
HAL Id: hal-01120550
https://hal.science/hal-01120550v1

Submitted on 26 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blocking Advertisements on Android Devices using
Monitoring Techniques

Khalil El-Harake, Yliès Falcone, Wassim Jerad, Mattieu Langet, Mariem
Mamlouk

To cite this version:
Khalil El-Harake, Yliès Falcone, Wassim Jerad, Mattieu Langet, Mariem Mamlouk. Blocking Ad-
vertisements on Android Devices using Monitoring Techniques. 6th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, Oct 2014, Corfu, Greece.
�hal-01120550�

https://hal.science/hal-01120550v1
https://hal.archives-ouvertes.fr


Blocking Advertisements on Android Devices
using Monitoring Techniques ? ??

Khalil El-Harake, Yliès Falcone, Wassim Jerad, Mattieu Langet, and
Mariem Mamlouk

Laboratoire d’Informatique de Grenoble, Vérimag, University of Grenoble-Alpes, France
First.Last@imag.fr

Abstract. This paper explores the effectiveness and challenges of using moni-
toring techniques, based on Aspect-Oriented Programming, to block adware at
the library level, on mobile devices based on Android. Our method is systematic
and general: it can be applied to block advertisements from existing and future
advertisement networks. We also present miAdBlocker, an industrial proof-of-
concept application, based on this technique, for disabling advertisements on a
per-application basis. Our experimental results show a high success rate on most
applications. Finally, we present the lessons learned from this experience, and
we identify some challenges when applying runtime monitoring techniques to
real-world case studies.

1 Introduction
Smartphone usage has dramatically increased over the past decade, presently account-
ing for 57.6% of mobile devices. On mobile devices, Android [1], is the leading plat-
form holding 78.4% of the market [2]. The downside is that the popularity of Android
made it a primary target of adware: studies show that 49% of the applications on the
market are bundled with at least one ad library [3]. It has also become common practice
for application developers to bundle multiple advertisement libraries into their software.

The prevalence of adware, reduces device performance, detracts from user experi-
ence, significantly contributes to battery drain [4], and raises privacy concerns through
the collection of sensitive information (such as user location) [5].

In this paper we present how monitoring techniques can be used to disable adver-
tisements in Android applications. More particularly, we are interested in enforcement
monitoring where a so-called enforcement monitor receives the sensitive events from
the application under scrutiny and uses an internal decision procedure to determine
whether each event should be allowed or not. Using Aspect-Oriented Programming [6]
(AOP), we insert, at the bytecode-level, enforcement monitors that give users the abil-
ity to disable advertisements in Android on a per-application basis. Our technique mini-
mally modifies a targeted application in the sense that only the initial behavior related to
? The work presented in this paper is partially funded by Institut Carnot LSI.

?? This paper is an academic study of the effectiveness of using monitoring techniques on a
large-scale and challenging case study. By no means it should be seen as an attempt to actually
suppress advertisements in applications nor to jeopardize the source of income of the actors
involved in the Android ecosystem.



the display of advertisements is impacted while the rest of the host application functions
normally.

Unlike other methods that work by modifying the host operating system, our method
works on an unrooted stock Android device. Our method also differs from similar solu-
tions that perform bytecode transformation, and relies on custom security languages, or
low-level transformation using intermediate representations of bytecode [7, 8]. We rely
on Aspect-Oriented Programming, via the standard AspectJ compiler [9], which devel-
opers are more likely to be familiar with. A detailed comparison with related work, can
be found in Sec. 7.

Contributions. The contributions of this paper are to:

– Introduce the use of AOP as a method for disabling ads on Android applications;
– Present miAdBlocker, an end-user application, implementing the technique;
– Discuss results evaluating the approach in practice;
– Explore the limitations of using AOP to modify closed-source applications and

block advertisements.

