
HAL Id: hal-01120535
https://hal.science/hal-01120535v2

Submitted on 29 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Almost-Riemannian Geometry on Lie Groups
Victor Ayala, Philippe Jouan

To cite this version:
Victor Ayala, Philippe Jouan. Almost-Riemannian Geometry on Lie Groups. SIAM Journal on
Control and Optimization, 2016, �10.1137/15M1038372�. �hal-01120535v2�

https://hal.science/hal-01120535v2
https://hal.archives-ouvertes.fr


Almost-Riemannian Geometry
on Lie Groups

Victor AYALA∗, Philippe JOUAN†

October 30, 2015

Abstract

A simple Almost-Riemannian Structure on a Lie group G is defined by a linear vector
field (that is an infinitesimal automorphism) and dim(G) − 1 left-invariant ones. We state
results about the singular locus, the abnormal extremals and the desingularization of such
ARS’s, and these results are illustrated by examples on the 2D affine and the Heisenberg
groups.

These ARS’s are extended in two ways to homogeneous spaces, and a necessary and suffi-
cient condition for an ARS on a manifold to be equivalent to a general ARS on a homogeneous
space is stated.

Keywords: Lie groups; Linear vector fields; Almost-Riemannian geometry.

1 Introduction

An almost-Riemannian structure (ARS in short) on an n-dimensional differential manifold can
be defined, at least locally, by a set of n vector fields, considered as an orthonormal frame, that
degenerate on some singular set (it can also be defined by a non regular full rank distribution
and a metric, see Section 2). This geometry goes back to [20] and [29]. It appears as a part of
sub-Riemannian geometry, and has aroused some interest, as shown by the recent papers [2], [3],
[10], [11], [12], [13], [14], [15], [16].

On the other hand the (improperly) so-called linear systems on Lie groups have been studied
quite thoroughly for ten years, in particular by the authors (see [5], [6], [7], [8], [9] and [21], [22],
[23], [24], [19]).

It is very natural to define an ARS on an n-dimensional Lie group by n left-invariant or affine
vector fields, the rank of which is equal to n on a proper open and dense subset and that satisfy
the rank condition.

As the invariant vector fields can be projected to homogeneous spaces, and affine vector fields
can be defined on homogeneous spaces, the previous definition of an ARS can be extended to
homogeneous spaces. In Section 8 it is proved (under some technical assumptions) that an ARS
that generates a finite dimensional Lie algebra is equivalent (globally or locally, according to
the technical assumptions) to an ARS on a Lie group or an homogeneous space as previously
defined (see Theorem 4 and Corollary 2 of Section 8). The ARS’s we define on Lie groups and
homogeneous spaces thus appear as models for an interesting (at least in our opinion) class of
ARS’s.
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Excepted in Section 8, devoted to equivalence, we restrict ourselves to what we call simple
ARS’s, that is ARS’s defined by one linear vector field and n− 1 invariant ones. Notice that the
famous Grushin plane is of that type, on the Abelian Lie group R2.

After having stated some basic definitions and facts (Section 2) we turn our attention to the
singular locus, that is the set of points where the vector fields fail to be independant. It is an
analytic set, but not a subgroup, not even a submanifold, in general. In Section 3 sufficient
conditions for the singular locus to be a submanifold or a subgroup are stated (Theorems 1 and
2). This locus is very important in what concern the structure of ARS’s, in particular in view
of a classification. The study is illustrated by many examples, in particular on the Heisenberg
group, which show that the ARS’s on Lie groups, even the simple ones, go much farther than
the 2D or 3D generic case (see [2], [13]).

The Hamiltonian equations of the PMP are computed in Section 4. These computations are
rather standard, but more complicated than in the invariant case, because the Hamiltonians can
here depend on the state. They allow to get a complete characterization of the abnormals, it is
the object of Theorem 3 in Section 5.

Before providing examples we show that simple ARS’s can be globally desingularized in a
standard way: we establish in Section 6 a relation between a simple ARS and a codimension one
regular sub-Riemannian structure on the semi-direct product of the Lie group with the real line.

In Section 7 two examples are computed, the first one on the two-dimensional solvable group,
and the other one on the Heisenberg group.

The computation of some diffentials and power series is postponed to the appendix.
In order to avoid to lengthen the paper, we have chosen to not recall the basic facts about

optimal control and sub-Riemannian geometry. The reader is referred to textbooks as [26], [1],
[4], [25].

2 Basic definitions

2.1 Linear vector fields

In this section the definition of linear vector fields and some of their properties are recalled. More
details can found in [22].

Let G be a connected Lie group and g its Lie algebra (the set of left-invariant vector fields,
identified with the tangent space at the identity). A vector field on G is said to be linear if its
flow is a one parameter group of automorphisms. Notice that a linear vector field is consequently
analytic and complete.

The flow of a linear vector field X will be denoted by (ϕt)t∈R.
The following characterizations will be useful in the sequel.

Characterization of linear vector fields
Let X be a vector field on a connected Lie group G. The following conditions are equivalent:

1. X is linear;

2. X belongs to the normalizer of g in the algebra V ω(G) of analytic vector fields of G, that is

∀Y ∈ g [X , Y ] ∈ g (1)

and verifies X (e) = 0;

3. X verifies
∀g, g′ ∈ G Xgg′ = TLg.Xg′ + TRg′ .Xg (2)
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According to (1) one can associate to a given linear vector field X the derivation D of g
defined by:

∀Y ∈ g DY = −[X , Y ],

that is D = −ad(X ). The minus sign in this definition comes from the formula [Ax, b] = −Ab in
Rn. It also enables to avoid a minus sign in the useful formula:

∀Y ∈ g, ∀t ∈ R ϕt(expY ) = exp(etDY ). (3)

In the case where this derivation is inner, that is D = −ad(X) for some left-invariant vector
field X on G, the linear field splits into X = X + I∗X, where I stands for the diffeomorphism
g ∈ G 7−→ I(g) = g−1. Thus X is the sum of the left-invariant vector field X and the right-
invariant one I∗X. The flow of such a vector field is given by

ϕt(g) = exp(−tX)g exp(tX) (4)

An affine vector field is a element of the normalizer N of g in V ω(G), that is

N = normV ω(G)g = {F ∈ V ω(G); ∀Y ∈ g, [F, Y ] ∈ g},

so that an affine vector field is linear if and only if it vanishes at the identity.
It can be shown (see [9] or [22]) that an affine vector field can be uniquely decomposed into

a sum
F = X + Z

where X is linear and Z right-invariant.

2.2 Almost-Riemannian structures

For all that concern general sub-Riemannian geometry, including almost-Riemannian one, the
reader is referred to [1].

Definition 1 An almost-Riemannian structure on a smooth n-dimensional manifold M is a
triple (E, f, 〈., .〉) where:

1. E is a rank n vector bundle on M ;

2. f : E 7−→ TM is a morphism of vector bundles;

3. (E, 〈., .〉) is an Euclidean bundle, that is 〈., .〉q is an inner product on the fiber Eq of E,
smoothly varying w.r.t. q;

assumed to satisfy the following properties:

(i) The set of points q ∈ M such that the restriction of f to Eq is onto is a proper open and
dense subset of M ;

(ii) The modulus Ξ of vector fields of M , defined as the image by f of the modulus of smooth
sections of E satisfies the rank condition.

Remarks

1. The set of points of M where the rank of f(Eq) = Ξq is less than n is called the singular
locus of the ARS and will be denoted by Z in the sequel. If M \ Z was not required to be
proper (see (i)), that is if Z could be empty, then the structure could be Riemannian.
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2. This structure is trivializable if (E, 〈., .〉) is isomorphic to the trivial Euclidean bundle
M ×Rn. In that case we can choose an orthonormal basis (e1, . . . , en) on Rn, and define n
vector fields on M by fi(q) = f(q, ei), i = 1, . . . , n. The set (f1, . . . , fn) is an orthonormal
frame on M \ Z.

Norm
The almost-Riemannian norm on Ξq is defined by

‖v‖ = min{‖u‖ ; u ∈ Eq and f(u) = v}.

Notice that thanks to the linearity of f on the fibers, the minimum is well defined. In the
trivializable case one has:

‖v‖ = min


√√√√ n∑

1

u2
i ; u1f1(q) + · · ·+ unfn(q) = v

 .

Admissible curves
A curve γ : [0, T ] 7−→ M is admissible if it is Lipschitz continuous (w.r.t the differential

structure of M) and if there exists a measurable bounded function t 7−→ u(t) from [0, T ] into E
such that γ̇(t) = f(u(t)) for a.e. t ∈ [0, T ]. Its length is:

l(γ) =

∫ T

0
‖γ̇(t)‖ dt

In the trivializable case, assuming that ‖u(t)‖ realizes the minimum of ‖γ̇(t)‖, we get

l(γ) =

∫ T

0

√√√√ n∑
1

u2
i (t)dt.

The almost-Riemannian distance is define as the infimum of the lengths of the admissible curves,
and it is a well-known fact that this distance is finite, continuous, and induces the manifold
topology (the rank condition is here essential).

2.3 Simple ARS’s

In that paper we mainly deal with what we call simple ARS’s. They are ARS’s defined on a
connected Lie group G by a set of n vector fields

{X , Y1, . . . , Yn−1}

where

(i) X is linear;

(iii) Y1, . . . , Yn−1 are left-invariant;

(iii) n = dimG and the rank of X , Y1, . . . , Yn−1 is full on a non empty subset of G;

(iv) the set {X , Y1, . . . , Yn−1} satisfies the rank condition.

The set where the rank of X , Y1, . . . , Yn−1 is not full will be refered to as the singular locus
and denoted by Z.

Remarks.
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1. The singular locus Z is an analytic subset of G. By Assumption (iii) it is not equal to
G, and by analycity its interior is empty. On the other hand X (e) = 0 and it cannot be
empty. Finally G \ Z is an open, dense and proper subset of G.

