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We consider the following extremal problems in the theory of permutations. Given integer n ≥ 2, let S n denote the symmetric group of all permutations of [n] := {1, 2, . . . , n} (so |S n | = n!), and A n = {(i, j) : i, j ∈ [n], i = j} the set of all (ordered) pairs from [n] (so |A n | = n(n -1)). A permutation π = (π(1), . . . , π(n)) covers the pair (π(k), π(l)) ∈ A n iff k < l. An inversion (see, e.g., [START_REF] Bóna | Combinatorics of permutations[END_REF][START_REF] Margolius | Permutations with inversions[END_REF][START_REF] Markowsky | Permutation lattices revisited[END_REF]) is a pair (j, i) ∈ A n with j > i. Let I n ⊂ A n denote the set of all inversions. A set Q ⊆ S n of permutations is inversion-complete (resp., pair-complete) if every inversion in I n (resp., pair in A n ) is covered by at least one permutation in Q. An inversioncomplete set Q is minimally inversion-complete if no proper subset of Q is inversioncomplete; and similarly for pair-completeness. For example, the set Q ′ = {rev n }, where (using compact notation for permutations) rev n = n(n -1) . . . 21 is the reverse permutation, is minimally inversion-complete, and has minimum cardinality for this property; whereas the set P ′ = {id n , rev n }, where id n = 12 . . . n is the identity permutation, is minimally pair-complete, and has minimum cardinality.

We determine the maximum cardinality γ I (n) of a minimal inversion-complete subset Q ⊆ S n , as well as the maximum cardinality γ P (n), of a minimal paircomplete subset P ⊆ S n . The latter problem arose in the determination of the Carathéodory numbers for the integral L ♮ convexity structures on the (n -1)dimensional real and integer vector spaces R n-1 and Z n-1 , see [START_REF] Queyranne | Carathéodory, Helly and Radon Numbers for Sublattice Convexities in Euclidian, Integer and Boolean Spaces[END_REF]. 1 It was posed by the second author as "An Integer Programming Formulation Challenge" at the Integer Programming Workshop, Valparaiso, Chile, March 11-14, 2012.

Stimulated by personal communication of an early version of our results, Malvenuto et al. [START_REF] Malvenuto | The maximum cardinality of minimal inversion complete sets in finite reflection groups[END_REF] determine the exact value of, or bounds on, the maximum cardinality of minimal inversion-complete sets in more general classes of finite reflection groups.

Perhaps unexpectedly (since there are twice as many pairs to cover as inversions), the maximum cardinalities γ I (n) and γ P (n) considered herein are equal for all n ≥ 4 (and they only differ by one unit, viz., γ P (n) = γ I (n) + 1, for n = 2 and 3). Furthermore, for all n ≥ 4 the family Q * n of all maximum-cardinality minimal inversion-complete subsets of S n is strictly contained in the family P * n of all maximum-cardinality minimal pair-complete subsets. All our proofs are constructive and produce corresponding optimal sets of permutations.

In Section 1 we prove: Theorem 1. (i) For every n ≥ 2, the maximum cardinality of a minimal inversioncomplete subset of S n is γ I (n) = ⌊n 2 /4⌋. (ii) For every even n ≥ 4, the family Q * n of all maximum-cardinality minimal inversion-complete subsets of S n is the family of all transversals of a family of n 2 /4 pairwise disjoint subsets of S n , each of cardinality n 2 -1 ! 2 , and

thus |Q * n | = n 2 -1 ! n 2 /2 .
(iii) For every odd n ≥ 5, Q * n is the disjoint union of the families of all transversals of two families, each one of ⌊n 2 /4⌋ pairwise disjoint subsets of

S n of cardinality ⌊ n 2 ⌋ -1 ! ⌊ n 2 ⌋!, and thus |Q * n | = 2 ⌊ n 2 ⌋ -1 ! ⌊ n 2 ⌋! ⌊n 2 /4⌋ .
To prove Theorem 1, we first establish the upper bound γ I (n) ≤ ⌊n 2 /4⌋ by applying Mantel's Theorem (which states, [START_REF] Mantel | Vraagstuk XXVIII[END_REF][START_REF] Turán | Egy gráfelmèleti szélsöértekfeladatrol[END_REF], that the maximum number of edges in an nvertex triangle-free graph is ⌊n 2 /4⌋) to certain "critical selection graphs" associated with the minimal inversion-complete subsets of S n . We then show that this upper bound is attained by the families of transversals described in parts (ii)-(iii). We complete the proof by showing that, for n ≥ 4, every Q ∈ Q * n must be such a transversal. Note that these results imply the asymptotic growth rate |Q * n | = 2 θ(n 3 log n) as n grows.

