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LOCAL MINIMIZATION ALGORITHMS FOR DYNAMIC

PROGRAMMING EQUATIONS

DANTE KALISE∗, AXEL KRÖNER† , AND KARL KUNISCH‡

Abstract. The numerical realization of the dynamic programming principle for continuous-time
optimal control leads to nonlinear Hamilton-Jacobi-Bellman equations which require the minimiza-
tion of a nonlinear mapping over the set of admissible controls. This minimization is often performed
by comparison over a finite number of elements of the control set. In this paper we demonstrate
the importance of an accurate realization of these minimization problems and propose algorithms by
which this can be achieved effectively. The considered class of equations includes nonsmooth control
problems with ℓ1-penalization which lead to sparse controls.

Key words. dynamic programming, Hamilton-Jacobi-Bellman equations, semi-Lagrangian
schemes, first order primal-dual methods, semismooth Newton methods

AMS subject classifications.

1. Introduction. Since its introduction by Bellman in the 50’s, dynamic pro-
gramming has become a fundamental tool in the design of optimal control strategies
for dynamical systems. It characterizes the value function of the corresponding op-
timal control problem in terms of functional relations, the so-called Bellman and
Hamilton-Jacobi-Bellman (henceforth HJB) equations. We begin by briefly recalling
this setting in the context of infinite horizon optimal control.
We make the following assumptions. We equip R

n for n ∈ N with the Euclidean norm
‖ · ‖2. Furthermore, let

(1.1)
f : Rd × R

m → R, |f(x, u)− f(y, u)| ≤ ωR‖x− y‖2,
l : Rd × R

m → R, |l(x, u)− l(y, u)| ≤ ωR‖x− y‖2,
for x, y ∈ R

d with ‖x − y‖2 ≤ R and modulus ωR : [0,∞) → [0,∞) of polynomial
growth satisfying limr→0+ ωR(r) = 0 (cf. Ishii [14]), d,m ∈ N. Let the dynamics be
given by

{

ẏ(t) = f(y(t), u(t)),
y(0) = x

(1.2)

for t > 0, where x ∈ R
d and u ∈ U ≡ {u : R+ → U measurable}, U ⊂ R

m compact.
We introduce the following cost functional J : U → R

J(u) =

∫ ∞

0

l(y(s), u(s))e−λsds , λ > 0 ,

where y is the solution of (1.2) depending on x and u. By the application of the
dynamic programming principle, the value function

v(x) ≡ inf
u∈U

J(u)
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is characterized as the viscosity solution [4, Chapter 3] of the HJB equation

λv(x) + sup
u∈U

{−f(x, u) · ∇v(x)− l(x, u)} = 0, x ∈ R
d.

There exists an extensive literature concerning the construction of numerical schemes
for static HJB equations. The spectrum of numerical techniques includes ordered
upwind methods [20, 3], high-order schemes [24], domain decomposition techniques
[7] and geometric approaches [6], among many others (we refer to [13, Chapter 5,
p.145] for a review of classical approximation methods). In this paper we follow a
semi-Lagrangian approach [11], which is broadly used to approximate HJB equations
arising in optimal control problems, see,e.g., [13]. We illustrate the basic steps in the
formulation of a semi-Lagrangian scheme for our model problem.

The construction of a first-order semi-Lagrangian scheme begins by considering
an Euler discretization of the system dynamics with time step h > 0

{

yn+1 = yn + hf(yn, un),

y0 = x,

for n ∈ N
0, x ∈ R

d, and controls un ∈ U . Then, the application of the dynamic
programming principle on the discrete-time dynamics leads to the Bellman equation

v(x) = min
u∈U

{(1− λh)v(x+ hf(x, u)) + hl(x, u)}, x ∈ R
d.

