N× N→ N is defined as:

10 C. Colombo and Y. Falcone

dpthD(M, i, j) = match M j
i with

| 〈|x, y|〉ψ → 1 + dpthD(M,x, y)

| ∼ψ → dpthD(M
j
i 7→ ψ, i, j)

| ψ � ψ′ → max(dpthD(M
j
i 7→ ψ, i, j),dpthD(M

j
i 7→ ψ′, i, j))

| _ → 0

Theorem 1 (Maximum nested distributions). The number of nested distributions in
a choreographed LTL formula cannot exceed the number of levels of nesting within a
formula: ∀ϕ ∈ LTL : dpthD(net(ϕ)) < dpth(ϕ).

Proof. This follows from the definition of net and by extension distr which at most
introduces one place holder (〈|x, y|〉ϕ) for any particular level and from the definitions
of the functions dpth and dpthD where for any case considered dpthD ≤ dpth. Fur-
thermore, we note that since a formula must have propositions, true or false at the leafs,
then the distribution depth is strictly less than the formula depth.

To aid in the proof of correctness, we define the function net which given a chore-
ography network and a pointer to the main formula, returns the LTL formula being
monitored in the network, net :M× N× N→ LTL:

net(M, i, j) = match M j
i with

| ∼ψ → ∼
(
net(M j

i 7→ ψ, i, j)
)

| ψ � ψ′ →
(
net(M j

i 7→ ψ, i, j)
)
�
(
net(M j

i 7→ ψ′, i, j)
)

| 〈|x, y|〉ϕ → net(M,x, y)
| ψ → ψ

Theorem 2 (Correctness). The verdict reached by choreographed monitoring is the
same as the one reached under normal monitoring �C = �3.

Proof. In the context of a choreography, the state of the monitor is distributed across the
network. By induction on the size of the trace, we show that at every progression step,
the state of the monitoring network is equivalent to the formula if monitored centrally.

BC: Initially, if we had to compare the original formula to the distributed formula
but “undistributing” it, then they should be equivalent: ϕ = net(net(ϕ)). This follows
from the definitions of net and net.

IH: After k progressions, the resulting LTL formula is equivalent to the resulting
network: kϕ = net(kM) (assuming no simplifications).

IC: Assuming IH, after k+1 progressions the resulting formula and network should
be semantically equivalent: k+1ϕ = net(k+1M). This follows through a case-by-case
analysis of the progression function prog which correspond to the cases of the normal
progression function.

6 Evaluation and Discussion

Numerous criteria can be considered for comparing different organisations of LTL mon-
itoring over a network. Below are a number of them which are treated in this study5:

5 We ignore implementation-dependent measurements such as actual overhead of monitors.

Organising LTL Monitors over Distributed Systems with a Global Clock 11

Delay: Because of the network organization, it takes some communication steps to prop-
agate intermediate results.

Number and size of messages: Since no component in the network can observe the
full behaviour of the system, components have to communicate. Thus, we measure how
many messages are required and their size.

Progressions: Different configurations of the monitoring network affect the number
of LTL progressions that need to be carried out.

Privacy and security concerns6: In certain cases, one might wish to avoid commu-
nicating a component’s local data across the network. This might be either because of
lack of trust between the components themselves or due to an unsecured network.

To compare the three approaches with respect to these criteria, we have carried out
two main experiments (whose results are shown in Tables 1 and 2 resp.):

– The first one varies the size of the network, i.e., the number of components, and
the number of redirections in the resulting LTL network. This experiment is crucial
since the migration approach is sensitive to the size of the network [4] while intu-
itively we expect the choreography approach to be affected by the depth of the LTL
network.

– The second experiment varies the size of the formulae being considered and the
pattern of the resulting tree once the formula is distributed. This enabled us to as-
sess the scalability of the approaches and how they react to a different network
structures. In particular we considered two kinds of networks: one whose formula
is generated purely randomly, and another where we biased the formula genera-
tor such that the bottom-most LTL operators always have operands from the same
component; essentially emulating networks where the basic subformulae of an LTL
formula can be evaluated without communicating.

Some choices needed to be made with respect to the architectural setup of the ex-
periments:

Experiment setup: The setup is based on the tool DecentMon7 used in a previous
study comparing orchestration with migration [4]. For this study we simply extended
the tool with a choreography approach8.

Benchmark generation: For the first experiment, we generated 100 LTL formulae
and distributed traces randomly, subsequently tweaking the alphabet to manipulate the
number of referenced components and the depth of the resulting LTL network. For
the second experiment we could not use the same formulae since one of the variables
considered was the size of the formulae. The numbers shown in the tables are thus the
average results obtained across the 100 formulae considered in each case.