In Section 2 we prove: Theorem 2. (i) For every integer n ≥ 2, the maximum cardinality of a minimal pair-complete subset of S n is γ P (n) = max n, ⌊n 2 /4⌋ . (ii) For all n ≥ 5 the set P * n of maximum-cardinality minimal pair-complete subset of S n is equal to the set τ • Q * n resulting from applying every possible permutation τ ∈ S n of the index set [n] to each Q ∈ Q * n . (iii) For all n ≥ 5 there is a one-to-one correspondence between P * n and the Cartesian product [n] ⌊n/2⌋ × Q * n , where [n] ⌊n/2⌋ is the family of all subsets S ⊂ [n] with cardinality |S| = ⌊n/2⌋.

The intuition for the formula γ P (n) = max n, ⌊n 2 /4⌋ in part (i) is that it suffices to consider two classes of minimal pair-complete subsets: (1) the subsets P (each of cardinality n) formed by the n circular shifts of any given permutation π ∈ S n , i.e., | for all n ≥ 5, their asymptotic growth rate (as n grows) are similar, differing only in lower order terms in the exponent θ(n 3 log n).

P = {π, π • σ, π • σ 2 , . . . , π • σ n-1 },

minimal Inversion-Complete Sets of Permutations

In this Section we prove Theorem 1 and present a characterization of the family Q * n of all maximum-cardinality minimal inversion-complete subsets of S n . For n = 2, there is a single inversion (2, 1), which is covered by the reverse permutation 21, so part (i) of Theorem 1 trivially holds and Q * 2 = {21}. Hence assume n ≥ 3 in the rest of this Section.

Consider any minimal inversion-complete subset Q of S n . Since Q is minimally inversion-complete, for every permutation π ∈ Q there exists an inversion (j, i) ∈ I n , called a critical inversion, which is covered by π and by no permutation in Q \ {π} (for otherwise Q \ {π} would also be inversion-complete, and thus Q would not be minimally inversion-complete). For every permutation π ∈ Q, select one critical inversion that it covers (arbitrarily chosen if π covers more than one critical inversion). Let q j,i denote the unique permutation in Q that covers the selected critical inversion (j, i). Consider a corresponding critical selection graph

G Q = ([n], E Q )
, where E Q is the set of these |Q| selected critical inversions (one for each permutation in Q), considered as undirected edges. Thus

|E Q | = |Q|.
Recall that a graph G is triangle-free if there are no three distinct vertices i, j and k such that all three edges {i, j}, {i, k} and {j, k} are in G.

Lemma 1. If subset Q ⊆ S n is minimally inversion-complete, then every corre- sponding critical selection graph G Q is triangle-free. Proof. Assume Q ⊆ S n is minimally inversion-complete, and let G Q = ([n], E Q ) be a corresponding critical selection graph.
We need to show that, if E Q contains two adjacent edges {i, j} and {j, k}, then it cannot contain edge {i, k}. Thus assume that {i, j} and {j, k} ∈ E Q and, without loss of generality, that i < k. We want to show that (k, i) cannot be a selected critical inversion. We consider the possible relative positions of index j relative to i and k:

• If j < i < k, i.e., both (i, j) and (k, j) are selected critical inversions, then q k,j cannot cover (i, j) and therefore we must have k before j before i in q k,j (that is, these three indices must be in positions

π -1 (i) < π -1 (j) < π -1 (k) in π = q k,j
). This implies that (k, i) cannot be a selected critical inversion. • If i < k < j, i.e., both (j, i) and (j, k) are selected critical inversions, then this is dual (in the order-theoretic sense) to the previous case: q j,i cannot cover (j, k) and therefore we must have k before j before i in q j,i , implying that (k, i) cannot be a selected critical inversion. • Else i < j < k, i.e., both (j, i) and (k, j) are selected critical inversions.