To discretize this equation in space we introduce a bounded domain Ω = [a, b]d ⊂ R
d,

a, b ∈ R, where we define a regular quadrangular mesh with N nodes and mesh
parameter k. We denote the set of nodes by Ωk ⊂ Ω. Let the discrete value function
be defined in all grid points, V := {v(x)}x∈Ωk

. However, note that x + f(x, u) for
x ∈ Ωk is not necessarily a grid point, and therefore the value function has to be
evaluated by interpolation which is chosen as a linear one here. The interpolant
I[·](x) is defined on the basis of the dataset V . The resulting fully discrete scheme
then reads

(1.3) V (x) = min
u∈U

{(1− λh)I[V ](x+ hf(x, u)) + hl(x, u)} =: G(V ), x ∈ Ωk,

which can be solved by a fixed point iteration starting from an initial guess V 0 by

V i+1 = G(V i) .

An alternative to the fixed point approach is the use of Howard’s algorithm or iteration
in the policy (control) space [5, 1], which is faster but also utilizes the parametric
minimization of the Hamiltonian.
Finally, once the value function is computed this allows to derive a feedback control
for a given state x ∈ R

d by

u(x) ∈ argmin
u∈U

{(1− λh)I[V ](x+ hf(x, u)) + hl(x, u)}.

A characteristic feature of the class of HJB equations arising in optimal control
problem is its nonlinear Hamiltonian,

sup
u∈U

{−f(x, u) · ∇v(x)− l(x, u)} ,
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which requires a parametric maximization (minimization) over the control set U . For
its discrete analogue G(V ), a common practice in the literature is to compute the min-
imization by comparison, i.e., by evaluating the expression in a finite set of elements
of U (see for instance [1, 12, 17] and references therein). In contrast to the com-
parison approach, the contribution of this paper is to demonstrate that an accurate
realization of the min-operation on the right hand side of (1.3) can have an impor-
tant impact on the optimal controls that are determined on the basis of the dynamic
programming principle. In this respect, the reader can take a preview to Figure 4.2,
where differences between optimal control fields obtained with different minimization
routines can be appreciated. Previous works concerning the construction of minimiza-
tion routines for this problem date back to [8], where Brent’s algorithm is proposed
to solve high dimensional Hamilton-Jacobi -Bellman equations and to [10], where the
authors consider a fast semi-Lagrangian algorithm for front propagation problems. In
this latter reference, the authors determine the minimizer of a specific Hamiltonian by
means of an explicit formula. Moreover, for local optimization strategies in dynamic
programming we refer to [16] for Brent’s algorithm and to [22] for a Bundle Newton
method.

In this article, a first-order primal-dual method (also known as Chambolle-Pock
algorithm [9]) and a semismooth Newton method [15, 21] are proposed within the semi-
Lagrangian scheme for the evaluation of the right hand side in (1.3). In contrast to
the minimization by the comparison approach, the proposed algorithms leads to more
accurate solutions for the same CPU time. Since we preserve the continuous nature
of the control set, in some specific settings it is also possible to derive convergence
results for our minimization strategies. Furthermore, it provides a solid framework
to address challenging issues, such as nonsmooth optimal control problems with ℓ1
control penalizations in the cost functional.

The paper is organized as follows. In Section 2 we begin by recasting the dis-
cretized Hamiltonian as a minimization problem explicitly depending on the control
u. In Section 3 we introduce and adapt the Chambolle-Pock and semismooth Newton
methods for the problem under consideration, and in Section 4 we present numerical
examples assessing the accuracy and performance of the proposed schemes.

2. Explicitly control-dependent Hamiltonians. In this section we study the
numerical evaluation of the discretized nonlinear Hamiltonian

(2.1) min
u∈U

{(1− λh)I[V ](x+ hf(x, u)) + hl(x, u)} .

This is a non – standard minimization problem requiring the evaluation of the nonlin-
ear mapping u → I[V ](x+hf(x, u)) which depends on the discrete dataset V and the
system dynamics f(x, u). Therefore, a first step towards the construction of local min-
imization strategies is to recast (2.1) by assuming specific structures for I[V ], f(x, u),
and l(x, u), leading to explicit piecewise linear or quadratic optimization problems on
u. This section is split between the treatment of the interpolation I[V ](x+hf(x, u)),
and the evaluation of l(x, u). For the sake of simplicity we restrict the presentation to
the two dimensional case d = 2, although the presented framework can be generalized
to higher dimensions.