2. The rank condition implies

LA{X , Y1, . . . , Yn−1} = RX ⊕ g. (5)

Necessary conditions for the rank condition
Let us denote by ∆ the vector subspace of g generated by Y1, . . . , Yn−1, and by D, as usual,

the derivation asociated to X . If [∆,∆] ⊆ ∆ and D(∆) ⊆ ∆, then the Lie algebra generated
by X , Y1, . . . , Yn−1 is equal to RX ⊕ ∆. But the rank of that Lie algebra is not full on Z.
Consequently the rank condition implies that at least one of the following conditions hold:

(i) [∆,∆] * ∆

(ii) D(∆) * ∆

Notice that in all cases, the full rank is obtained after one step.

Example. The Grushin plane
The Grushin’s metric on the plane corresponds to the frame X = (0, x1)T and Y1 = (1, 0)T ,

that is to the control system:

ẋ = vX + u1Y1 or, in coordinates,
{
ẋ1 = u1

ẋ2 = vx1

The state space R2 is an Abelian Lie group, the field X is linear and the field Y1 invariant,
so that the Grushin plane is a simple ARS. The singular locus is here the line {x1 = 0}.

2.4 Notations

In the sequel the following notations will be used:

1. Let Y ∈ g. Then Yg will stand for TLg.Y , where Lg is the left translation by g, and TLg
its differential.

2. To the linear vector field X we associate F (g) = TLg−1 .Xg ∈ g. We also write Fg for F (g)
when it is more convenient.

3 Singular locus

3.1 Introduction

This section is devoted to the properties of the singular locus Z of the simple ARS determined
by the orthonormal frame {X , Y1, . . . , Yn−1}. The metric does not matter here and instead of
Y1, . . . , Yn−1 we will mainly consider the subspace ∆ of g they generate.

In the Abelian simply connected case, that is when G = Rn, the singular locus is easily seen
to be a codimension one subspace of Rn. It is natural to ask whether Z is a subgroup of G in
general, but the examples of Section 3.5, in particular on the group Heisenberg, show that it is
not the case. Actually Z is not even a manifold in general, but only an analytic set.

By definition

Z = {g ∈ G / rank (X (g), Y1(g), Y2(g), . . . , Yn−1(g)) = n− 1}.
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However we need to characterize Z in a more handable way. The hyperplane ∆ can be defined
as the kernel of a one-form ω to which we can associate a left-invariant one-form likewise denoted
by ω.

We recall from the end of the previous section that the mapping F from G to g is defined by

F (g) = TLg−1 .Xg

The power series expansion of F and its differential are computed in the appendix (Propositions
4, 5 and Corollary 3). Thanks to ω and F , the singular locus can be defined in a form that allows
differential calculus:

g ∈ Z ⇐⇒ Xg ∈ ∆g ⇐⇒ Fg ∈ ∆⇐⇒ 〈ω, Fg〉 = 0.

In the sequel we denote by ψ the analytic function from G to R defined by ψ(g) = 〈ω, Fg〉. The
singular locus is consequently the set of zeros of ψ.

3.2 A sufficient condition for Z to be a submanifold

In this section it is shown that Z is a submanifold (embedded and analytic) as soon as ∆ is a
subalgebra of g.

Lemma 1 Let us assume that ∆ is a subalgebra of g. Then g can be decomposed as follows:

g = RYn ⊕W ⊕ Rξ (6)

where

1. W is a (n− 2)-dimensional subalgebra;

2. ∆ = W ⊕ Rξ;

3. D−1(∆) = RYn ⊕W ;

4. 〈ω, Yn〉 = 1 and Dξ = Yn (mod ∆).

Proof. As ∆ is a subalgebra, the rank condition implies that D∗ω = ω ◦ D is different from ω
and does not vanish (otherwise we would have D∆ ⊂ ∆ and the rank condition would not hold,
see Section 2). Consequently D−1∆ = ker(D∗ω) is a (n− 1)-dimensional subspace of g different
from ∆, and

W = ∆ ∩D−1∆

is a (n−2)-dimensional subspace of g which turns out to be a subalgebra. Indeed let X1, X2 ∈W .
Since ∆ is a subalgebra we have [X1, X2] ∈ ∆. By definition of W , DX1 and DX2 belong also
to ∆ so that

D[X1, X2] = [DX1, X2] + [X1, DX2] ∈ ∆

In conclusion [X1, X2] belongs to D−1∆ hence to W which is thus a subalgebra of g.
Let Yn ∈ g such that D−1(∆) = RYn ⊕W . As Yn /∈ ∆, 〈ω, Yn〉 does not vanish and can be

assumed to be equal to 1.
To finish D∆ * ∆ hence Dξ /∈ ∆, and Dξ = aYn (mod ∆) with a 6= 0. Up to a modification

of ξ we can choose a = 1.
�

Theorem 1 If ∆ is a subalgebra of g then the singular locus Z is an analytic, embedded, codi-
mension one submanifold of G.

Its tangent space at the identity is ker(D∗ω) = D−1∆.
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Proof.
As ψ is analytic, we have only to show that its differential does not vanish on Z. According

to Corollary 3 of the appendix it is given by:

∀g ∈ G, ∀Y ∈ g Tgψ.Yg = 〈ω,DY + [Fg, Y ]〉

Consider ξ as defined in Lemma 1. Since ξ ∈ ∆, Fg ∈ ∆ if g ∈ Z, and ∆ is a subalgebra, we
have [Fg, ξ] ∈ ∆ for all g ∈ Z. On the other hand Dξ /∈ ∆ and:

∀g ∈ ∆ Tgψ.ξg = 〈ω,Dξ + [Fg, ξ]〉 = 1.

This shows that ψ is a submersion at all points of Z which is thus a codimension one submanifold
of G. Moreover Fe = 0 so that

∀Y ∈ g Teψ.Y = 〈ω,DY 〉 = 〈D∗ω, Y 〉.

�

Remark. The previous formula holds at every point where F vanishes, that is on the set of
singularities of X .

3.3 Sufficient conditions for Z to be a subgroup

In order to state sufficient conditions for Z to be a subgroup we begin by a lemma which is not
easily checkable in practice but which is essential in the proofs of the forthcoming Proposition 1
and Theorem 2.

Lemma 2 The singular locus Z is a subgroup of G if and only if

∀g, g′ ∈ Z 〈ω,Ad(g′)Fg〉 = 0 (7)

that is if and only if for all g, g′ ∈ Z, Ad(g′)Fg ∈ ∆.

Proof. Let g, g′ ∈ G. Then, according to Formula (2) of Section 2,

F (g′g) = TL(g′g)−1Xg′g
= TLg−1TL(g′)−1(TLg′Xg + TRgXg′)
= F (g) + Ad(g−1)F (g′).

Let us assume that g, g′ ∈ Z, hence that F (g) and F (g′) belong to ∆. Then

g′g ∈ Z ⇐⇒ F (g′g) ∈ ∆⇐⇒ Ad(g−1)F (g′) ∈ ∆.

In the same way we get 0 = F (gg−1) = F (g−1) + Ad(g)F (g), so that F (g−1) = −Ad(g)Fg, and
g−1 belongs to Z if and only if Ad(g)Fg ∈ ∆.

Finally we see that Z is a subgroup of G if and only if Formula (7) holds.
�

Proposition 1 The following conditions are equivalent: (i) ∆ is an ideal of g, (ii) the derived
algebra D1g is included in ∆, (iii) the left-invariant one-form ω is closed.

When these conditions are satisfied the singular locus Z is a Lie subgroup of G whose Lie
algebra z is equal to ker(D∗ω) = D−1∆.
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Proof.
The first thing to notice is that Z being closed is a Lie subgroup of G as soon as it is a

subgroup.
It is well-known that for a left-invariant one-form ω the Maurer-Cartan formula writes

∀X,Y ∈ g dω(X,Y ) = −ω([X,Y ])

so that dω vanishes at e (hence everywhere since it is left-invariant) if and only if the derived
subalgebra D1g is included in ker(ω). If Z ∈ g is such that g = ∆ + RZ then:

D1g = [∆,∆] + [∆, Z].

It is clear that D1g ⊂ ∆ if ∆ is an ideal of g. Conversely if ∆ is not an ideal then either ∆ is
not a subalgebra or [∆, Z] is not included in ∆. In both cases D1g is not included in ∆.

Let us assume ∆ to be an ideal of g, and let g, g′ ∈ Z. The group G being connected, there
exist X1, . . . , Xk ∈ g such that g = exp(X1) . . . exp(Xk), and:

Ad(g) = Ad(exp(X1) . . . exp(Xk))
= Ad(exp(X1)) . . .Ad(exp(Xk))

= ead(X1) . . . ead(Xk).

Each of the ead(Xi)’s sends ∆ into ∆. Indeed for any Y ∈ g

ead(Xi)Y = Y +
+∞∑
j=1

1

j!
adj(Xi)Y = Y (mod D1g)

and ead(Xi)Y ∈ ∆ if and only if Y ∈ ∆.
This shows that Ad(g) sends ∆ into ∆, and since F (g′) ∈ ∆ we obtain Ad(g)F (g′) ∈ ∆.

According to Lemma 2 the singular locus Z is a subgroup of G.
The Lie algebra of Z is its tangent space at e. Since ∆ is an ideal we know by Theorem 1

that z = TeZ = ker(D∗ω).
�

Theorem 2 If the Lie algebra g is solvable, and ∆ is a subalgebra of g, then the singular locus
Z is a codimension one subgroup of G whose Lie algebra is z = D−1∆.

Proof.

Notice first that according to Theorem 1 the singular locus Z is a codimension one subman-
ifold of G whose tangent space at the identity is z = D−1∆. Therefore we have only to prove
that Z is a subgroup.