Communication protocol: Choosing a communication protocol such as communi-
cating only the propositions which are true while assuming that unsent ones are false,
makes a significant difference to our results. The chosen protocols were as follows: In
the case of orchestration, only the propositions referenced in the formula that hold true
are sent. Each sent proposition is considered to be of size one. In the case of migration,

6 We refrain from going into fault-tolerance issues in this study, leaving it for future work.
7 http://decentmonitor.forge.imag.fr
8 The new implementation is available at: http://decentmon3.forge.imag.fr.

12 C. Colombo and Y. Falcone

since the whole formula is sent, it is less straightforward to gain quick savings as in
the case of propositions. Thus, in this case we measure the size of the formula (one for
each proposition and each operator) and use it as the size of the message. In the case
of choreography we have two kinds of messages: updates from subformulae to their
parent’s place holders and redistribution messages. The former kind are similar to those
of orchestration but there is also the possibility that the subformula has neither reached
true nor false. Thus, if no verdict has been reached, the subformula transmits nothing,
otherwise it sends the verdict which counts as one. As for the redistribution messages,
recall that each redistribution would have been already communicated during the initial
setup of the network. Therefore, we assume that upon redistribution there is no need to
resend the formula and we consider its size to be one.

Execution cycles: A major difference between choreography and migration is that
the latter could send all the messages in one cycle while in the case of the choreography,
since the distribution messages succeed the ones enabling progression, there are two
messaging cycles for every time instant. However, the picture is even more complex
because the progression within a component may depend on the verdict of others. Thus,
while migration (as in [4]) strictly allowed one progression and messaging cycle per
system cycle, in our choreography evaluation, we allowed any number of cycles that
were necessary for the network to completely process the values in the current system
cycle. This makes the choreography approach delay-free (and hence avoids references
to the history) but relatively more expensive in terms of the number of cycles and the
messages required for each system cycle.

In the following subsections, we discuss the outcome by first comparing choreog-
raphy with migration, and subsequently comparing choreography to orchestration. We
refrain from comparing orchestration to migration as this has already been carried out
extensively in [4] and the results in the tables confirm the conclusions.

6.1 Choreography and Migration

We start by comparing the choreography approach to the migration approach by con-
sidering each criterion in turn:

Delay: As discussed earlier, since we have opted to allow the monitors to stabilise
between each system cycle, we observe no delay for the choreography case. However,
had this not been the case, we conjecture that the worst case delay would depend on the
depth of the formula network which, as proven in Theorem 1, is less than the depth of
the actual LTL formula.

Number and size of messages: A significant difference between choreography and
migration is that in migration the whole formula is transmitted over the network while
in choreography only when a subformula reaches true or false is the verdict transmitted.
This distinction contributes to the significant difference in the size of the messages sent
observed in Table 1.

However, the situation is reversed in the case of the frequency of messages. This is
mainly because in choreography, not only does the network have to propagate the ver-
dicts, but some progressions require a respawning of some submonitors. For example,
consider the case of formula ϕUψ which is progressed to ψ′ ∨ (ϕ′ ∧ϕUψ). First, we

Organising LTL Monitors over Distributed Systems with a Global Clock 13

note that ϕ′ and ψ′ are progressions of their counterparts in the context of the time in-
stance being considered, while copies of the formulae are respawned to be progressed in
the following time instance. This means that upon respawning, all remote submonitors
have to be respawned accordingly. Naturally, this has to be done using messages, which
as shown in Table 1, constitute more than half the total number of messages required.

Although choreography generally obtained better results with respect to the size
of messages, the scale starts tipping in favour of migration the bigger the formula is.
This is clearly visible in Tables 2 where for bigger formulae the results get closer, with
migration surpassing choreography in the third (unbiased) case. The reason behind this
is probably that simplification in the choreography context does not work optimally
since the simplification function does not have the visibility of the whole network.

As part of the evaluation, we changed the number of components involved in a
formula whilst keeping everything constant. Unsurprisingly, changing the number of
components did not affect the performance of the choreography approach as much as
it affected the performance of the migration approach. Table 1 shows this clearly: the
compound size of messages transmitted over nine components is 16 times bigger than
that of the three-component experiment. The results for choreography still fluctuated9

but not clearly in any direction and less than a factor of two in the worst case.
Similarly, keeping everything constant, we altered the alphabet once more, this time

keeping the number of components constant but changing the number of indirections
required in the choreography, i.e., a deeper tree of monitors. Again, the results in Table 1
confirm the intuition that this change affects the choreography much more than the
migration approach. In this case the distinction is somewhat less pronounced. However,
if we compare the change from 96.16 to 81.3 in the migration case as opposed to the
change from 2.47 to 4.16 in the case of choreography, we note that the percentage
change is over four times bigger in the second case (68% as opposed to 15%).