In every permutation π ∈ Q \ {q j,i , q k,j } we must have i before j before k But then (k, i) cannot be a selected critical inversion, since it can only be covered in Q by q j,i or q k,j , for each of which another critical inversion has been selected. Therefore, (k, i) cannot be a selected critical inversion. This implies that no three indices i, j and k can define a triangle in G Q .

Since

|Q| = |E Q |, Mantel's Theorem implies
Corollary 2. For every n ≥ 2, the maximum cardinality γ I (n) of a minimal inversion-complete subset of S n satisfies γ I (n) ≤ ⌊n 2 /4⌋.

We prove constructively that the upper bound in Corollary 2 is attained, i.e., that part (i) of Theorem 1 holds. For n = 3, we have 3 triangle-free graphs on vertex set {1, 2, 3}, each consisting of exactly two of the three possible edges. Consider the edge set

E ′ = {1, 2} , {1, 3} : if it is the edge set of a critical selection graph G Q ′ , then we must have q ′ 2,1 = 213 ∈ Q ′ (for otherwise, q ′ 2,1
would also cover the inversion (3, 1), contradicting that (3, 1) is also selected), and similarly q ′ 3,1 = 312 ∈ Q ′ . Thus Q ′ must be the set {213, 312}, which is indeed inversion-complete, and thus a largest minimal inversion-complete subset of S 3 . This implies that γ I (n) = 3 = ⌊ n 2 4 ⌋ holds for n = 3. Similarly, the edge sets E ′′ = {1, 2} , {2, 3} and E ′′′ = {1, 3} , {2, 3} define the other two maximum-cardinality minimal inversion-complete subsets Q ′′ = {213, 123} and

Q ′′′ = {231, 321} of S 3 . Thus Q * 3 = {Q ′ , Q ′′ , Q ′′′ } and |Q * 3 | = 3.
Thus assume n ≥ 4 in the rest of this Section. We now introduce certain subsets of S n , which we will use to show that the upper bound in Corollary 2 is attained, and to construct the whole set Q * . For every triple (i, c, j) of integers such that 1 ≤ i ≤ c < j ≤ n, let F i,c,j denote the set of all permutations π ∈ S n such that:

• π(h) ≤ c for all h < c;

• π(c) = j;

• π(c + 1) = i; and

• π(k) ≥ c + 1 for all k > c + 1. If c > 1 the first two conditions imply that π(1), . . . , π(c-1) is any permutation of [c]\{i}; and if c+1 < n the last two conditions imply that π(c+2), . . . , π(n) is any permutation of {c+1, . . . , n}\{j}. Thus the cardinality of F i,c,j is (c-1)! (n-c-1)!. Note also that, for every π ∈ F i,c,j , (k, h) = (j, i) is the unique inversion (k, h) with h ≤ c < k that is covered by π. Thus for every fixed c the sets

F i,c,j (1 ≤ i ≤ c < j ≤ n) are pairwise disjoint (F i,c,j ∩ F i ′ ,c,j ′ = ∅ whenever (i, j) = (i ′ , j ′ )).
Recall that, given a collection F of sets, a transversal is a set containing exactly one element from each member of F . Lemma 3. For every integers 1 ≤ c < n, every transversal T of the family

F c = {F i,c,j : 1 ≤ i ≤ c < j ≤ n} is minimally inversion-complete.
Proof. Given such a transversal T , let t i,j denote the permutation in T ∩ F i,c,j . For every inversion (j, i) ∈ F n , we consider the relative positions of i and j with respect to c:

• If i ≤ c < j, then t i,j is the unique permutation in T that covers the inversion (j, i). • If i < j ≤ c, then the inversion (j, i) is covered by every t i,j ′ ∈ T with j ′ > c. • Else, c + 1 ≤ i < j, then the inversion (j, i) is covered by every t i ′ ,j ∈ T with i ′ ≤ c. Therefore, T is inversion-complete and for every i ≤ c < j the inversion (j, i), covered by t i,j , is critical. This implies that T is minimally inversion-complete.