1. To begin with let δ be a codimension one subalgebra of a nilpotent Lie algebra h, and let
us show that δ is an ideal of h. Let Z ∈ h such that h = δ+RZ; then its derived algebra is
D1h = [δ, δ] + [δ, Z]. If δ is a subalgebra but not an ideal of h then [δ, δ] ⊂ δ but D1h " δ,
so that [δ, Z] is not included in δ. Therefore there exists X ∈ δ such that ad(X)Z = aZ
(mod δ), for some real number a 6= 0. We can choose a = 1 so that

∀k ≥ 1 adk(X)Z = Z (mod δ)

which proves that h is not nilpotent, a contradiction.
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2. Let now g and ∆ as in the statement. If ∆ is an ideal of g then the result comes from
Proposition 1. If not D1g is not included in ∆ and there exists Z ∈ D1g such that
g = RZ ⊕∆. Moreover the rank condition implies that D(∆) " ∆.

3. Let η be the largest nilpotent ideal of g (see [17], § 4, no 4). It is known that for any deriva-
tion d of the solvable algebra g, the inclusion d(g) ⊂ η holds, so that η is a characteristic
ideal of g (see [17], § 5, Proposition 6 and its corollary). Moreover D1g being a nilpotent
ideal of g is included in η, hence Z ∈ η and g = η + ∆. Consequently

dim(η ∩∆) = dim(η) + dim(∆)− dim(g) = dim(η)− 1,

which proves that η ∩ ∆ is a codimension 1 subalgebra of η. Since η is nilpotent, and
according to Item 1, η ∩∆ is an ideal of η. Actually η ∩∆ turns out to be an ideal of g.
Indeed any Y ∈ g writes Y = X + aZ where X ∈ ∆ and a ∈ R. Since Z ∈ η and η ∩∆ is
an ideal of η it is clear that ad(Z) sends η ∩∆ into η ∩∆. The same is true for ad(X)
because X belongs to the algebra ∆ and η is an ideal of g. Finally η ∩∆ is invariant for
all inner derivations, hence an ideal of g.

4. Let us show that D−1∆ is a subalgebra. Firstly we have D(D−1∆) ⊂ D(g) ⊂ η and
D(D−1∆) ⊂ ∆ by definition, so that D(D−1∆) ⊂ η ∩∆. Then for all X1, X2 in D−1∆
we get DXi ∈ η ∩∆, hence [DXi, Xj ] ∈ η ∩∆ for i, j = 1, 2. Consequently

D[X1, X2] = [DX1, X2] + [X1, DX2] ∈ η ∩∆

and [X1, X2] ∈ D−1∆, which finishes the proof.

5. In this item we show that F (g) ∈ η for all g ∈ G. According to Proposition 5 of the
appendix

∀Y ∈ g, F (exp tY ) =
∑
k≥1

(−1)k−1 t
k

k!
ad(k−1)(Y )DY ∈ η

because DY belongs to the ideal η. Secondly

F (g exp tY ) = F (exp tY ) + e−tad(Y )F (g)

belongs to η as soon as F (exp tY ) and F (g) both belong to η. Since g = exp(Y1) . . . exp(Yk)
for some Y1, . . . , Yk ∈ g the result is obtained by induction.

6. To finish the proof of the theorem let g, g′ in Z. On the one hand F (g) belongs to the
ideal η ∩∆. On the other one g′ = exp(X1) . . . exp(Xk) for some X1, . . . , Xk ∈ g, hence

Ad(g′) = ead(X1) . . . ead(Xk)

and Ad(g′)F (g) belongs to η ∩∆. The singular locus Z is a subgroup of G according to
Lemma 2.

�

Remarks.

1. The beginning of the proof shows that when g is nilpotent then ∆ is an ideal as soon as it
is a subalgebra. In the solvable case it is easy to exhibit examples where ∆ is a subalgebra
but not an ideal (see Example 3.5.2 on Aff+(2)).
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2. The same is true on semi-simple Lie groups since a codimension one subalgebra cannot be
an ideal. But apart from the fact that codimension one subalgebras are not very common
in semi-simple Lie algebras, that condition is not here sufficient for Z to be a group (see
Example 3.5.4 on SL2).

There is another case where we can assert that Z is a subgroup, it is when it is equal to the
set of singularities of X .

Proposition 2 If Z is equal to the set ZX of singularities of X then it is a closed Lie subgroup
of G whose Lie algebra is equal to ker(D).

Proof. The set ZX is obviously a closed subgroup of G, since

ZX =
⋂
t∈R
{g ∈ G; ϕt(g) = g},

where (ϕt)t∈R stands for the flow of X . Moreover

∀s ∈ R exp(sY ) ∈ ZX
⇐⇒ ∀s ∈ R, ∀t ∈ R, exp(sY ) = ϕt(exp(sY )) = exp(etDsY )
⇐⇒ ∀t ∈ R, Y = etDY
⇐⇒ DY = 0,

which shows that the Lie algebra of ZX is kerD.
�

This case is illustrated in Examples 3.5.2 and 3.5.3.

3.4 Necessary conditions for Z to be a subgroup

When the one form D∗ω does not vanish, the singular locus is locally, around the identity, a
submanifold, whose tangent space at e is TeZ = ker(D∗ω) = D−1∆. One could expect Z to be
a subgroup if D−1∆ is a subalgebra, but this statement is wrong, even locally, and even if D−1∆
is an ideal of g (see the examples of Section 3.5, in particular Example 3.5.3.1).

In order to state a necessary condition for Z to be a subgroup, and a locally sufficient one,
we will use the following stronger algebraic condition:

Let h be a subalgebra of g. It will be said to satisfy the condition (HZ) if

∀ Y ∈ h, ∀ m ≥ 0, ∀ Z1, . . . , Zm ∈ h, 〈ω, ad(Z1) . . . ad(Zm)DY 〉 = 0.

Proposition 3 If Z is a group, then it is a Lie subgroup of G whose Lie algebra z satisfies
Condition (HZ).

Proof. The set Z being closed is a Lie subgroup as soon as it is a group.
For all Z1, . . . , Zm ∈ z and for all t1, . . . , tm ∈ R the point exp(t1Z1) . . . exp(tmZm) belongs

to Z. Since Ad(exp(t1Z1) . . . exp(tmZm)) = et1ad(Z1) . . . etmad(Zm), and according to Lemma 2,
we get for all g ∈ Z

〈ω, et1ad(Z1) . . . etmad(Zm)F (g)〉 = 0.

Derivating this equality at t1 = 0, . . . , tm = 0, and thanks to the linearity of ad(Zi), we obtain

〈ω, ad(Z1) . . . ad(Zm)F (g)〉 = 0.
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To finish let g = exp(tY ), where Y ∈ z. According to Formula (14) (Proposition 4, Appendix),
we have

d

dt |t=0
F (exp tY ) = DY,

which gives the desired equality:

〈ω, ad(Z1) . . . ad(Zm)DY 〉 = 0.

�

Remarks

1. Proposition 3 is a local result: actually it holds as soon as Z is locally, in a neighbourhood
of the identity, equal to some Lie subgroup of G.

2. The successive derivatives of F (exp(tY )) do not provide more information since some of
the Zi’s can be chosen equal to Y .

3. Condition (HZ) is trivially satisfied only if ∆ is an ideal.

In order to investigate the converse to Proposition 3 we will consider a subalgebra h of g,
assumed to satisfy Condition (HZ), and we will associate to h the following subspace of ∆:

δh = {X ∈ ∆; ∀ m ≥ 0, ∀ Z1, . . . , Zm ∈ h ad(Z1) . . . ad(Zm)X ∈ ∆}.

Notice that δh depends on h and, thanks to Condition (HZ), that Dh ⊂ δh. It is also clear that
δh is ad(Z)-invariant for all Z ∈ h.

Lemma 3 Let h be a subalgebra of g that satisfies Condition (HZ), and let H be the connected
subgroup generated by h. Then

1. The Lie subgroup H is included in Z.

2. Let g ∈ Z. If F (g) ∈ δh, then gH is included in Z.

Proof.

1. Let Y ∈ h and k ≥ 1. Condition (HZ) with m = k − 1 and Zi = Y for i = 1, . . . , k − 1 is:

ad(k−1)(Y )DY ∈ δh ⊂ ∆

Consequently for all t ∈ R

F (exp tY ) =
∑
k≥1

(−1)k−1 t
k

k!
ad(k−1)(Y )DY ∈ δh ⊂ ∆

and exp(tY ) belongs to Z for all t ∈ R.

2. Now let g ∈ Z such that F (g) ∈ δh. For any Y ∈ h we have

〈ω, F (g exp tY )〉 = 〈ω, F (exp tY ) + e−tad(Y )F (g)〉
= 〈ω, F (exp tY )〉+

∑
k≥0

(−t)k
k! 〈ω, ad

(k)(Y )F (g)〉
= 0

because on the one hand the first term vanishes according to the first item, and on the other
one ad(k)(Y )F (g) belongs to ∆ since F (g) belongs to δh. Notice moreover that F (g exp tY )
belongs to δh, since δh is ad(Z)-invariant for all Z ∈ h.
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3. Let Z1, . . . , Zm in h and t1, . . . , tm in R. According to Item 2 we obtain by induction that
exp(tkZk) . . . exp(t1Z1) belongs to Z for k = 1, . . . ,m, but moreover that
F (exp(tkZk) . . . exp(t1Z1)) belongs to δh, allowing the induction.

This shows that H is included in Z.

4. To finish let g ∈ Z such that F (g) ∈ δh. We get gH ⊂ Z by the same reasoning as in Item
3.

�

Corollary 1 If D∗ω is not zero and if z = ker(D∗ω) is a subalgebra of g that satisfies Condition
(HZ), then the connected subgroup Gr(z) generated by z is included in Z.

Moreover there exists a neighbourhood V of the identity such that:

Z ∩ V = Gr(z) ∩ V.

Proof.
The first part is immediate from Lemma 3. For the second one the condition D∗ω 6= 0

implies that Z is locally, in a neighbourhood V of e, a (n − 1)-dimensional submanifold (recall
that Z = {ψ = 0} and Teψ = D∗ω). This submanifold containing the (n − 1)-dimensional Lie
group Gr(z), is equal to that last within V .