Paper Organization. The rest of this paper is structured as follows. Section 2 presents
background notions. The method for suppressing advertisements is presented in Sec. 3.
Section 4 presents miAdBlocker, our industrial proof-of-concept that implements the
method presented in Sec. 3. miAdBlocker comprises i) a completely re-developed ver-
sion of Weave Droid [10], ii) an aspect that allows to suppress advertisements in many
Android applications, and adds user-oriented features. Section 5 presents our evalua-
tion of the method on a sample of 860 popular Android applications retrieved “off-
the-shelf” from Google Play. In Sec. 6, we discuss some of the issues (and possible
counter measures) encountered when applying miAdBlocker to Android applications.
Section 7 discusses related work. Finally, Sec. 8 presents some concluding remarks and
open perspectives.

2 Background
This section presents some background notions on Android, advertisement libraries,
aspect-oriented programming used in our approach.

2.1 Android and Advertisement Librairies

Android is an open-source operating system based on Linux. Android is primarily used
on mobile devices such as smartphones and tablets. Android applications are primarily
developed in Java, and while it is possible to use native code for development, only
4.52% of applications on the market use it [11]. Unlike typical Java applications which
run on a Java Virtual Machine (JVM), Android applications use the Dalvik Virtual
Machine (DVM). The DVM and JVM have significant differences, such as differences
in bytecode encoding, their differences and resulting problems are discussed briefly in
Sec. 6.

Android applications are distributed as APK (Android Package) files (see Fig. 1(a)).
APK files consist of the application’s manifest, resources, application bytecode encoded
for the DVM as a single classes.dex file, and signatures over the APK file for ver-
ifying its authenticity. An Android application runs in its own process, with its own
Dalvik Virtual Machine (DVM) instance. When a method call to a privileged resource

2



APK

Signature

DEX

Class 0

...

Class N

(a) Simplified
structure of an
APK.

Application Call

Android API

Operating System

(b) Android API call.

Fig. 1. General Information on the functioning of Android Application.

2 4 6 8
0%

10%

20%

30%

Number of ad libraries bundled

P
er
ce
n
t
of

ap
p
s

Fig. 2. Number of bundled advertisement libraries in applications.

is made, the call goes through the Android API, see Fig. 1(b), and the application frame-
work checks if the originating application has the permission for proceeding with the
request.

Advertisement libraries are often bundled with Android applications. An analysis of
100 applications containing advertisements on the market revealed that 40% of the ap-
plications contained 6 or more advertisement libraries, see Fig. 2. While another study,
showed that 35% of applications contained 2 or more advertisement libraries [12].

Android does not have a built-in, in-process permission separation mechanism for
libraries. As with all libraries bundled into an Android application, these advertisement
libraries share the access permissions of the host application.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is an established paradigm developed in the 1990s
at Xerox PARC [13]. AOP aims to facilitate modularity through the use of aspects, with
each aspect being the embodiment of a so-called cross-cutting concern, i.e., parts of a
program that rely on or must affect other parts of the system.

3



Application Ad
Library

Android API

Kernel

Fig. 3. View of an application at runtime with an ad library.

Aspects are implemented through the use of three main concepts: joint points, point-
cuts, and advices.

Joint-Point: A join point is an identifiable point during the runtime of a program, such
as on the execution or call of a method.

PointCut: A pointcut is an expression for matching on joint points, for example the
below pointcut matches on join points where a call to a method in the package
com.google.ads is made.
call(* com.google.ads..*(..))

Advice: An advice is a piece of code that can be attached to run either after, before,
or around a pointcut. For example, by using an around advice on a method, one
can decide to proceed or not with the actual method call. Context information for
making decisions regarding granting permissions can also be obtained by matching
on the call arguments, or on other information via AspectJ’s thisJoinPoint special
variable. See Listing 1 for an example of an advice definition.

Object around() :
call(* com.google.ads..*(..)) {
return null;

}

Listing 1: Example of an around advice that can be used to block certain ads by inter-
cepting calls to the com.google.ads package.

AspectJ is an AOP implementation created at Xerox PARC for Java. The AspectJ
compiler allows to perform weaving into JVM bytecode, through it, one can use aspects
to modify compiled applications even without having access to the source code.

2.3 Weave Droid

Weave Droid [10] is a tool for weaving AspectJ aspects into an Android application.
As input Weave Droid takes an APK, and a set of aspects that will be weaved into
the APK. Weave Droid supports embedded weaving, where the entire weaving process
is performed on the Android device, as well as cloud-based weaving, where the input

4



Application Call

Advice

Android API

Operating System

Fig. 4. Monitored Android API call.