2.1. The interpolation operator and local subdivisions of the control

space. To analyze the interpolation operator we consider for every node x = (x1, x2) ∈
Ωk the patch of four triangles defined by the neighboring nodes, cf. Fig. 2.1. Assume
that the arrival point x+hf(x, u) for x ∈ Ωk, u ∈ U , is located in a triangle defined by
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the points x = x1, x2, and x3 in R
2 with associated values V1, V2, and V3 as indicated

in Fig. 2.1. The linear interpolation formula then reads for a mesh point x ∈ Ωk

(2.2) I[V ](x) = cx1 + dx2 + e

with

(2.3)


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Fig. 2.1: Arrival points and related control sets.

Remark 2.1. Note that in the considered case of first order approximations the
passage from the interpolation on one triangular sector to another one is continuous.
For the first order interpolation schemes in a point x ∈ Ωk, one might also think
of considering one interpolant for a macro-cell defined by a larger set of neighboring
nodes. This could be computed by using 2d suitable points. However, in practice
this is similar to consider a grid of size 2h, which leads to less accuracy, which is, in
particular, in higher dimensions a crucial issue. Alternatively one could consider one
interpolant for the macro-cell which is defined piecewise over all the triangulars. How-
ever, this piecewise smooth interpolation is not convenient for numerical optimization.
As a further alternative one can resort to higher order interpolation schemes. �

According to (2.1), the interpolation operator I[V ](x) is evaluated at the arrival
point x + hf(x, u). If this point is sufficiently close to x ∈ Ωk, it is in general
possible to know a priori in which of the four triangular sectors it will be located.
Our goal is to establish a consistent procedure to locally divide the control space in
sets that generate arrival point related to a single triangular sector. For instance,
in the case of the eikonal equation there is a simple correspondence between the
computed triangulars in control and state spaces, see Section 2.3. In the following we
restrict ourselves to dynamics of the form

f(x, u) = g(x) +Bu,(2.4)

for B ∈ R
d×m, i.e. nonlinear in the state, and linear in the control. We assume that

h̄ > 0 is chosen such that

h sup
x∈Ω,u∈U

‖g(x) +Bu‖2 ≤
√
2

2
k.(2.5)
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Let the rows of B be denoted by {bi}di=1. Further, let xD denote a grid point in Ωk,
let I ⊂ {1, . . . , d} be an index set with complement I⊂, and define a triangle QI ⊂ R

d

associated to xD for the interpolation and I by

QI = {x̃ = xD + x | ‖x‖1 ≤ k, xi ≥ 0 for i ∈ I, xi ≤ 0 for i ∈ I⊂}.

Then

UI = {u ∈ U | g(xD)i + biu ≥ 0 for i ∈ I, g(xD)i + biu ≤ 0 for i ∈ I⊂}

has the property that xA = xD + h(g(xD) +Bu) ∈ QI for u ∈ UI , and 0 ≤ h ≤ h. In
fact, x = xA − xD = h(g(xD) +Bu), and we obtain with (2.5) that ‖x‖1 ≤ k, xi ≥ 0
for i ∈ I and xi ≤ 0 for i ∈ I⊂. Note also that

U =
⋃

I∈W
UI ,

where W is the set of all subsets of index sets in {1, . . . , d}. The associated interpola-
tion operator on QI is denoted by II . Note that evaluation of II [V ](x+ f(x, u)) for
x ∈ QI and u ∈ UI leads to a linear dependence on u of the form

(2.6) cIu1 + dIu2 + eI ,

where the coefficients cI , dI and ǫI are uniquely determined by the vertices of QI .