�
The examples 3.5.3.1 on the group Heisenberg (see Section 3.5.3) show that the assumptions

of Corollary 1 are not sufficient to know what happens far from the identity: they imply neither
that ψ is regular in Z nor that one has F (g) ∈ δz for all the points g ∈ Z, even in the connected
component of Z.

3.5 Examples of singular loci

3.5.1 Abelian groups

Consider the ARS on Rn defined by (A, b1, ..., bn−1) where A is a real matrix of order n and
b1, ..., bn−1 are n − 1 linearly independent constant vector fields . It is straightforward to show
that the singular locus is a codimension one subspace of Rn.

3.5.2 The 2D affine group

Let G be the connected component of e in the 2-dimensional affine group:

G = Aff+(2) =

{(
x y
0 1

)
; (x, y) ∈ R∗+ × R

}
.

Its Lie algebra g = aff(2) is solvable, generated by

X =

(
1 0
0 0

)
and Y =

(
0 1
0 0

)
with [X,Y ] = XY − Y X = Y , and identified with the set of left-invariant vector fields which is
therefore generated by

gX =

(
x 0
0 0

)
and gY =

(
0 x
0 0

)
where g =

(
x y
0 1

)
.
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All the derivations are inner and the one whose matrix in the basis (X,Y ) is
(

0 0
a b

)
is equal

to D = −ad(aY − bX). The associated linear vector field X is given at the point g by

Xg =

(
0 a(x− 1) + by
0 0

)
.

Let us consider the simple ARS defined by X and Y1 = αX + βY =

(
αx βx
0 0

)
. In order that

X and Y1 be independant on some subset the constant α must not vanish.
Then DY1 = aαY + bβY and the rank condition is equivalent to αa+ βb 6= 0.
As x > 0 the first component of Y1, that is αx, never vanishes, so that Y1 and X are colinear

if and only if X vanishes. Finally we get

Z = {g ∈ G; Xg = 0} = {(x, y) ∈ R∗+ × R; a(x− 1) + by = 0}.

According to Proposition 2 it is a closed Lie subgroup of G. Another proof comes from the fact
that ∆ is always a subalgebra since it is one dimensional. As the group Aff+(2) is solvable we
know by Theorem 2 that Z should be a subgroup.

3.5.3 The Heisenberg group

Let G be the simply connected Heisenberg Lie group of dimension three

G =


1 x z

0 1 y
0 0 1

 ; x, y, z ∈ R

 .

Its Lie Algebra g is generated by

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0


where [X,Y ] = XY − Y X = Z and the other brackets vanish. As left-invariant vector fields
they write in natural coordinates:

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂z
, Z =

∂

∂z
.

The derivations of g are the endomorphisms D whose matrix in the basis (X,Y, Z) has the form:

D =

a b 0
c d 0
e f a+ d


and the associated linear vector field is:

X (g) = (ax+ by)
∂

∂x
+ (cx+ dy)

∂

∂y
+ (ex+ fy + (a+ d)z +

1

2
cx2 +

1

2
by2)

∂

∂z
.

More details can be found in [22].
Let us now consider a simple ARS on the group Heisenberg, defined by a 2-dimensional

subspace ∆ of g and a derivation D. We get two very different behaviour depending on whether
∆ is a subalgebra or not.

One can also notice that the number of connected components of G \ Z ranges from 1 to 4.
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1. ∆ is a subalgebra. According to Theorem 2 the singular locus Z is a subgroup of G. Up
to an automorphism of g we can assume that ∆ = Span{X,Z}. Then the rank condition
is satisfied if and only if c 6= 0 (in the matrix of D). A particular case is when Z is exactly
the set of singularities of X . One example is obtained by

D =

0 0 0
1 0 0
e 0 0


but is far from being the only one. Here X = x ∂

∂y + (ex+ 1
2x

2) ∂∂z and it is easily seen that
Z = {X = 0} = {x = 0}.

2. ∆ is not a subalgebra. We can assume without lost of generality that ∆ = Span{X,Y }.
It is easy to see that the ARS is well defined for any derivation different from zero. Indeed
the rank condition is satisfied and

Z = {ex+ fy + (a+ d)z − 1

2
cx2 +

1

2
by2 − dxy = 0}

is equal to R3 if and only if all the coefficients of D vanish.

It is also clear that the loci defined by these quadratic forms need not be subgroups, not
even submanifolds. Let us exhibit some particular examples.

Example 3.5.3.1 Let D have the following form:

D =

a b 0
c −a 0
0 1 0

 .

In the {X,Y, Z} basis we have ω = (0, 0, 1) and D∗ω = (0, 1, 0).

The one form D∗ω does not vanish, and its kernel, which is also the tangent space to Z at
the origin, is the subalgebra z = D−1∆ = Span{X,Z}. However this fact is not sufficient
for Z to be a subgroup, even locally.

If c 6= 0 the condition (HZ) is not satisfied, and Z = {y − 1
2cx

2 + 1
2by

2 + axy = 0} is
not a local subgroup around the origin: it is straightforward to check that (x, y, z)−1 =
(−x,−y,−z + xy) does not belong to Z in general when (x, y, z) ∈ Z.
If c = 0 then z satisfies Condition (HZ) so that we know by Corollary 1 that Z contains
the group generated by z, that is Gr(z) = {y = 0}. However

Z = {y(1 +
1

2
by + ax) = 0}

and Z reduces to {y = 0} if and only if a = b = 0. Otherwise Z is the union of the plane
{y = 0} with another plane which may intersect it (if a 6= 0) or be parallel to it (if a = 0).

Let us consider the case a = 1.

At the points g = (−1, 0, z), that belong to Gr(z), the function ψ is singular, that is Tgψ
vanishes.

At the points g = (−1− 1
2by, y, z) with y 6= 0, it is clear that gGr(z), the translation by g

of the connected group generated by z, is not included in Z.

Example 3.5.3.2. Degenerated case
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Consider

D =

0 b 0
c 0 0
0 0 0

 with b > 0 and c < 0

Here D−1∆ = g and the condition (HZ) is not satisfied.

If b > 0 and c < 0, then Z is the codimension 2 subgroup {x = y = 0} of g.
If b and c are both positive (or negative), then Z = {bx = ±by} is the union of two secant
planes.

If b 6= 0 and c = 0, then Z is the codimension 1 subgroup {y = 0} of g.

Example 3.5.3.3. Tangential case

Let

D =

a b 0
c d 0
0 0 a+ d

 with a+ d 6= 0.

The one forms ω =
(
0 0 1

)
and D∗ω =

(
0 0 a+ d

)
define the same subspace ∆ =

D−1∆ of g. As the differential at the origin of the defining function of Z, that is TeΨ = D∗ω
does not vanish, the singular locus is a submanifold in a neighbourhood of e, and e is a
tangential point, that is ∆ = TeZ.
Unlike the generic case (see [13]) the tangential points need not be isolated. Consider

D =

0 0 0
2 1 0
0 0 1

 .

The singular locus is Z = {z = x2 + xy}, and ∆ is tangent to Z along the parabola
{z = −x2} contained in the plane {y = −2x}.

3.5.4 The special linear group SL(2;R)

Example 3.5.4.1. Let G = SL(2;R) be the order 2 special linear group. Its Lie algebra
g = sl(2;R) is the set of matrices with trace zero. The usual basis:

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
of sl(2;R) verifies

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

Consider the simple ARS defined by ∆ = Span{H,X} and the derivation D = −ad(Y ) (sl(2;R)
being semi-simple, all the derivations are inner). We get D−1∆ = Span{X,Y } which is not a
subalgebra. Consequently the singular locus cannot be a codimension one subgroup of SL(2;R)
despite the fact that ∆ is a subalgebra of sl(2;R). This shows that Theorem 2 does not apply
to general groups.

Let us compute the singular locus. At the point g =

(
a b
c d

)
with ad − bc = 1, the linear

vector field associated to D = −ad(Y ) is Xg = gY − Y g =

(
b 0

d− a −b

)
. A straightforward

computation shows that the vectors Xg, Hg, Xg are linearly dependent if and only if a = ±1, in
other words that

Z = {a = ±1} .
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Thus the singular locus Z is a submanifold of SL(2;R) but nor a subgroup neither a connected
set.

Notice that the ARS is well defined: indeed Z 6= G and the rank condition is satisfied.

Example 3.5.4.2. Another example can be obtained by switching the roles of ∆ and D−1∆.
More accurately let ∆ = Span{X,Y }, it is not a subalgebra, and D = −ad(X). We get easily
D−1∆ = Span{H,X}. It is a subalgebra of sl(2;R) that satisfies Condition (HZ), hence the
singular locus contains the connected subgroup generated by D−1∆. However this locus turns
out to be Z = {cd = 0}, which has three connected components:

C1 =

{(
a b
0 1

a

)
; a > 0

}
, C2 =

{(
a b
0 1

a

)
; a < 0

}
,

C3 =

{(
a b
c 0

)
; bc = −1

}
.

C1 is a connected subgroup, C1 ∪ C2 is a non connected subgroup, but Z = C1 ∪ C2 ∪ C3 is
clearly not a subgroup of SL(2;R).

4 Hamiltonian equations

The aim of this section is to state the Hamiltonian equations of the PMP applied to ARS’s on
Lie groups. We follow the same lines as in the invariant case (see for instance [4]) but here the
Hamiltonian depends on the point g ∈ G which entails some more complications (see also [28]).

4.1 The canonical symplectic structure of T ∗G

All the material of this subsection is standard and can be found in the previous references.
As usual the cotangent bundle T ∗G is identified to g∗ ×G by

Φ : g∗ ×G −→ T ∗G
(λ, g) 7−→ λ̄g = λ ◦ TLg−1 ∈ T ∗gG,

so that the equality
〈
λ̄g, Yg

〉
= 〈λ, Y 〉 holds for all Y ∈ g (recall that Yg stands for TLg.Y ).

The projection from T ∗G to G is denoted by Π in what follows.
The tautological one-form s on T ∗G being defined by 〈sλ̄, ζ〉 =

〈
λ̄,Π∗ζ

〉
, its pullback by Φ is

the one-form Φ∗s defined on g∗ ×G by (here X ∈ g):〈
Φ∗s(λ,g), (ξ,Xg)

〉
= 〈λ,X〉 .