Progressions: The variations in the number of progressions is similar to the num-
ber of messages sent/received. The two are linked indirectly in the sense that both the
number of messages and progressions increase if the monitoring activity in the network
increases. However, we note that this need not be the case, particularly when the number
of components is small and monitoring can take place with little communication.

Privacy and security concerns: In general, in both the migration and the choreogra-
phy approaches no component can view all the proposition values in the network. How-
ever, the migration approach is significantly safer in this regard as no proposition values
are communicated: only LTL formulae, being less informative to an eavesdropper.

6.2 Choreography and Orchestration

In this subsection, we compare the choreography and the orchestration approaches.
Delay: Since orchestration is a special case of choreography with depth one, the

delay of an orchestration is always better or as good as that of a choreography. However,
9 The reasons for the fluctuations are probably due to the random adaptations of the alphabet to

change the number of components a formula is based upon.
10 The number of distribution messages is included in the previous column. We also note that all

choreography messages are of size one and thus these two columns represent the size of the
messages too.

14 C. Colombo and Y. Falcone

Table 1. Same formulae and traces with modified components and distribution depth

Variables Orchestration Migration Choreography
comps depth # msgs progs # msgs |msgs| progs # msgs # distr10 progs

3 4

1.3 1.8

0.12 22.10 14.07 4.22 2.90 8.07
5 4 0.21 98.59 55.02 2.18 1.54 5.74
9 4 0.24 353.86 188.06 2.79 1.96 6.25
5 3.15 0.21 96.16 53.98 2.47 1.74 5.98
5 5.83 0.21 81.3 46.43 4.16 2.88 8.05

Table 2. Same formulae and traces with modified components and distribution depth

Variables Orchestration Migration Choreography
|frm| bias # msgs progs # msgs |msgs| progs # msgs # distr progs

∼2
× 1.97 6.15 1.37 12.05 22.08 3.39 1.19 6.83
X 1.93 5.83 0.52 4.80 16.05 0.59 0.18 5.95

∼4
× 21.79 98.08 6.91 108.00 159.93 22.98 14.60 130.36
X 28.51 111.09 1.18 23.08 137.77 2.73 1.43 113.72

∼8
× 193.11 833.46 26.67 944.77 1166.72 1041.97 655.42 1635.64
X 103.10 334.18 6.58 204.56 433.47 96.71 60.73 592.25

∼16
× 653.20 2259.83 90.15 5828.51 4078.24 4136.77 2680.70 7271.81
X 361.54 1372.84 20.69 1802.93 1935.08 589.37 391.60 33981.28

in this study, since any number of monitoring cycles are allowed in between system
cycles, neither approach has any delay.

Number and size of messages: Similar to the case of delay, in general (as shown
in the empirical results) the number of messages required by an orchestration is less
than that required by a choreography. However, this greatly depends on the topology
of the tree. For example, having a distributed subformula b1 ∧ b2, sending updates for
the conjunction is generally cheaper than sending updates for b1 and b2 separately.
This phenomenon is hinted at in Table 1 where the results of the 3.15 depth are worse
than those of depth 4 (where in general this should be the opposite). In other words,
the performance of choreography is greatly dependent on how much the leaves can
propagate their results towards the root of the tree without having to communicate. The
hint is then confirmed in Table 2 where we intentionally biased the formula generation
algorithm such that propositions from the same component are more likely to appear
on the same branch. The results show a significant gain for the choreography approach,
performing even better than orchestration for small formulae.

Progressions: Once more, the number of progressions behaves similarly to the num-
ber of messages.

Privacy and security concerns: In the case of orchestration, since a single compo-
nent has visibility of all propositions, a security breach in that component would expose
all the system information. On the contrary, generally speaking, no component has the
full visibility of the system events in the case of choreography.

Clearly, none of the approaches ticks all the boxes. Rather, these experiments have
shed some light as to when it makes more sense to use one approach over another

Organising LTL Monitors over Distributed Systems with a Global Clock 15

depending on the size of the network, the structure of the LTL formula, the importance
of issues such as privacy, frequency/size of messages, etc.

7 Related Work

The idea of splitting the progression of an LTL formula into subparts and propagating
the results across a network is somewhat similar to the ideas used in parallel prefix
networks [8]. In such networks intermediate results are evaluated in parallel and then
combined to achieve the final result more efficiently. Furthermore, this work has two
other main sources of inspiration: the work by Bauer and Falcone [4] about monitor-
ing LTL properties in the context of distributed systems having a global clock, and the
work by Francalanza et al. [6] which classifies modes of monitoring in the context of
distributed systems. We have thus adapted the classification of distributed monitoring
showing how orchestration, choreography, and migration can be applied to LTL moni-
tors. We note, however, that we have introduced the global clock assumption which is
not present in [6]. Without this assumption, our correctness theorem does not hold due
to the loss of the total order between system events. From another point of view, we have
classified the approach presented in [4] as a migration approach (using the terminology
of [6]) and extended the work by presenting a choreography approach. Furthermore, we
have also empirically compared the advantages and disadvantages of the approaches.