For a fixed c such that 1 ≤ c < n, there are c(n-c) subsets F i,c,j (with i ≤ c < j) (and these subsets are nonempty and pairwise disjoint). Hence the cardinality of every transversal

T satisfies |T | = |F c | = c(n -c) ≤ ⌊ n 2 4 ⌋, with equality iff c ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ .
Combining with Lemma 2, we obtain: Corollary 4. For every n ≥ 4, γ I (n) = ⌊n 2 /4⌋ and, for every c ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ , every transversal T of the family

F c = {F i,c,j : 1 ≤ i ≤ c < j ≤ n} is a maximum- cardinality minimal inversion-complete subset of S n .
Part (i) of Theorem 1 follows. To prove parts (ii) and (iii), we invoke the "strong form" of Mantel's Theorem [START_REF] Mantel | Vraagstuk XXVIII[END_REF][START_REF] Turán | Egy gráfelmèleti szélsöértekfeladatrol[END_REF]: an n-vertex triangle-free graph has the maximum number ⌊n 2 /4⌋ of edges iff it is a balanced bipartite graph, i.e., with ⌊ n 2 ⌋ vertices on one side and ⌈ n 2 ⌉ on the other. Lemma 5. For n ≥ 4, a subset of S n is a maximum-cardinality minimal inversioncomplete subset iff it is a transversal of the family F c for some c ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ . Proof. Sufficiency was established by Lemma 3. To prove necessity, let n ≥ 4 and consider any Q ∈ Q * n and a corresponding critical selection graph G Q . By Lemma 1, Corollary 4, and the strong form of Mantel's Theorem, G Q is a balanced complete bipartite graph. We first claim that the side W of G Q that contains index 1 must be W = [c] with c ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ . For this, consider (since n ≥ 4) any three indices i > 1 in W and j < k on the other side. Thus (j, 1) and (k, 1) are critical inversions. Furthermore, the edges {i, j} and {i, k} in G Q are also defined by critical inversions, which depend on the position of index i relative to j and k:

• If 1 < j < i < k, then (i, j) and (k, i) are critical inversions. Then every permutation π ∈ Q \ {q j,1 , q i,j , q k,i } has 1 before j before i before k, and thus does not cover the inversion (k, 1). Thus (k, 1) cannot be a critical inversion, a contradiction. • If 1 < j < k < i, then (i, j) and (i, k) are critical inversions. On one hand, every permutation π ∈ Q ′ = Q \ {q j,1 , q i,j } has 1 before j before i, and thus does not cover the inversion (i, 1). Similarly, every permutation π ∈ Q ′′ = Q\{q k,1 , q i,k } has 1 before k before i, and thus does not cover the inversion (i, 1) either. Therefore Q = Q ′ ∪ Q ′′ does not cover the inversion (i, 1), a contradiction. This implies that we must have 1 < i < j < k, i.e., that i < j for every i ∈ W and every j ∈ [n] \ W . This proves our claim that W = [c] for some c which, by the strong form of Mantel's Theorem, must be ⌊ n 2 ⌋ or ⌈ n 2 ⌉. As a consequence, Q = {q j,i : 1 ≤ i ≤ c < j ≤ n}. Every q j,i ∈ Q must have j before i, and also h before j for every h ∈ [c]\{i} (for otherwise q j,i would also cover the inversion (j, h), contradicting the fact that q j,h is the unique permutation in Q that covers (j, h)) and i before k for every k ∈ {c + 1, . . . , n} \ {j} (for otherwise q j,i would also cover the inversion (k, i)). Therefore q j,i ∈ F i,c,j , and thus Q is a transversal of F c . The proof is complete. Parts (ii) and (iii) of Theorem 1 now follow, noting that: (1) F c consists of c(nc) pairwise disjoint subsets F i,c,j ; (2) c ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ ; and (3) for n odd, all subsets F i,⌊n/2⌋,j and F i ′ ,⌈n/2⌉,j ′ are pairwise disjoint (indeed, with n odd, every π ∈ F i,⌊n/2⌋,j has π(c + 1) ∈ [c] while every π ∈ F i ′ ,⌈n/2⌉,j ′ has π(c + 1)

∈ [n] \ [c]). Remark 1. Thus we have Q * 2 = 1, Q * 3 = 3, Q * 4 = 1, Q * 5 =
128 and, as noted in the Introduction, the asymptotic growth rate |Q * n | = 2 θ(n 3 log n) .