In this setting, the symplectic form dΦ∗s = Φ∗ds is characterized by

Φ∗ds(λ,g) ((ξ,Xg), (η, Yg)) = 〈ξ, Y 〉 − 〈η,X〉 − 〈λ, [X,Y ]〉 .

To finish this review let h ∈ C∞(T ∗G) and let ~h be the Hamiltonian vector field associated
to h by dh = −i~hds. If H is equal to h ◦ Φ and ~H is defined by ~h = Φ∗ ~H, it is easily verified
that ~H is the Hamiltonian vector field associated to H, i.e.

dH = −i ~HΦ∗ds.
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4.2 Computation of the Hamiltonian vector fields

In what follows we set σ = Φ∗ds.
Let H be an Hamiltonian on g∗ ×G and ~H the associated Hamiltonian vector field. We can

identify the tangent space to g∗×G at the point (λ, g) with g∗× TgG, and write ~H = (ξ,Xg) at
this point. Then for all (η, Yg) ∈ g∗ × TgG we get on the one hand

dH(η, Yg) =

〈
∂H

∂λ
, η

〉
+

〈
∂H

∂g
, Yg

〉
,

and on the other hand

dH(η, Yg) = −σ(λ,g) ((ξ,Xg)(η, Yg))

= −〈ξ, Y 〉+ 〈η,X〉+ 〈λ, [X,Y ]〉 .

1. Setting Y = 0 we get X =
∂H

∂λ
(λ, g) ∈ (g∗)∗ ≡ g.

2. Setting η = 0 we get 〈
∂H

∂g
, Yg

〉
= −〈ξ, Y 〉+ 〈λ, [X,Y ]〉

hence
〈ξ, Y 〉 = 〈(ad(X))∗λ, Y 〉 −

〈
(TLg)

∗∂H

∂g
, Y

〉
so that

ξ = (ad(X))∗λ− (TLg)
∗∂H

∂g
.

Summarizing we obtain

~H =

(
∂H

∂λ

)
g

∂

∂g
+

((
ad(

∂H

∂λ
)

)∗
λ− (TLg)

∗∂H

∂g

)
∂

∂λ
,

where
(
∂H

∂λ

)
g

should be understood as TLg
∂H

∂λ
.

4.3 Left-invariant and linear vector fields

The Hamiltonian associated to a left-invariant vector field Y , that isH = 〈λ, Y 〉, does not depend
on g, so that the corresponding Hamiltonian equations turn out to be{

ġ = Yg
λ̇ = (ad(Y ))∗λ

Let us now consider a linear vector field X , whose associated derivation is D = −ad(X ), and let
us define the Hamiltonian

H(λ, g) = 〈λg,Xg〉 =
〈
λ, TLg−1Xg

〉
= 〈λ, Fg〉

According to Corollary 3 (in the Appendix) we have for any Y ∈ g

∂H

∂g
.Yg = 〈λ,DY + ad(Fg)Y 〉 = 〈(D + ad(Fg))

∗ λ, Y 〉 .

Finally the Hamiltonian equations for the Hamiltonian H = 〈λ, F (g)〉 associated to the linear
vector field X are:
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{
ġ = Xg
λ̇ = (D + ad(Fg))

∗ λ

Remark: the inner case
If the derivation D is inner, that is if D = −adX for some X ∈ g, then X has the form

Xg = TLg.X − TRg.X and F (g) = X −Ad(g−1)X. Consequently

D + ad(Fg) = D + adX − ad(Ad(g−1)X) = −ad(Ad(g−1)X),

and the second equation reduces to

λ̇ =
(
−ad(Ad(g−1)X)

)∗
λ.

4.4 Hamiltonian equations of a simple ARS

Consider an ARS defined as previously by (X , Y1, . . . , Yn−1), and consider the Hamiltonian

Hν(λ, g, v, u1, . . . , un−1) =

〈
λ, vX +

n−1∑
1

ujYj)

〉
− 1

2
ν

(
v2 +

n−1∑
1

u2
j

)
.

The associated equations are{
ġ = vX +

∑n−1
1 ujYj

λ̇ =
(
vD + ad

(
vF (g) +

∑n−1
1 ujYj

))∗
λ

In particular the equations of the normal extremals are obtained by application of the Pontryagyn
Maximum Principle (see for instance [26], [1], [4], [25]) with ν = 1. As usual the maximization of
H1 w.r.t. v, u1, . . . , un−1 gives v = 〈λ,X〉 and uj = 〈λ, Yj〉 for j = 1, . . . , n− 1. The maximized
Hamiltonian is:

H1(λ, g) =
1

2
〈λ,X〉2 +

1

2

n−1∑
1

〈λ, Yj〉2 .

The case of the abnormal extremals is treated in Section 5.

4.5 Semi-simple Lie groups

In the semi-simple case all the derivations are inner and the remark of the end of Section 4.3
applies. Moreover there exist on g an invariant scalar product. In order to avoid confusion it
will be denoted by 〈. , .〉s while the duality bracket will be denoted by 〈. , .〉d, and the invariance
of the scalar product means

∀X,Y, Z ∈ g 〈ad(X)Y, Z〉s = −〈Y, ad(X)Z〉s .

Thanks to this scalar product, we can identify g and g∗ by X ∈ g 7−→ λX = 〈X, .〉s ∈ g∗, so that

〈ad(X)∗λY , Z〉d = 〈λY , ad(X)Z〉d
= 〈Y, ad(X)Z〉s
= −〈ad(X)Y,Z〉s

and ad(X)∗ can be identified with −ad(X). The previous equations become:{
ġ = vX +

∑n−1
1 ujYj

Ż = [vAd(g−1)X −
∑n−1

1 ujYj , Z]

where Z ∈ g.
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5 Abnormal extremals

Let (λ(t), g(t)), t ∈ [0, T ], be an abnormal extremal. We know that

(i) λ(t) does not vanish;

(ii) 〈λ(t), Yi〉 ≡ 0 for i = 1, . . . , n− 1;

(iii) 〈λ(t) ◦ TLg(t)−1 ,Xg(t)〉 = 〈λ(t), Fg(t)〉 ≡ 0.

These conditions imply that g(t) belongs to the singular set Z for all t. Consequently the linear
vector field X is a linear combination of Y1, . . . , Yn−1 along the curve g(t) and we can assume
the control v to vanish. This may modify the optimality of the associated control, but not the
geometry of the curve, which is what we are looking at.

Thanks to v = 0, the Hamiltonian equations reduce to:{
ġ =

∑n−1
1 ujYj

λ̇ =
(∑n−1

1 ujad(Yj)
)∗
λ

As the one-form λ(t) is not zero but vanishes on Y1, . . . , Yn−1, that is on the left-invariant
distribution ∆, it can be written as λ(t) = p(t)ω, where p is a non-vanishing absolutely continuous
function from [0, T ] into R, and the ODE satisfied by λ becomes

ṗ(t)ω = p(t)

(
n−1∑

1

ujad(Yj)

)∗
ω .

This equality between one-forms is equivalent to the existence for almost every t ∈ ([0, T ]) of a
real number c(t) such that

(a)

(
n−1∑

1

ujad(Yj)

)∗
ω = c(t)ω

(b) ṗ(t) = c(t)p(t)

Let us analyze the first equality. Let Yn ∈ g such that ω(Yn) = 1, and let Y ∈ ∆. Then

∃c ∈ R s.t. ad(Y )∗ω = cω
⇐⇒ ∃c ∈ R, ∀X ∈ g 〈ω, ad(Y )X〉 = c〈ω,X〉
⇐⇒ 〈ω, ad(Y )Yi〉 = c〈ω, Yi〉 = 0 i = 1, . . . , n− 1

and 〈ω, ad(Y )Yn〉 = c〈ω, Yn〉 = c× 1 = c
⇐⇒ ad(Y )∆ ⊆ ∆

Let us set Y (t) =
∑

ui(t)Yi. As g(t) is an abnormal curve, Y (t) belongs to ∆ and satisfies
ad(Y (t))∆ ⊆ ∆ for almost every t ∈ [0, T ]. In other words Y (t) satisfies:

Y (t) ∈ ∆
⋂
N (∆) a.e. t ∈ [0, T ], (8)

where N (∆) stands for the normalizer of ∆ in g. Moreover

c(t) = 〈ω, ad(Y (t))Yn〉

is measurable essentially bounded as soon as t 7→ Y (t) is.
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Let us now look at the other condition, that is g(t) belongs to Z. As previously we denote
by ψ the function from G to R defined by ψ(g) = 〈ωg,Xg〉 = 〈ω, Fg〉. Recall that for all Y ∈ g

Tgψ.TLgY = 〈ω, (D + ad(Fg))Y 〉 .

For Y ∈ ∆
⋂
N (∆) and g ∈ Z we get

Tgψ.TLgY = 〈ω,DY 〉 .

Indeed 〈ω, ad(F (g))Y 〉 = −〈ω, ad(Y )F (g)〉 = 0 according to F (g) ∈ ∆ and (8). Consequently a
curve g(t) that verifies (8) and g(0) ∈ Z is contained in Z if and only if 〈ω,Dġ(t)〉 = 0 almost
everywhere, that is if and only if ġ(t) ∈ D−1∆ almost everywhere.

Conversely let g(t) be an absolutely continous curve defined on [0, T ] and such that ġ(t) =
d
dtg(t) belongs to

a = ∆
⋂
N (∆)

⋂
D−1∆

for almost every t. It is straightforward to check that it is the projection of an abnormal extremal
(λ(t), g(t)). The covector λ(t) is equal to p(t)ω, where p(t) is the solution of the linear equation
ṗ = c(t)p, with p(0) 6= 0 and c(t) = 〈ω, ad(ġ(t))Yn〉.

We are now in a position to state the following theorem.