2.2. Evaluation of the cost term. Having approximated the interpolation
term of the Hamiltonian, what is left is to provide an approximation of the running
cost l(x, u). If this term is defined in a pointwise manner, this imposes no additional
difficulty. For instance, in some of the examples we shall utilize

l(x, u) = ‖x‖22 +
γ

2
‖u‖22 = x2

1 + x2
2 +

γ

2
(u2

1 + u2
2) x ∈ Ωk, u ∈ U.(2.7)

This introduces a constant and a quadratic term in u to be added to the above
presented expressions for the interpolant (2.6). For l given as in (2.7) we will consider
in the scheme (1.3) the explicit dependence on u. For a given node x ∈ Ωk we have

[V ]x = min
I∈W

{HI(x, V, u, I)} ,(2.8)

where [V ]x denotes the value of the discrete value function at node x. Further, for
each set I we have

HI(x, V, u, I) = min
u∈UI

{βII [V ](x+ hf(x, u)) + hl(x, u)} ,(2.9)

= min
u∈UI

{

β(cIu1 + dIu2 + eI) + h
(

x2 + y2 +
γ

2
(u2

1 + u2
2)
)}

,

= min
u∈UI

{ ãI
2
u2
1 +

b̃I
2
u2
2 + c̃Iu1 + d̃Iu2 + ẽI} ,(2.10)

with

β = 1− λh , ãI = hγ , b̃I = hγ , c̃I = βcI ,

d̃I = βdi , ẽI = βeI + h(x2 + y2) .
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Remark 2.2. For minimum time optimal control problems, the resulting semi-
Lagrangian scheme for points x ∈ Ωk reads

[V ]x = min
u∈U

{βI[V ](x+ hf(x+ u)) + 1− β} , where β = e−h , x ∈ Ωk,

see [13], and the Hamiltonian takes the simplified form

HI(x, V, u, I) = min
u∈UI

{c̃Iu1 + d̃Iu2 + ẽI}.

�

To evaluate the right hand side in (2.8) numerically, we compute (2.9) for I ∈ W by
applying numerical optimization methods and then determine the minimizer on the
macro-cell by comparison over the sets UI .

To determine the minimizer of the right hand side in (2.10) we define

F (u) =
ãI
2
u2
1 +

b̃I
2
u2
2 + c̃Iu1 + d̃Iu2 + ẽI .

Then the minimization problem is given by

min
u∈UI

F (u), I ∈ W.(2.11)

In particular, the following types of cost functionals are of interest for scalars
a, b, c, d, e, r, l, s ∈ R, where a, c ≥ 0. Thereby we include also a bilinear term bu1u2

to allow also bilinear interpolants over quadrangular cells. For the triangular inter-
polation used throughout this paper, we take b = 0.

1. Infinite horizon problem with quadratic control cost:

F2(u1, u2) =
a

2
u2
1 + bu1u2 +

c

2
u2
2 + du1 + eu2 + r.(2.12)

The functional is smooth and convex if ac− b2 > 0.
2. Minimum time problem:

FMT(u1, u2) = bu1u2 + du1 + eu2 + r.(2.13)

The functional is non-convex if b 6= 0 but smooth.
3. Minimum time/Infinite horizon problem with ℓ1-control cost:

FMT/IH(u1, u2) = a|u1|+ bu1u2 + c|u2|+ du1 + eu2 + r.(2.14)

The functional is non-convex if b 6= 0 and non-smooth.
4. Infinite horizon problem with ℓ2- and ℓ1-control cost:

FIH(u1, u2) =
a

2
u2
1 + l|u1|+ bu1u2 +

c

2
u2
2 + s|u2|+ du1 + eu2 + r.(2.15)

The functional is convex if ac− b2 > 0 and non-smooth.