WeaveDroid

APK

Signature

DEX

Class 0

...

Class N

DVM→JVM

i

Weaving

ii

JVM→DVM

iii

Merging

iv

Signing

v

APK’

Signature’

DEX’

Class 0’

...

Class N’

Aspect

Advice 0

...

Advice N
. . .

Aspect

Advice 0

...

Advice N

Fig. 5. Pipeline of weaving process

required for weaving is sent to be processed on a Weave Droid server after which the
output is returned back to the device.

The Weave Droid process is split into 5 stages:
i Conversion of the input APK from DVM bytecode format to JVM format. This

process uses the dex2jar library. This step is necessary as AspectJ is only capable of
weaving JVM format bytecode. This conversion process has limitations that are dis-
cussed in Sec. 6.1.

ii Weaving of the input aspects with the JVM bytecode from stage i . The As-
pectJ compiler is used to handle the compilation and weaving of the aspects as well as
injecting a library dependency required by the aspects.

iii Conversion of the JVM bytecode to DVM bytecode format. This process uses
the dx tool. This stage is necessary as Android expects the bytecode in DVM format.

iv Merging the modified bytecode into the input APK. From stage iii we obtain a
DVM bytecode file, we use this file to replace the classes.dex file present in the
input APK.

5



Application Ad
Library

Android API

Kernel

Original System

→
Application

Monitor

Ad
Library

Android API

Kernel

Monitored System

Fig. 6. Comparison of original application with the monitored application.

v Signing of the modified APK. For Android applications to run, a valid signature
is required. Modification of the APK from stage iv results in the APK’s signatures being
broken, to resolve this, we erase the existing signatures and re-sign the APK.

The APK resulting from the Weave Droid process will exhibit the functionality
introduced by the aspects, and will differ structurally from the original as follows:

– Bytecode and size, due to weaving of the aspects and inclusion of their library
dependency.

– Signature, as a result of breaking the APK signature in stage iv and re-signing in
stage v .

3 Ad Suppression Method
In our solution we use the Weave Droid engine to weave the ad-blocking aspects into
the application.

Class.forName("com.google.ads.AdActivity")
.getDeclaredMethod("startActivity")
.invoke(null);

Listing 2: Example of a method invocation via the reflection API.

3.1 Aspect Creation

When writing aspects that modify the behavior of applications, we must take into ac-
count different mechanisms by which a method can be triggered. Adware applications
are notorious for their use of dynamic method invocation as a means of defeating static
analysis. For example through the reflection API a method call can be invoked. Listing 2
is an example call to a method that would not be intercepted by the pointcut example
specified in Sec. 2.2.

Other factors that must be taken into account, include properly allocating and deal-
locating intercepted objects that require them. For example some objects such as Broad-
castReceiver must be registered and unregistered.

6



Another issue which we must take care of is returning proper pseudo-objects in
cases where we wish to spoof information such as contact lists, instead of simply block-
ing a method and returning null, which may cause the program to crash.

Listing 3, is a snippet of aspect code which blocks invocations to the method ”load-
NewAd” within the ”com.inmobi.androidsdk” package, while allowing other method
calls for the package to pass through. The snippet takes into account indirect calls via the
reflection API, by wrapping an advice around calls to the ”java.lang.reflect.Method.invoke”
method.

Object around() : execution(* com.inmobi.androidsdk.*.loadNewAd(..)) {
return null;

}

Object around(): call(Object java.lang.reflect.Method.invoke(..)) {
java.lang.reflect.Method target =
(java.lang.reflect.Method)(thisJoinPoint.getTarget());

Object[] args = thisJoinPoint.getArgs();
if (args != null && args.length > 0 && args[0] != null) {
String receiver = args[0].getClass().getName();
if (target.getName().compareTo("loadNewAd") == 0
&& receiver.startsWith("com.inmobi.androidsdk"))
return;

}
return proceed();

}

Listing 3: Shortened example of aspect code for blocking inmobi ads.