Theorem 3 The vector subspace a of g defined by

a = ∆
⋂
N (∆)

⋂
D−1∆

is a subalgebra of g.
It generates a connected Lie subgroup of G denoted by A, and for all g ∈ Z the coset gA is

included in the singular locus Z.
The projections of the abnormal extremals are contained in Z and for g ∈ Z the abnormal

curves starting from g are all the absolutely continuous curves contained in the coset gA.
Moreover the covecteur λ(t) is up to a constant equal to p(t)ω where p(0) 6= 0 and

ṗ(t) = 〈ω, ad(ġ(t))Yn〉 p(t)

where Yn is such that 〈ω, Yn〉 = 1.

Proof. We have only to prove that a is a subalgebra, and that gA is contained in Z as soon as
g ∈ Z.

An element Y of g belongs to a if and only if

(i) Y ∈ ∆ (ii) ad(Y )∆ ⊂ ∆ (iii) DY ∈ ∆.

Let Y,Z ∈ a. By (ii) we get [Y,Z] = ad(Y )Z ∈ ∆.
Then ad(Y )ad(Z)∆ ⊂ ad(Y )∆ ⊂ ∆ according to (ii), hence ad([Y, Z])∆ ⊂ ∆.
To finish D[Y,Z] = [DY,Z] + [Y,DZ] ∈ ∆ since DY (resp. DZ) belongs to ∆ and ad(Z)

(ad(Y )) sends ∆ into ∆.
Consequently [Y,Z] belongs to a which is a subalgebra of g.
To prove the second point let g ∈ Z. Any absolutely continuous curve starting from g

and contained in gA, in particular any curve of the form g exp(tY ) with Y ∈ a, satisfies the
conditions discussed before the statement of the theorem. Consequently it is an abnormal curve,
it is contained in Z.

�

Remarks
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1. The dimension of a is at most n − 2. Indeed a is included in ∆ and its dimension cannot
exceed n−1. Suppose it is equal to n−1, then ∆ would be a subalgebra (because it would
be included in N (∆)), and would be moreover included in D−1∆, hence invariant for D.
But if ∆ is a D-invariant subalgebra then the rank condition does not hold. Consequently
dim(a) ≤ n− 2.

On the other hand this dimension is equal to n−2 as soon as ∆ is a subalgebra since in that
case a = ∆

⋂
D−1∆, and ∆ cannot be included in D−1∆, which is therefore a codimension

one subspace of g distinct from ∆.

2. If F (g) never belongs to the subalgebra a (at no g ∈ Z or at least at no g′ ∈ gA) then the
controls associated to the abnormal extremals are uniquely defined and cannot involve the
linear vector field. Consequently the abnormal curves are the left translation by g of the
geodesics of A for the left-invariant metric induced by the one of the ARS.

6 Almost-Riemannian and sub-Riemannian structures

In this section we show that a simple ARS on a n-dimensional Lie group is related to a codimen-
sion one regular sub-Riemannian structure on a (n + 1)-dimensional Lie group. In other words
the desingularization of a simple ARS is global and the desingularized structure is a classical
sub-Riemannian one.

6.1 The lift of a linear vector field

Let G be a connected Lie group, g its Lie algebra identified with the set of left-invariant vector
fields, and X a linear vector field on G. The flow (ϕt)t∈R of X is a one-parameter group of
automorphisms of G, hence a Lie group morphism from R into G, so that we can consider the
semi-direct product G̃ = Goϕ R defined by the law

(g1, τ1).(g2, τ2) = (ϕτ2(g1)g2, τ1 + τ2)

The group G can be identified with the closed and normal subgroup G× {0} of G̃, and R with
the closed subgroup {e} × R of G̃. This last is normal if and only if X = 0 (see [8] for that
construction).

Let g̃ stand for the Lie algebra of G̃. It is equal to some semi-direct product goR ; in view
of its characterization the action of the Lie algebra R on g should be identified. Let X̃ denote

the left-invariant vector field which is equal to (0, 1) =
∂

∂τ
at the identity ẽ = (e, 0). This field

generates the Lie algebra R, so that exp(tX̃ ) = (e, t). As it is left-invariant, we get also:

∀(g, τ) ∈ G̃ (g, τ) exp(tX̃ ) = (g, τ).(e, t) = (ϕt(g), t+ τ),

and
X̃ (g, τ) =

d

dt |t=0
(ϕt(g), t+ τ) = (X (g), 1).

Thus we get the equality X̃ = X +
∂

∂τ
, and denoting as usual the derivation associated to X by

D:
∀Y ∈ g [X̃ , Y ] = [X , Y ] = −DY.

Finally the Lie algebra g̃ is the semi-direct product go−D R:

[Y1 + τ1X̃ , Y2 + τ2X̃ ] = [Y1, Y2]− τ1DY2 + τ2DY1.
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6.2 Projection

The group G is diffeomorphic to the homogeneous space G̃/R, the set of right cosets of R, but
this last is not a quotient group in general because the subgroup R of G̃ is not normal as soon
as X 6= 0. On the other hand the left-invariant vector fields of G̃ can be projected to G̃/R (this
is always true for left-invariant vector fields and right cosets).

More accurately we get

(e,R)(g, τ) exp (t(Y, 0)) = (e,R)(g exp(tY ), τ) = (g exp(tY ),R)

(e,R)(g, τ) exp(tX̃ ) = (e,R)(ϕt(g), τ + t) = (ϕt(g),R)

so that we can identify the projection onto G̃/R of the vector field (Y, 0) (resp. X̃ ) with the
left-invariant vector field Y (resp. the vector field X ) of G.

6.3 Almost-Riemannian and sub-Riemannian structures

Let us now consider an almost-Riemannian structure defined on G by
{X , Y1, . . . , Yn−1}, assumed to satisfy the rank condition, which implies

LA{X , Y1, . . . , Yn−1} = RX ⊕ g. (9)

On G̃, we can define the left-invariant distribution

∆̃ = Span{X̃ , Y1, . . . , Yn−1}

This distribution is left-invariant, of codimension 1, and on account of (9) we get

LA{X̃ , Y1, . . . , Yn−1} = RX̃ ⊕ g = g̃

which shows that ∆̃ satisfies the rank condition. In order to define a corank one classical sub-
Riemannian structure on G̃ it remains to declare the vector fields X̃ , Y1, . . . , Yn−1 to be orthonor-
mal.

Notice that the dynamics of the almost-Riemannian structure being ġ = vX + u1Y1 + · · ·+
vn−1Yn−1 the one of the sub-Riemannian structure writes in the coordinates (g, τ) ∈ GoR:{

ġ = vX + u1Y1 + · · ·+ vn−1Yn−1

τ̇ = v

6.4 Optimality

Let u stand for the general control (v, u1, . . . , un−1), let g0 and g1 be two points of G, and let
ū be a minimal control that steers g0 to g1 on the time interval [0, T ]. By a minimal control is
meant a control such that the associated curve γ(t) minimizes the length between g0 and g1, and
such that

‖ū(t)‖ =

√√√√v̄2(t) +

n−1∑
i=1

ū2
i (t) = ‖γ̇(t)‖ a.e. t ∈ [0, T ].

On G̃ the control ū steers (g0, τ0) to (g1, τ1) for any τ0 and τ1 that satisfy

τ1 − τ0 =

∫ T

0
v̄(t) dt (10)

and it is minimal.
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Indeed let τ ∈ R, let ũ be a minimizing control that steers (g0, 0) to (g1, τ) in time T , and
let γ̃ be the associated trajectory. Its length is:

l(γ̃) =

∫ T

0
‖ũ(t)‖ dt.

Let γ1 be the projection of γ̃ on G. As it steers g0 to g1, we get:∫ T

0
‖ū(t)‖ dt = l(γ) ≤ l(γ1) ≤ l(γ̃) =

∫ T

0
‖ũ(t)‖ dt.

In conclusion the extremal trajectories on G can be lifted to extremal trajectories on G̃: the
optimal control ū belongs to the set of optimal controls that steers (g0, 0) to (g1, τ) for some τ ,
but this last is not known "à priori".

7 Examples

7.1 An example on the 2D affine group

With the notations of Section 3.5.2 we consider the simple ARS defined by the left-invariant
vector field X and the linear one X = Y + I∗Y , that is:

X (g) =

(
x y
0 1

)(
0 1
0 0

)
−
(

0 1
0 0

)(
x y
0 1

)
=

(
0 x− 1
0 0

)
.

The pair {X , X} is considered as an orthonormal frame, which defines the almost-Riemannian
metric. Notice that

(i) these two vector fields are linearly independant on the open and dense subset {x 6= 1};

(i) the rank condition is satisfied since [X,X ] = Y .

Consequently the ARS is well defined and its singular locus is the line Z = {x = 1}.

The dynamic of that ARS is described by ġ = vX + uX, where v, u ∈ R, or in coordinates:

(Σ)

{
ẋ = ux
ẏ = v(x− 1)

The associated Hamiltonian is

H = upx+ vq(x− 1)− 1

2
ν(u2 + v2), ν ≥ 0,

where (p, q) stands for the covecteur λ.

7.1.1 Abnormal extremals

We know by Theorem 3 that the abnormals are contained in some cosets of a subgroup of
dimension at most n − 2 = 2 − 2 = 0. Let us verify that on Aff+(2) the abnormals are fixed
points.

If ν = 0 we get
H0 = upx+ vq(x− 1) = u 〈λ,X〉+ v 〈λ,X〉

so that H0 can have a maximum w.r.t. (u, v) if and only if 〈λ,X〉 = 〈λ,X〉 = 0 (here 〈., .〉 stands
for the duality bracket). As λ 6= 0 the fields X and X should be linearly dependant, which
happens only in the singular locus. But then ẏ = 0 and the abnormal extremals are fixed points.
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7.1.2 Normal extremals

As usual, ν can be normalized to ν = 1. The computation of the partial derivatives of H w.r.t.
u and v shows that H reaches its maximum for u = px and v = q(x− 1), so that this maximum
is equal to

H =
1

2
p2x2 +

1

2
q2(x− 1)2,

and the Hamiltonian equations are:{
ẋ = px2

ẏ = q(x− 1)2

{
ṗ = −p2x− q2(x− 1)
q̇ = 0

In the particular case where q = 0 we get p2x2 = 2H, and setting c =
√

2H we obtain
ẋ = ±cx and ẏ = 0.