Remark 2.3. Since U is compact all four functionals allow a minimum. If
ac − b2 > 0 it is unique for (2.12) and (2.13). For a discussion of optimal control
problems of dynamical systems for functionals (2.14) and (2.15) we refer to [2, 18]. �
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2.3. Special case: eikonal dynamics. We consider the relation between the
subdivision of the state and control space in the context of minimum time problems
with eikonal dynamics. To set up the control problem we introduce a closed target
T ⊂ R

n , with int(T ) 6= ∅, and smooth boundary. We consider the minimum time
function

t(x, ũ) =

{

inf {t ∈ R+ : y(t, ũ) ∈ T } if y(t, u(t)) ∈ T for some t,

+∞ otherwise,
(2.16)

where ũ ∈ U and y(·, u(·)) denotes the solution of (1.2) depending on the control.
Furthermore we assume a small-time local controllability assumption as formulated
in [13, p. 216]. The minimum time problem is defined as

T (x) = inf
ũ∈U

t(x, ũ)

and the minimum time function can be characterized as the viscosity solution of

(2.17)
sup
u∈U

{

−f(x, u)T∇v(x)
}

= 1 in R \ T ,

v(x) = 0 on ∂T ,

where R are all points in the state space for which the time of arrival is finite.

We consider the dynamics

(2.18) f(x, u) =

(

u1

u2

)

, U = {u ∈ R
2 : ‖u‖2 ≤ 1}, x ∈ R

2,

which leads to an equation of eikonal type. For this problem we have a direct relation
between the direction of the control u and the identification of the arrival point in the
state space; for instance, all the arrival points in the first quadrant will correspond
to controls belonging to the set U{1,2} = {u ∈ U | 0 ≤ u1 , 0 ≤ u2 }. It is possible to
express the interpolation operator (1.3) for given node x piecewise as

(2.19) I[V ](x+ hf(x, u)) = II [V ](x+ hf(x, u))

with x + hf(x, u) in quadrant UI . For every quadrant we obtain control-dependent
formulas of the form

(2.20) II [V ](x+ hf(x, u)) = cIu1 + dIu2 + eI

with coefficients cI , dI , eI ∈ R.

3. Algorithms for solving minimization problems of the form (2.11). We
consider the following approaches:

a) Minimization by comparison over a finite subset Ufinite ⊂ UI .
b) First order primal-dual method: Chambolle-Pock algorithm, see [9].
c) Second-order method: Two different types of semismooth Newton methods

depending on the smoothness of the cost functional.
d) If the functional is of type (2.13), the controls are located on the sphere or

in the origin and can be found by a classical Newton method with a suitable
chosen initialization over the parameterized sphere.
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The minimization by comparison approach a) is broadly used in the literature. It
consists in choosing a finite subset Ufinite ⊂ U where the cost function is evaluated and
the minimum is selected among the corresponding values. Such a procedure induces a
different optimization paradigm, in the sense that the continuous nature of the control
space is replaced by a discrete approximation. If a parameter-dependent discretization
of the control set is considered, where errors with respect to the continuous set can
be estimated, the discretization has to be fine enough such that the error is negligible
compared to the errors introduced in the different discretization steps of the overall
scheme. Furthermore, accurate discretization of the control space are far from trivial
even in simple cases, as in the three-dimensional eikonal dynamics with U = {u ∈ R

3 :
‖u‖2 ≤ 1}, where a spherical coordinate-based discretization of the control introduces
a concentration of points around the poles. In contrast to this approach, we propose
several numerical algorithms for the treatment of problems of the form (2.11), which
preserve the continuous nature of the optimization problem at a similar computational
cost.

3.1. The smooth case: Cost functionals of type (2.12) and (2.13). In this
section we consider control constraints of the type U = {u ∈ R

m : ‖u‖2 ≤ 1}. To
solve the optimization problem for smooth cost functionals of type (2.12) and (2.13)
we present a first-order primal-dual algorithm and a semismooth Newton method.

3.1.1. Primal-dual algorithm. Here we assume that problem (2.11) can be
reformulated as

min
u∈Rm

F (u) + IK(u),(3.1)

where F is smooth, and convex and IK(u) is the indicator function of K = UI . This
fits in the setting presented in [9], where a primal-dual algorithm (also known as
Chambolle-Pock algorithm) is formulated, when using the same F , and by choosing
the mappings denoted by K and G in the reference by id and IK . We recall the
algorithm in the following.