3.2 Amending the Application

In this section we describe the steps taken by our implementation for suppressing the
advertisements of an input application (see Fig. 7).

i The application’s APK file is passed to the Ad Analyzer. The Ad Analyzer searches
through the libraries used by the application and compares them to a list of known
advertisement network libraries. Using this list the Ad Analyzer determines the set of
aspects to use for ad blocking.

ii The application’s APK file, and the set of aspects required for blocking the adver-
tisements specific to it are passed to Weave Droid, which may be remote or local. Weave
Droid handles weaving of the aspects into the application.

iii Finally, Weave Droid outputs a new APK. The output APK contains the ad blocking
behavior in it, and therefore fail to display ads.

4 Implementation: miAdBlocker
miAdBlocker, is a user-friendly Android application based on the methodology de-
scribed in Sec. 3. miAdBlocker is implemented using Java in 7,260 lines of code (LoC),

7



Input miAdBlocker Output

APK

Signature

DEX

App Classes

...

Ad Library

Ad Analyzer

WeaveDroid

APK’

Signature’

DEX’

App Classes

...

(((((Ad Library

ii

ii

i

iii

Fig. 7. Pipeline of advertisement suppression process

and uses a remote Weave Droid server for weaving enforcement monitors inside appli-
cations. The application allows users to selectively disable the advertisements of ap-
plications installed on their device. The implementation supports devices running on
Android version 2.3.3 and higher. It uses a 2,190 LoC aspect library capable of dis-
abling over 30 different ad network libraries.

At startup miAdBlocker scans all the applications installed on the system; detecting
for the presence of advertisement libraries. Then, a list is populated with all the appli-
cations that are candidates for ad-blocking, as seen in Fig. 8(a). The user may select the
application for which he wants to block ads. Once the user has indicated that he wants
ads to be removed from the application, a confirmation dialog window is displayed as
seen in Fig. 8(b).

While weaving directly on the device is possible, due to the inherent limitations and
performance issues of weaving aspects directly on android devices [10], miAdBlocker
defaults to querying a Weave Droid server, to handle the process.

5 Evaluation
This section presents our evaluation of miAdBlocker with “off-the-shelf” Android ap-
plications retrieved from Google Play.

5.1 Case Study

We ran and experiment focused on analyzing the reliability of miAdBlocker to amend
applications with ad-blocking enforcement monitors, while preserving the features of
the target application (the application should remain functionable and its performance
should not be degraded).

To evaluate the proposed method of ad-blocking in Android applications, we tested
a sample of 860 popular applications from different categories (games, utilities, misc),
and recorded the success or failure of an application.

There are three phases to our testing process. If any error occured during a phase,
the application was considered to have failed the current tests, and the tests after it.

8



(a) Showing the list of applica-
tions harboring advertisement
libraries.

(b) Confirmation before pro-
cessing an application.

Fig. 8. miAdBlocker in action.

Applications that were successfully modified, had their modified versions put through
the execution test. Due to the time consuming nature of thoroughly testing applications,
for the third test a randomized sample of applications from those that were successful
in the execution test were selected for this stage.

Modification Amending the application with ad-blocking aspects and repackaging it.
Execution Installing, initial launch, and uninstallation of the amended application.
Thorough All activity windows of an application were checked to ensure proper func-

tioning.

Modification Execution Thorough

Games 341 96.19% 328 85.98% 52 77.61%
Utility 95 98.95% 94 96.81% 52 94.12%
Misc 424 97.41% 413 93.22% 30 100%

Table 1. Number of applications tested and their success rates at each of the stages.

Table 1 shows the results of the three test phases. For each phase we show the number of
applications tested, and their success rate. In each of the phases we encountered errors
which we explain below.

Modification involves invoking the Weave Droid pipeline which consists of several
sub-steps as seen in Fig. 5. In the first step we have to perform DVM→JVM bytecode

9



Fig. 9. An application before (left) and after (right) being processed by miAdBlocker.

retargeting, this process is error prone and discussed in Sec. 6.1. We also encountered
applications exploiting limitations in the retargeting tool dex2jar, for example by using
method and field names obfuscated with unicode characters dex2jar crashes. During
the weaving phase AspectJ encountered “missing type” errors due to the presence of
calls, and type references that do not have their corresponding libraries bundled with
the application.