As pointed out in [4], decentralised monitoring is related to several techniques. We
recall some of them and refer to [4] for a detailed comparison. One of the closest ap-
proaches is [10] which proposes to monitor MTTL formulae specifying the safety prop-
erties over parallel asynchronous systems. Contrary to [10], our approach considers the
full set of (“off-the-shelf") LTL properties, does not assume the existence of a global
observation point, and focuses on how to automatically split an LTL formula according
to the architecture of the system.

Also, closely related to this paper is a monitoring approach of invariants using
knowledge [7]. This approach leverages an apriori model-checking of the system to pre-
calculate the states where a violation can be reported by a process acting alone. Both [7]
and our approach try to minimize the communication induced by the distributed nature
of the system but [7] (i) requires the property to be stable (and considers only invariants)
and (ii) uses a Petri net model to compute synchronization points.

8 Conclusions and Future Work

In the context of distributed systems becoming increasingly ubiquitous, further studies
are required to understand the variables involved and how these affect the numerous cri-
teria which constitute good monitoring strategies. This would help architects to choose
the correct approach depending on the circumstance.

This study shows that while choreography can be advantageous in specific scenar-
ios such as in the case of systems with lots of components and formulae which can be
shallowly distributed, generally it requires a significant number of messages and cannot
fully exploit the potential of LTL simplification routines. We have noted that a substan-
tial part of the messages required for choreography are in fact messages related to the

16 C. Colombo and Y. Falcone

maintenance of the network, i.e., respawning subparts of a formula. This means that
LTL might not be the best candidate when going for a choreography. Contrastingly,
non-progression-based monitoring algorithms where the monitors are not constantly
modified, might lend themselves better to choreography.

We consider future work in three main directions: First, we would like to investigate
how LTL equivalence rules can be used to make the choreography tree shallower. For
example distributing (a1∧a2)∧((a3∧b1)∧b2) might require two hops to reach a verdict
while using associativity rules (obtaining ((a1 ∧ a2) ∧ a3) ∧ (b1 ∧ b2)), it can be easily
reduced to one. Secondly, it would be interesting to consider the case where for each
system cycle, the monitor only performs one cycle too. This introduces a delay for the
choreography to reach the verdict and requires a more complex network to manage the
dependencies across different time instants. Third, using other notations instead of LTL
and/or different monitoring algorithms, particularly ones which are not progression-
based, can potentially tip the balance more in favour of choreography approaches.

References

1. Bartocci, E.: Sampling-based decentralized monitoring for networked embedded systems.
In: 3rd Int. Work. on Hybrid Autonomous Systems. EPTCS, vol. 124, pp. 85–99 (2013)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
Logic and Computation 20(3), 651–674 (2010)

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 20(4), 14 (2011)

4. Bauer, A.K., Falcone, Y.: Decentralised LTL monitoring. In: 18th Int. Symp. on Formal
Methods. LNCS, vol. 7436, pp. 85–100. Springer (2012)

5. Falcone, Y., Cornebize, T., Fernandez, J.C.: Efficient and generalized decentralized monitor-
ing of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014: 34th IFIP
Int. Conference on Formal Techniques for Distributed Objects, Components and Systems.
LNCS, vol. 8461, pp. 66–83. Springer (2014)

6. Francalanza, A., Gauci, A., Pace, G.J.: Distributed system contract monitoring. J. Log. Al-
gebr. Program. 82(5-7), 186–215 (2013)

7. Graf, S., Peled, D., Quinton, S.: Monitoring distributed systems using knowledge. In: Bruni,
R., Dingel, J. (eds.) Proc. of the Joint 13th IFIP WG 6.1 Int. Conference and 31st IFIP WG
6.1 Int. Conference. LNCS, vol. 6722, pp. 183–197. Springer (2011)

8. Harris, D.: A taxonomy of parallel prefix networks. In: Signals, Systems and Computers.
vol. 2, pp. 2213–2217 (2003)

9. Pnueli, A.: The temporal logic of programs. In: SFCS’77: Proc. of the 18th Annual Sympo-
sium on Foundations of Computer Science. pp. 46–57. IEEE Computer Society (1977)

10. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized runtime analysis of multithreaded
applications. In: 20th Parallel and Distributed Processing Symposium (IPDPS). IEEE (2006)