Consequently the lines parametrized by x(t) = x0e
±ct and y(t) = y0 are geodesics.

7.1.3 Poincaré coordinates

We are interested in the geodesics starting from the singular locus, that is with initial conditions
(x0 = 1, y0).

We can restrict ourselves to the geodesics parametrized by arclength, that is to H =
1

2
. As

H =
1

2
p2

0 at t = 0 for geodesics starting from (1, y0), this amounts to take p0 = ε = ±1. Moreover
we can also assume q = q0 > 0 because of the symmetry w.r.t. the x axis.

To solve the Hamiltonian equations two changes of variables are done. Since H is constant
we can first set: {

ε cos(α) = px
ε sin(α) = q(x− 1)

Derivating the first of these formulas we get

−εα̇ sin(α) = pẋ+ ṗx = p2x2 − p2x2 − q2x(x− 1) = −qxε sin(α),

so that
α̇ = qx = ε sin(α) + q.

For an initial point in the singular locus, that is x0 = 1, and according to q 6= 0, we get α0 = 0
(or kπ). The equation to be solved is consequently

α̇ = p0 sin(α) + q with α(0) = 0 and q > 0. (11)

In order to solve (11) we do the change of variable τ = tan(
α

2
), and the equation becomes:

τ̇ = ετ +
1

2
q(1 + τ2) τ(0) = 0. (12)

Before solving (12), we can notice that a straightforward computation gives:
x = 1 +

ε

q

2τ

1 + τ2

y = qt+
ε

q

2τ2

1 + τ2
− 2 arctan(τ) + y0
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The separation of the variables in (12) leads to

t =
2

q

∫
dτ

τ2 + 2rτ + 1

where r =
ε

q
. To compute these primitives we should distinguish three cases according to the

sign of the discriminant 4(r2 − 1) of τ2 + 2rτ + 1.

Case 1 (0 < q < 1)
We get

τ(t) =
q
(

exp(
√

1− q2 t)− 1
)

ε+
√

1− q2 +
(√

1− q2 − ε
)

exp(
√

1− q2 t)
.

We are interested in the first return to the singular locus {x = 1}. It happens when τ(t) vanishes
for some t0, or as a limit if τ(t) 7−→t7→t0 ±∞.

For 0 < q < 1 the function τ(t) does not vanish for t > 0 but tends to +∞ when t tends to
1√

1− q2
ln

(
ε+

√
1− q2

ε−
√

1− q2

)
, which is positive only for ε = 1. Consequently when ε = 1 and t

tends to
1√

1− q2
ln

(
1 +

√
1− q2

1−
√

1− q2

)
, then x(t) tends to 1, and

y(t) 7−→ q√
1− q2

ln

(
1 +

√
1− q2

1−
√

1− q2

)
+

2

q
− π + y0.

Notice that the geodesics do not go back to the y-axis in positive time for ε = −1, that is for
x ≤ 1, as illustrated on the following picture:

Geodesics for q=0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5

Case 2 (q = 1)

We get τ(t) =
t

2− εt
hence
x(t) = 1 +

2εt− t2

2− 2εt+ t2

y(t) = t+
εt2

2− 2εt+ t2
− 2 arctan(

t

2− εt
) + y0
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The trajectory belongs to the singular locus, that is x(t) = 1, for t = 0 and t = 2ε.
When t 7→ 2ε, y(t) tends to ε(4−π), that is the locus of the first return to the y-axis. Notice

that as well as in the first case the geodesics do not go back to the y-axis in positive time for
ε = −1, that is for x ≤ 1.

Geodesics for q=1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2

Case 3 (q > 1)
We get

τ(t) =

√
q2 − 1

q
tan

(
1

2
t
√
q2 − 1 + εθ

)
− ε

q

where θ = arctan

(
1√
q2 − 1

)
.

As in the first case τ(t) does not vanish, hence x(t) cannot be equal to 1, for t > 0, but

τ(t) 7→ +∞ when t 7→ π − 2εθ√
q2 − 1

. Consequently when t tends to that limit we get:


x(t) = 1 +

ε

q

2τ

1 + τ2
7−→ 1

y(t) = qt+
ε

q

2τ2

1 + τ2
− 2 arctan(τ) + y0 7−→ q

π − 2εθ√
q2 − 1

+
2ε

q
− π + y0

The behaviour is here different from the two previous cases because the geodesics return to the
axis {x = 1} in both cases ε = ±1.
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Geodesics for q=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

To finish the three behaviours are compared in a unique picture and the unit sphere is drawn
Geodesics

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5

Unit Sphere

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5  2  2.5  3

7.2 An example on the Heisenberg group

The equations of the following example are only stated, not solved. Actually the purpose is here
to illustrate some of the theoretical results, in particular the desingularization process.

With the notations of Section 3.5.3 we consider on the Heisenberg group G the ARS defined
by the set of vector fields {X , X, Z} where

X = x
∂

∂y
+

1

2
x2 ∂

∂z
is associated to the derivation D =

0 0 0
1 0 0
0 0 0


Here ∆ = Span{X,Z} is an ideal of g, and according to Proposition 1 the singular locus

is a subgroup. An easy computation shows that it is equal to the set of fixed points of X :
Z = {x = 0}. On the other hand the rank condition is satisfied since [X,X ] = DX = Y , and
the ARS is well defined.

The dynamic of that ARS is here ġ = vX+u1Y1 +u2Y2, where v, u1, u2 ∈ R, or in coordinates

(Σ)


ẋ = u1

ẏ = vx
ż = u2 + 1

2vx
2

and the associated Hamiltonian is

H = 〈λ, vX + u1Y1 + u2Y2〉 − 1
2ν(v2 + u2

1 + u2
2)

= pu1 + qvx+ r(u2 + 1
2vx

2)− 1
2ν(v2 + u2

1 + u2
2), ν ≥ 0.
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where λ = (p, q, r).

7.2.1 Abnormal extremals

Let us compute the abnormals extremals. For ν = 0 we get

H0 = u1p+ u2r + v(qx+
1

2
rx2)

so that H0 presents a maximum if and only if p = r = qx = 0. But p = r = 0 imply q 6= 0, hence
x = 0. Moreover q is a constant because − ∂

∂yH0 = 0, and choosing q = 1 we finally obtain x = 0
(that is the abnormals are contained in the singular locus) together with the equations{

ẏ = 0
ż = u2

In other words the vertical lines through a point (0, y0, 0) are abnormal extremals.
On the other hand the normalizer of ∆ = Span{X,Z} being g and D−1∆ being equal to

Span{Y,Z}, we know by Theorem 3 that the abnormals extremals are the curves contained in
Z = {x = 0} and parallel to a = Span{Y }, that is the computed result.

7.2.2 Normal extremals

As previously ν is normalized to ν = 1. The computation of the partial derivatives of H1 w.r.t.
v, u1 and u2 shows that H1 reaches its maximum for u1 = p, u2 = r, and v = qx+ 1

2rx
2, so that

this maximum is equal to

H =
1

2

(
p2 + r2 + (qx+

1

2
rx2)2

)
,

and the Hamiltonian equations are:
ẋ = p
ẏ = qx2 + 1

2rx
3

ż = r + 1
2qx

3 + 1
4rx

4


ṗ = −(q + rx)(qx+ 1

2rx
2)

q̇ = 0
ṙ = 0

One can see at once that the abnormal extremals are normal, they are obtained for x = p = 0.
On the other hand the case q = r = 0, p 6= 0 gives ẋ = p and ṗ = ẏ = ż = 0, hence all the

lines parallel to the x-axis.

7.2.3 Poincaré coordinates

Apart from these simple cases, we are lead to isolate the two following equations:{
ẋ = p
ṗ = −(q + rx)(qx+ 1

2rx
2)

We know that H =
1

2

(
p2 + r2 + qx+ (qx+

1

2
rx2)2

)
is constant along the extremals and,

as r is also constant, we can set

p2 + (qx+
1

2
rx2)2 = 2H2 − r2 = c2,

and then {
c cosα = p
c sinα = qx+ 1

2rx
2
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By a first derivation we get{
−cα̇ sinα = ṗ = −(q + rx)(qx+ 1

2rx
2) = −(q + rx)c sinα

cα̇ cosα = (q + rx)ẋ = (q + rx)p = (q + rx)c cosα

so that α̇ = q + rx. A second derivation gives:

α̈ = rẋ = rp = cr cosα,

that is the pendulum equation.
For an initial point in the singular locus, that is x0 = 0, we get α0 = 0 (or kπ), and p0 = ±c.

The equation to be solved is consequently

α̈ = p0r cos(α) with α(0) = 0 .

7.2.4 Desingularization

The Lie algebra generated by X , Y1, Y2 is equal to Sp{X , X, Y, Z} = g⊕RX . This algebra is the
Engel one since [X,X ] = Y , [X,Y ] = Z, and the other brackets vanish. According to Section 6
it it isomorphic to the Lie algebra of the semidirect product of G by R, that is g ⊕ RX̃ where

X̃ = X +
∂

∂w
. The lift of the almost-Riemannian distribution to G̃ = G o R is the dimension

3 classical sub-Riemannian distribution ∆ = Span{X̃ , Y1, Y2}, the dynamics of which writes in
natural coordinates: 

ẋ = u1

ẏ = vx
ż = u2 + 1

2vx
2

ẇ = v

The associated Hamiltonian is

H̃ = H+ sv = u1p+ u2r + v(s+ qx+
1

2
rx2)− 1

2
ν(v2 + u2

1 + u2
2), ν ≥ 0.

where λ̃ = (p, q, r, s) ∈ g̃∗.