In the execution and thorough testing phase, we had crashes due to the introduction
of errors in the modification phase. We also encountered errors possibly due to the
presence of anti-tampering code, and found that game applications in particular had a
much higher rate of failure at execution than other application categories.

Remark 1 (A note on performance and file size overhead). The aspects applied to the
programs affect their performance. However as with the work done previously we found
that the types of aspects developed for ad-blocking had a negligible effect on perfor-
mance degredation [10]. Rather we observed performance improvements, bandwidth
savings, and energy savings. Indeed, our aspects are woven at compile time, and dis-
able a significant amount of code from being run.

The amendment process requires the inclusion of a fixed 117KB library, as well as
the newly woven classes/aspects bytecode. A review of the APK sizes before and after
the ad-blocking transformation, showed that there was a negligible increase in APK size
in the range of 0-5%, and overall averaged near 0%.

6 Discussion
While there are currently many challenges faced from a bytecode weaving approach,
there remain advantages, in that it is a more targeted approach and unlike other ap-
proaches it does not require alteration of the host operating system, nor use of superuser
permissions, both of which may result in voiding of the device warranty. This section
discusses some of the challenges faced (and possible counter measures) when applying
runtime monitoring and miAdBlocker to Android applications.

Analysis of 100 applications on the market revealed that the majority of those tested
used features such as encryption and classloaders. These features may be used to cir-
cumvent methods relying on static analysis and bytecode weaving. Further implications

10



Feature Percent of Apps Tested

Reflection 99%
Encryption 96%
ClassLoader 99%
Native Code 0%
Calls External Executable 88%

Table 2. Some features used by 100 free applications with advertisements from the top
200 on Google Play.

of using these features are discussed in the rest of this section. We believe these issues
were not raised by previous monitoring frameworks applied to academic benchmarks.
These issues are to be considered when using a monitoring framework for third-party
applications. See Table 2 for the results of the analysis.

6.1 DVM to JVM Retargeting

There are significant differences between the register-based Dalvik Virtual Machine and
the stack-based Java Virtual Machine, these differences result in information loss when
converting bytecode from one format to the other. The information loss is a cause for
some of the errors we encounter when running our tool-chain. As resolving this issue is
an active area of research [14], in time we expect success rates to increase.

Malware has also been known to take advantage of bugs in present in retargeting
software, preventing proper conversion [15]. Modifying the AspectJ compiler to target
Dalvik bytecode directly is a possible solution for avoiding the problems introduced by
intermediate retargeting software.

6.2 Native Code

Our method is limited to the modification of Java-based applications, and may be by-
passed in applications using native code. But as stated earlier, due to the difficulties of
developing apps using native code, only a small percentage of the available applications
available use it, and even the ones that use it only use it in small critical performance
areas.

6.3 Tamper Detection

Applications using tamper detection can detect unauthorized modification. Developers
can integrate this detection using tools such as Arxan [16] and Google LVL [17]. Upon
the detection of tampering, applications may be designed to exit, or behave improperly.

Detection typically revolves around signature verification. Application modification
as a side-effect results in different signatures compared to the original application.

As miAdBlocker and Weave Droid by design modify the application package, they
fall prey to this detection; contributing to the failure rates seen during application exe-
cution. Bypassing this mechanism would allow for higher success rates. We will briefly

11



discuss countermeasures for two basic common techniques, of implementing this de-
tection.

Package signature verification. Applications are signed by the developers using a pri-
vate key that is only accessible by them. When an application is modified, the original
signature will no longer correspond to it. An application without a valid signature will
fail to run. Thus, to have a usable application the tamperer must sign it with their own
key. A detection mechanism could be for the application to compare its current signa-
ture against a copy of the signature known to be authentic.

Signature[] sig =
getPackageManager()
.getPackageInfo(app, PackageManager.GET_SIGNATURES)
.signatures;

if (sig[0].hashCode() != authenticSignature) fail();

Listing 4: Example implementation of tamper detection

A countermeasure could be to store the valid package signature before transforma-
tion, and to intercept package manager calls in the modified application. The modified
application would return the original recorded application’s signature, thus passing this
test.