minimal Pair-Complete Sets of Permutations

In this Section we prove Theorem 2. To simplify the presentation, let µ(n) := max n, ⌊n 2 /4⌋ . For n = 2, the unique cover of the two pairs (1, 2) and (2, 1) is S 2 itself, hence γ P (2) = 2 = µ(2) and P * 2 = {S 2 }. Note that, as for inversions, given any minimal pair-complete subset P of S n , for every permutation π ∈ P there exists a critical pair (i, j) ∈ F n which is covered by π and by no other permutation in P . Observe however that, in contrast with inversion-completeness, the notion of pair-completeness does not assume any particular order of the indices. Thus, if P ⊆ S n is (minimally) pair-complete then for any permutation τ ∈ S n of the index set [n], the set τ • P = {τ • π : π ∈ P } is also (minimally) pair-complete. (Indeed, π covers (i, j) iff τ • π covers (τ (i), τ (j)).)

For n = 3 consider the set P 3 := {123, 231, 312}. It is easily verified that P 3 is pair-complete and the pairs (1, 3), (2, 1) and (3, 2) are critical pairs covered by the permutations 123, 231 and 312, respectively. Hence P 3 ∈ P * 3 and thus

γ P (3) ≥ |P 3 | = 3 = µ(3).
To verify the converse inequality, viz., γ P (3) ≤ µ(3), consider any P ∈ P * 3 : by the preceding observation, we may assume, w.l.o.g., that P contains the identity permutation π 1 = id 3 . This permutation π 1 covers all three pairs (i, j) with i < j. Then the permutation π 2 ∈ P that covers the pair (3, 1) must also (depending of the position of index 2) cover at least one of the pairs (2, 1) or [START_REF] Mantel | Vraagstuk XXVIII[END_REF][START_REF] Malvenuto | The maximum cardinality of minimal inversion complete sets in finite reflection groups[END_REF]. Hence there is at most one pair which is not covered by {π 1 , π 2 }, and thus γ P (3) = |P | ≤ 3 = µ(3), implying γ P (3) = µ(3). Therefore part (i) of Theorem 2 holds for n ∈ {2, 3}. Lemma 6. If n ≥ 4, for every permutation τ ∈ S n of the index set [n] and every maximum-cardinality minimal inversion-complete set Q ⊂ S n , the set τ • Q is minimally pair-complete.

Proof. By a preceding observation, it suffices to prove that, for n ≥ 4, every maximum-cardinality minimal inversion-complete set Q ∈ S n is minimally paircomplete. By Lemma 5, every such Q must be a transversal of F c for some c ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ . Consider any pair (i, j) ∈ A n and, w.l.o.g., i < j: • If i ≤ c < j then q j,i ∈ F i,c,j ∩ Q is the unique permutation in Q that covers the inversion (j, i), and every other permutation in Q covers (i, j). • If i < j ≤ c then, for every k ∈ {c + 1, . . . , n}, q k,i covers (j, i) and q k,j covers (i, j). • Else, c < i < j and, dually, for every h ∈ [c], q i,h covers (i, j) and q j,h covers (j, i).

Therefore Q is pair-complete, and every pair (j, i) with i ≤ c < j is critical and covered by q j,i ∈ Q.

Since |Q| = ⌊ n 2 4 ⌋ = |{(j, i) : 1 ≤ i ≤ c < j ≤ n}|, Q is minimally pair-complete.
Corollary 7. For every n ≥ 4, the maximum cardinality γ P (n) of a minimal paircomplete subset of S n satisfies γ P (n) ≥ γ I (n) = ⌊n 2 /4⌋.

As we did for inversions, to every minimal pair-complete subset P of S n and selection of a critical pair covered by each permutation in P , we associate a corresponding critical selection graph G P = ([n], E P ) where E P is the set of |P | selected critical pairs (one for each permutation in P ), considered as undirected edges. Thus |E P | = |P |. Let p i,j denote the unique permutation in P that covers the selected critical pair (i, j). Lemma 8. If n ≥ 4 and P ⊆ S n is minimally pair-complete, then every corresponding critical selection graph G P is triangle-free.