Abnormal extremals. An easy computation shows first that ν = 0 implies p = r = s + qr = 0,
and then that the abnormal trajectories are the lines parallel to Oz (after a distinction between
the cases s = 0 and s 6= 0).

Normal extremals. Setting ν = 0 we obtain at once the maximized Hamiltonian

H̃ =
1

2

(
p2 + r2 + (s+ qx+

1

2
rx2)2

)
,

and the Hamiltonian equations:
ẋ = p
ẏ = sx+ qx2 + 1

2rx
3

ż = r + 1
2sx

2 + 1
2qx

3 + 1
4rx

4

ẇ = s+ qx+ 1
2rx

2

{
ṗ = −(q + rx)(s+ qx+ 1

2rx
2)

q̇ = ṙ = ṡ = 0

The almost-Riemannian dynamics is the part of that last obtained for s = 0.
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8 Extension of the model and Equivalence

The model analyzed in the previous sections can be generalized in two ways. Firstly on a
connected n-dimensional Lie group G, instead of considering n − 1 left-invariant vector fields
and one linear, we can consider a set {F1, . . . , Fn} of n affine vector fields. By affine vector field
is meant an element of the normalizer of the Lie algebra g of G in the Lie algebra of analytic
vector fields on G. The affine vector fields are sums of right-invariant, left-invariant and linear
vector fields (see [22]), so that they are either left-invariant or the sum of a linear vector field
and a right-invariant one.

One of the reasons for considering affine vector fields instead of linear ones is that it may
happen that the zero locus of several non left-invariant vector fields contain no common point,
which would be the case, the common point being the identity e, if all these fields were linear.

Definition 2 A general almost-Riemannian structure on a connected n-dimensional Lie
group G is defined by a set {F1, . . . , Fn} of n affine vector fields that satisfy the two following
properties:

(i) The rank of the distribution defined by Span{F1, . . . , Fn} is equal to n on a proper open
subset U of G.

(ii) This distribution satisfies the rank condition.

The almost-Riemannian metric is defined by declaring the set {F1, . . . , Fn} of vector fields to be
an orthonormal frame.

The second generalization consists in considering the same framework on homogeneous spaces.
Let H be a closed subgroup of G, and G/H the manifold of right cosets of H. It is a well known
fact that the left-invariant vector fields can be projected to the quotient group. The set of their
projections will be denoted by Π∗g; it is a Lie algebra. On the other hand an affine vector field
on G/H is defined in a natural way as the projection, whenever it exists, of an affine vector field
of G. However it is shown in [22] that the affine vector fields of G/H are exactly the elements of
the normalizer of Π∗g in the Lie algebra of analytic vector fields on G/H. Consequently we can
copy the previous definition:

Definition 3 A general almost-Riemannian structure on a connected n-dimensional ho-
mogeneous space G/H is defined by a set {F1, . . . , Fn} of n affine vector fields that satisfy the
two following properties:

(i) The rank of the distribution defined by Span{F1, . . . , Fn} is equal to n on a proper open
subset U of G/H.

(ii) This distribution satisfies the rank condition.

The almost-Riemannian metric is defined by declaring the set {F1, . . . , Fn} of vector fields to be
an orthonormal frame.

Remark. In both cases all the vector fields are analytic and the condition that the rank of the
distribution defined by Span{F1, . . . , Fn} be equal to n on an proper open subset U implies that
U is dense in G (or G/H).

Consider now a connected and n-dimensional manifoldM endowed with an almost-Riemannian
structure defined by a set {f1, . . . , fn} of vector fields that verifies

(i) The rank of Span{f1, . . . , fn} is equal to n on an open and dense subset U (M .
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(ii) The set {f1, . . . , fn} satisfies the rank condition.

As previously the almost-Riemannian metric is defined by considering the vector fields {f1, . . . , fn}
as an orthonormal frame.

If we want this structure to be equivalent to a general almost-Riemannian structure on a Lie
group or a homogeneous space, we should add the two following necessary conditions:

(iii) The vector fields f1, . . . , fn generate a finite dimensional Lie algebra.

(iv) The vector fields f1, . . . , fn are complete.

These conditions turn out to be sufficient.

Theorem 4 Under the conditions (i) to (iv) the manifold M is diffeomorphic to a homogeneous
space G/H and the vector fields f1, . . . , fn are related by this diffeomorphism to invariant or
affine vector fields on G/H so that the almost-Riemannian structure on M is equivalent to a
general almost-Riemannian structure on G/H.

If condition (iv) is removed, then the statement holds locally.

Proof. Let L be the (finite dimensional) Lie algebra generated by {f1, . . . , fn} and for each subset
I of {1, 2, . . . , n} let us denote by L(I) the ideal generated in L by {fi; i ∈ I}. Let us choose
I0 as one of the subsets of {1, 2, . . . , n} that satisfy the rank condition and whose cardinal is
minimal among the subsets of {1, 2, . . . , n} that satisfy that condition. This is possible since on
the one hand L = L({1, 2, . . . , n}) satisfies the rank condition, and on the other hand the choice
is done in a finite set.

We set L0 = L(I0). LetG be the simply connected Lie group whose Lie algebra g is isomorphic
to L0. According to the Equivalence Theorem of [22] there exist a closed subgroup H of G and
a diffeomorphism Φ from G/H onto M such that

L0 = Φ∗(Π∗g),

where Π∗g stands for the Lie algebra of invariant vector fields of G/H.
We can assume without loss of generality that I0 = {1, . . . , k} with k < n. As L0 is an

ideal of L, the fields fk+1, . . . , fn belong to the normalizer of L0. Their images Fi = Φ−1
∗ fi,

i = k + 1, . . . , n belong to the normalizer of Π∗g, hence are affine.
If we do not assume the fi’s to be complete then the Equivalence Theorem applies locally.

This is not explicitly stated in [22], but is clear from the proof of the Equivalence Theorem
(Theorem 5.1 of [22]).

�

Corollary 2 Under the previous conditions, if moreover M is simply connected and dim(L0) =
dim(M), then the ARS on M is diffeomorphic to a general ARS on a Lie group.

IfM is not simply connected, or if the vector fields fi are not complete then the same statement
holds locally.

Proof. With the notations of the previous proof we get: if dim(L0) = dim(M) then dim(M) =
dim(G), the subgroup H is discrete, hence reduced to the identity because of the simply con-
nectedness assumption on M .

�

Remark (Due to Jean-Paul-Gauthier)
In the statement of Theorem 4 the ARS on the manifoldM is globally defined by n orthonor-

mal vector fields that generate a finite dimensional Lie algebra. The problem to know if a general
ARS can be defined, at least locally, by a finite set of orthonormal vector fields that generate a
finite dimensional Lie algebra is open.
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9 Appendix

Let X be a linear vector field on a connected Lie group G. We denote by F the mapping from
G into g defined by

F (g) = TLg−1Xg (13)

Proposition 4 1. For all Y ∈ g

d

dt |t=0
F (exp(tY )) = DY (14)

2. For all g ∈ G and for all Y ∈ g

F (g exp tY ) = F (exp tY ) + e−tad(Y )F (g) (15)

and
TgF = (D + ad(Fg)) ◦ TLg−1 (16)

Proof.

1. Denoting by (ϕt)t∈R the flow of X and according to Formula (3) (see Section 2) we have:

d

dt |t=0
F (exp(tY )) =

d

dt |t=0
TL(exp(tY ))−1Xexp(tY )

=
d

dt |t=0

d

ds |s=0
exp(−tY )ϕs(exp(tY ))

=
d

ds |s=0

d

dt |t=0
exp(−tY ) exp(tesDY )

=
d

ds |s=0
(−Y + esDY ) = DY.

2. Let Y ∈ g. According to Formula 2 of Section 2 we get:

F (g exp(tY )) = TL(g exp(tY ))−1Xg exp(tY )

= TLexp(−tY )TLg−1(TLgXexp(tY ) + TRexp(tY )Xg)
= F (exp(tY )) + Ad(exp(−tY ))F (g)

= F (exp(tY )) + e−tad(Y )F (g),

that is Formula (15). Derivating that formula at t = 0 we obtain at once Formula (16):

TgF.Yg = TgF.TLg.Y =
d

dt |t=0
F (g exp(tY ))

=
d

dt |t=0

(
F (exp(tY )) + e−tad(Y )F (g)

)
= DY − ad(Y )F (g) = DY + ad(F (g))Y.

�
The next very useful corollary is immediate from Formula (16).

Corollary 3 Let ω be a left-invariant one-form on G, and ψ the real valued function defined on
G by ψ(g) = 〈ω, F (g)〉. Then

∀Y ∈ g Tgψ.Yg = 〈ω,DY + ad(Fg)Y 〉.

This can also be written Tgψ ◦ TLg = (DY + ad(Fg))
∗ ω.
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To finish we compute F as a power series.

Proposition 5 For all g ∈ G, Y ∈ g, and t ∈ R:

(i) ∀k ≥ 0
dk

dtk
F (g exp tY ) = (−1)k−1adk−1(Y )DY + (−1)kadk(Y )F (g exp tY )

(ii) F (exp tY ) =
+∞∑
k=1

(−1)k−1 t
k

k!
adk−1(Y )DY

Proof.

(i) According to Formula (16) of the previous proposition we get

d

dt
F (g exp(tY )) = Tg exp(tY )F.Yg exp(tY ) = DY − ad(Y )F (g exp(tY )),

that is the expected formula for k = 1. By induction we have also:

dk+1

dtk+1
F (g exp tY ) = (−1)kadk(Y )(DY − ad(Y )F (g exp tY ))

= (−1)kadk(Y )DY + (−1)k+1adk+1(Y )F (g exp tY ).

(ii) We have F (exp(0Y )) = F (e) = 0 and for k ≥ 1 the formulas of item (i) applied to g = e
and t = 0 gives

dk

dtk |t=0
F (exp(tY )) = (−1)k−1adk−1(Y )DY,

so that by analycity F (exp tY ) =

+∞∑
k=1

(−1)k−1 t
k

k!
adk−1(Y )DY .

�
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