File signature verification. File signature verification is another form of protection used
by application developers. The method involves computing a checksum value of the ap-
plication files, using a hash function. Detection can be performed at application startup
by recomputing the checksum values of the current files and comparing them against
the previously computed authentic hashes.

Counter-measures could be to:

– Keep a copy of the unmodified application, and intercepting Java’s file system li-
braries. When an application wishes to access its own files, the interception method
redirects access to the original versions that would pass the signature checks.

– Intercept common hash functions used for signature checking, and return a precom-
puted correct hash upon request.

Amending applications with more complicated verification systems can be done by
integrating verification library subversion tools into the Weave Droid pipeline.

6.4 Dynamically Loaded Code

Java allows for code not present in the application to be loaded at runtime from either
a local path, or an online location, using a ClassLoader. As this code is not present
for Weave Droid to perform transformations on, the dynamically loaded code is free
of the behaviors enforced upon the rest of the application. Developers may use this
mechanism to dynamically load advertisements, bypassing ad blocking utilities based
on static analysis and bytecode transformation.

12



Our technique can be extended to handle such cases via interception of calls to the
ClassLoader. A custom ClassLoader can then analyze and send the code to a Weave
Droid server. There, the desired behavior is enforced on the code, then returned to the
device for execution.

6.5 Obfuscation

Obfuscation is a technique employed by developers to protect their applications against
reverse engineering and analysis. Through obfuscation, the names of methods, classes
and packages are rewritten while preserving the functionality of the app. Tools such as
ProGuard fulfill this purpose. This technique renders aspects that would have worked,
targeting specific pointcuts based on names unusable.

However, we did not encounter much problems in this regard when blocking ad
libraries, as it is common practice to preserve the public APIs of said libraries due to
issues arising from their obfuscation.

Another type of obfuscation can be performed involves storing the code in encrypted
form, this code is then decrypted and loaded by a ClassLoader at runtime. Our solution
of intercepting the ClassLoader would properly account for this problem, as the Class-
Loader must take in the unencrypted bytecode.

6.6 Signature Modification

A side-effect of this modification is that market updates are not properly detected for
the modified application, and if one wishes to update directly from the market, they
would have to first uninstall or restore the application, before they can move to a newer
version. To solve this issue a separate mechanism must be used to check and handle
updates.

7 Related Work
7.1 Comparison with Ad-Blocking Software on the Market

We made a survey of the ad blocking solutions found on Google Play and compiled the
results (see Table 3). Compared to the other tools on the market that were surveyed,
miAdBlocker had less requirements for enforcement of ad blocking, making it more
user-friendly.

7.2 Comparison with Similar Research Projects

miAdBlocker [10], was extended upon. The Weave Droid engine is now reimplemented
in 6,130 lines of Java code, with a focus on robustness. Originally Weave Droid only
handled Google ads; with miAdBlocker we can handle over 30 different advertisement
networks.

Aurasium [18] is a policy enforcer that intercepts Android applications via a native
library layer. Unlike their method, our method has the benefit of using monitors with
awareness of the call context in Java, giving us the advantage of selectively enforcing
monitors on a finer-grained level (such as per library level).

Bartel, et al. [8] present a method and implementation that performs static analysis.
Our system differs in that we can make decisions dynamically with the awareness of
context and avoids the false positives usually induced when using static analysis. For

13



Requirements

Root Proxy Reboot

Adblock plus X X 7

AirPush Block X 7 7

Adway X 7 7

MyInternetSecurity 7 7 X
MiAdBlocker 7 7 7

Table 3. Comparison of the requirements of several ad-blocking applications

instance, our tool can detect specific (dynamically computed) URLs instead of only
detecting that an HTTP connection is made in the application.