Proof. Assume n ≥ 4 and P ⊆ S n is minimally pair-complete, and let G P = ([n], E P ) be a corresponding critical selection graph. By Corollary 7, |P | ≥ ⌊n 2 /4⌋ ≥ 4. We have to show that for any three indices i, j, k such that {i, j} and {j, k} ∈ E P , we must have {i, k} ∈ E P .

• First, consider the case where both pairs (i, j) and (j, k) are critical. In every permutation π ∈ P \ {p i,j , p j,k } we must thus have k before j before i.

Since k is before i in all these |P | -2 ≥ 2 permutations, (k, i) cannot be a critical pair. Furthermore (i, k) cannot be a selected critical pair, since it can only be covered by p i,j and p j,k , for each of which another critical pair has been selected. Therefore, as claimed, we cannot have {i, k} in E P .

l before k before i, and thus does not cover the pair (i, l). Thus (i, l) cannot be a critical inversion, a contradiction.

Thus we must have both (j, k) and (j, l) in A P . This implies that all pairs (j, k) ) For all n ≥ 5 there is a one-to-one correspondence between P * n and the Cartesian product [n] ⌊n/2⌋ × Q * n .

Proof. Assume n ≥ 5 and consider any P ∈ P * n . In the proof of Lemma 9 we showed that there exists a unique balanced ordered partition (W, W ) of [n] such that all critical pairs (j, k) of P have j ∈ W and k ∈ W . Let again c := |W | ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ , but now select the (unique) "canonical" permutation τ W associated with this ordered partition, that monotonically maps [c] to W (i.e., such that 1 ≤ i < j ≤ c implies τ W (i) ∈ W and τ W (i) < τ W (j) ∈ W ) and monotonically maps [c] = {c + 1, . . . , n} to W (i.e., such that c + 1 ≤ k < l ≤ n implies τ W (k) ∈ W and τ W (k) < τ W (l) ∈ W ). Then, as also noted in the proof of Lemma 9, every critical pair in Q P := τ -1 W • P is an inversion, and thus Q P ∈ Q * n . Consider the mapping Φ : P * n → [n] ⌊n/2⌋ ×Q * n defined by Φ(P ) = Φ(P ) 1 , Φ(P ) 2 with Φ(P ) 1 = W if Q P is a transversal of F ⌊n/2⌋ (i.e., if |W | = ⌊n/2⌋, where {W, W } is the balanced ordered partition associated with P , as defined in the preceding paragraph), and Φ(P ) 1 = W otherwise (i.e., if n is odd and Q P is a transversal of F ⌈n/2⌉ , and thus |W | = ⌊n/2⌋); and with Φ(P ) 2 = Q P = τ -1 W • P . To complete the proof, it suffices to show that every pair (X, Q) ∈ [n] ⌊n/2⌋ × Q * n is the image Φ(P ) of exactly one P ∈ P * n . Thus consider any (X, Q) ∈ [n] ⌊n/2⌋ × Q * n . Recall that the balanced ordered partition associated with any transversal

Q of F c is ([c], [c]).
If Q is a transversal of F ⌊n/2⌋ then we use X to play the role of W , that is, we let P := τ X • Q, so P ∈ P * n and Φ(P ) 2 = τ -1 X • P = Q. The balanced ordered partition associated with P is (τ X • [c], τ X • [c]) = (X, X), and therefore Φ(P ) 1 = X. This implies that Φ(P ) = (X, Q), as desired. Furthermore, consider any P ′ ∈ P * n such that Φ(P ′ ) = (X, Q). Since Q P ′ = Φ(P ′ ) 2 = Q is a transversal of F ⌊n/2⌋ and Φ(P ′ ) 1 = X, the balanced ordered partition associated with P ′ is (W ′ , W ′ ) = (X, X). But then P ′ = τ W ′ • Q P ′ = τ X • Q = P . Therefore, for every (X, Q) ∈ [n] ⌊n/2⌋ × Q * n such that Q is a transversal of F ⌊n/2⌋ , there exists exactly one P ∈ P * n such that Φ(P ) = (X, Q). The proof for the remaining case, i.e., when n is odd and Q is a transversal of F ⌈n/2⌉ , is similar, by simply exchanging the roles of X and X. This shows that Φ is a one-to-one correspondence from P * n to [n] ⌊n/2⌋ × Q * n .