8 Conclusion and Future Work
8.1 Conclusion

This paper studies the use of monitoring techniques on a real application scenario:
blocking advertisement on third-party Android applications retrieved “off-the-shelf”
from public repositories such as Google Play. Our purpose was to produce a tool that
goes beyond usual research prototypes in runtime verification as we aimed to reach a
level of maturity allowing our tool to be publicly released and delivered to users with-
out any computer-science background. During our case studies we encountered many
challenges such as the number and heterogeneity of Android applications on which
our technique has to be tested, the diversity of the possibilities for developers to dis-
playing advertisements, the discrepancy between the Dalvik format (executable) and
the bytecode format (instrumentable). The challenges stem from the facts that we target
third-party applications, from many developers, in a domain where a strong competition
exists between applications.

We use good practices obtained from research endeavors in the runtime verification
community and encode monitoring using Aspect-Oriented Programming. Our experi-
ments show that using AOP via AspectJ is an effective technique to modify existing
closed source applications to incorporate ad-blocking monitors. Unlike tools relying on
low-level bytecode analysis and transformation, AOP allows for easier targeting and
modification of existing application code; through specification of transformation sites
via a pointcut matching system. Our method also has the benefit over other solutions in
that it has been implemented and tested to work embedded from an android device, and
as a cloud-based service.

Our experiments showed a good success rate overall, with better success rates de-
pending on the category of the application. Analysis of applications on the market how-
ever, showed the heavy presence of features that could be used for circumvention of the
enforcement mechanism. These features are targeted in a newer implementation.

14



8.2 Future work

Even if our approach is dedicated to blocking advertisement on Android applications
the challenges encountered in this paper will remain when applying monitoring in other
application domains sharing features (e.g., third-party applications). Thus, we believe
that future research endeavors in the runtime verification community should consider
extending monitoring techniques to deal with the issues of dynamically loaded code,
obfuscation, and tamper-resistant code, for the purpose of yielding a higher success
rate at integrating effective monitors.

References
1. Google Inc.: Android (2014) www.android.com, developer.android.com.
2. Gartner: Market share analysis: Mobile phones, worldwide, 4q13 and 2013 (2013)
3. Pearce, P., Felt, A.P., Nunez, G., Wagner, D.: Addroid: Privilege separation for applications

and advertisers in android. In: Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ACM (2012) 71–72

4. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?: Fine grained
energy accounting on smartphones with eprof. In: Proceedings of the 7th ACM European
Conference on Computer Systems (2012). (2012) 29–42

5. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investigating user privacy in
android ad libraries. In: Proceedings of Mobile Security Technologies Workshop (MoST).
(2012)

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: ECOOP. (1997) 220–242

7. Backes, M., Gerling, S., Hammer, C., Maffei, M., Styp-Rekowsky, P.: Appguard – enforcing
user requirements on android apps. In Piterman, N., Smolka, S., eds.: Tools and Algorithms
for the Construction and Analysis of Systems. Volume 7795 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2013) 543–548

8. Bartel, A., Klein, J., Monperrus, M., Allix, K., Traon, Y.L.: Improving privacy on android
smartphones through in-vivo bytecode instrumentation. CoRR abs/1208.4536 (2012)

9. Xerox Corporation: Aspectj programming guide. http://www.eclipse.org/aspectj/ (2014)
10. Falcone, Y., Currea, S.: Weave Droid: aspect-oriented programming on Android devices:

fully embedded or in the cloud. In Goedicke, M., Menzies, T., Saeki, M., eds.: ASE, ACM
(2012) 350–353

11. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In: NDSS, The Internet Society (2012)

12. Shekhar, S., Dietz, M., Wallach, D.S.: Adsplit: Separating smartphone advertising from
applications. In: USENIX. (2012)

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., marc Loingtier, J., Irwin,
J.: Aspect-oriented programming. In: ECOOP, SpringerVerlag (1997)

14. Octeau, D., Jha, S., McDaniel, P.: Retargeting android applications to java bytecode. In:
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, ACM (2012) 6

15. Chenette, S.: Building custom android malware (2013) BruCON.
16. Arxan: Ensureit R© for android on arm (2013)
17. Google Inc.: Licensing overview - android developers (2014)
18. Xu, R., Saı̈di, H., Anderson, R.: Aurasium: Practical policy enforcement for android applica-

tions. In: Proceedings of the 21st USENIX Conference on Security Symposium. Security’12,
Berkeley, CA, USA, USENIX Association (2012) 27–27

15