The proof of Theorem 2 is complete

  with j ∈ W and k ∈ W := [n] \ W define arcs in A P , i.e., are critical. Let c := |W | ∈ ⌊ n 2 ⌋, ⌈ n 2 ⌉ and consider any permutation τ that sends [c] to W (and thus [c] to W ): every critical pair in Q = τ -1 • P is an inversion, hence Q is minimally inversion-complete. Since |Q| = |P | = γ P (n) = γ I (n), it has maximum cardinality. This completes the proof. It remains to prove: Lemma 10. (Part (iii) of Theorem 2.

• A dual argument shows that if both (j, i) and (k, j) are selected critical pairs then {i, k} ∈ E P . • Now consider the case where (j, i) and (j, k) are selected critical pairs. Since p j,i does not cover (j, k), we have k before j before i in p j,i , implying that (k, i) cannot be a selected critical pair. Similarly, p j,k does not cover (j, i) and therefore we must have i before j before k in p j,k , implying that (i, k) cannot be a selected critical pair. Therefore, as claimed, we cannot have {i, k} in E P . • A dual argument applies to the remaining case, showing that if both (i, j) and (k, j) are selected critical pairs then {i, k} ∈ E P . Thus we must have {i, k} ∈ E P . This completes the proof that G P is trianglefree.

These results and Mantel's Theorem imply part (i) of Theorem 2. They also imply that, for n ≥ 4, all the sets τ • Q in Lemma 6 are in P * n . To complete the proof of part (ii) it now suffices to prove the converse for n ≥ 5.

Lemma 9. If n ≥ 5, a subset P of S n is a maximum-cardinality minimal paircomplete subset iff P = τ • Q for some permutation τ of the index set [n] and some maximum-cardinality minimal inversion-complete subset Q of S n .

Proof. Sufficiency was just established. To prove necessity, let n ≥ 5 and consider any P ∈ P * n and a corresponding critical selection graph G P . By Lemma 8, Theorem 2 (i), and the strong form of Mantel's Theorem, G P is a balanced complete bipartite graph. Now, also consider the associated critical selection digraph (directed graph) D P = ([n], A P ), wherein each edge {i, j} is directed as arc (i, j) ∈ A P if the pair (i, j) is critical. If (i, j) ∈ A P , then the reverse pair (j, i) must be covered by every permutation in P \ {p i,j }; since |P | -1 = ⌊n 2 /4⌋ -1 ≥ 2 when n ≥ 5, (j, i) cannot be critical, i.e., (j, i) ∈ A P . Thus, every edge {i, j} in the underlying graph G P of D P corresponds to exactly one arc, (i, j) or (j, i), in D P . We now prove that when n ≥ 5 the digraph D P is acyclic, i.e., it does not contain any (directed) circuit. Indeed, if D P contains a directed path (i(1), . . . , i(k)), then every permutation π ∈ Q \ {p i(1),i(2) , p i(2),i(3) . . . , p i(k-1),i(k) } has i(1) after i(2) after i(3), etc, after i(k -1) after i(k), and thus i(k) before i(1). Since |P | -(k -1) ≥ ⌊ n 2 4 ⌋ -(n -1) ≥ 2 when n ≥ 5, pair (i(k), i(1)) cannot be critical, and thus (i(k), i(1)) ∈ A P .

Since digraph D P is acyclic, there is at least one vertex i with in-degree zero. Since the underlying graph G P is a balanced complete bipartite graph, the side

. Consider any indices j ∈ W and k = l on the other side. Since vertex i has no entering arc, arcs (i, k) and (i, l) are in A P , and we consider the possible orientations of the edges {j, k} and {j, l}:

• If both edges are oriented into j, i.e., (k, j) and (l, j) in A P , then, on one hand, every permutation π ∈ P ′ = P \ {p k,j , p i,k } has j before k before i, and thus does not cover the pair (i, j). Similarly, every permutation π ∈ P ′′ = P \ {p l,j , p i,l } has j before l before i, and thus does not cover the pair (i, j) either. Therefore P = P ′ ∪ P ′′ does not cover the pair (i, j), a contradiction. • If one of these two edges is oriented into j and the other one from j, w.l.o.g., (k, j) and (j, l) in A P , then every permutation π ∈ P \ {p j,l , p k,j , p i,k } has