Algorithm 1: Chambolle-Pock algorithm

Data: Choose n = 0, τ > 0, σ > 0, η > 0, ϑ ∈ [0, 1], (u0, y0) ∈ R
m × R

d,
ū0 = u0.

repeat

Compute xn+1 = (yn+1, un+1, ūn+1) by











yn+1 = (I + σ∂F ∗)−1(yn + σūn),

un+1 = (I + τ∂G)−1(un − τyn+1),

ūn+1 = un+1 + ϑ(un+1 − un).

Set n = n+ 1.

until ‖xn − xn−1‖Rd×Rm×Rm < η;

From identities from convex analysis, see [19], we have

(I + τ∂G)−1(y) = argmin
u∈Rm

{‖u− y‖22
τ

+ IK(u)

}

= PK(y),(3.2)

u− (I + τ∂F )−1(u) = τ

(

I +
1

τ
∂F ∗

)−1
(u

τ

)

,(3.3)
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where PK denotes the projection on K. From (3.3) we have with σ = 1
τ

(I + σ∂F ∗)−1(σu) = σu− σ

(

I +
1

σ
∂F

)−1

(u),

and hence

(I + σ∂F ∗)−1(u) = u− σ

(

I +
1

σ
∂F

)−1 (
1

σ
u

)

.

In the case I = {1, 2} the projection PK is given by

PK : Rm → R
m, PK(p) =

max(0, p)

max(1, ‖max(0, p)‖2)
.(3.4)

This leads to Algorithm 2.

Algorithm 2: Chambolle-Pock algorithm (variant)

Data: Choose n = 0, τ > 0, σ > 0, η > 0, ϑ ∈ [0, 1], (u0, y0) ∈ R
m × R

d,
ū0 = u0.

repeat

Compute xn+1 = (yn+1, un+1, ūn+1) by



















yn+1 = yn + σūn − σ

(

I +
1

σ
∂F

)−1
(yn

σ
+ ūn

)

,

un+1 = PK(un − τyn+1),

ūn+1 = un+1 + ϑ(un+1 − un).

Set n = n+ 1.
until ‖xn − xn−1‖Rd×Rm×Rm < η;

If (I + 1
σ
∂F )−1 is linear, the first step can be reformulated as

yn+1 =

(

I +
1

σ
∂F

)−1

∂F
(yn

σ
+ ūn

)

.

Remark 3.1. Since the cost functional has only quadratic and linear terms it
is more convenient to use a linear interpolant rather than a bilinear one in the semi-
Lagrangian scheme.This does not produce any bilinear terms. If F has a bilinear term
it is very challenging to compute (I + 1

σ
∂F )−1 in higher dimensions, since then ∂F

depends nonlinearly on u. �

3.2. Semismooth Newton method. The Chambolle-Pock algorithm is a first
order algorithm which requires convexity of the functional. We refer to [23] for an
extension to a class of non-convex problems. As a second algorithm that we propose
we turn to the semismooth Newton method which does not rely on global convexity.
We recall some main aspects of semismooth functions, cf. [21].

Definition 3.2 (Semismoothness). Let V ⊂ R
µ be nonempty and open, µ ∈ N.

Then function f : V → R
µ is semismooth at x ∈ V if it is Lipschitz continuous near

x and if the following limit exists for all s ∈ R
ν , ν ∈ N:

lim
M∈∂f(x+τd)

d→s,τ→0+

Md.



10 Dante Kalise, Axel Kröner, Karl Kunisch

Furthermore, there holds the following chain rule.
Lemma 3.3 (Chain rule). Let V ⊂ R

µ and W ⊂ R
ν be nonempty open sets,

g : V → W be semismooth at x ∈ V , and h : W → R
η, η ∈ N, be semismooth at g(x)

with g(V ) ⊂ W . Then the composite map f := h ◦ g : V → R
η is semismooth at x.

Moreover,

f ′(x, ·) = h′(g(x), g′(x, ·)).

To set up a semismooth Newton algorithm for (2.11) we proceed as follows. For
simplicity, we focus on the case I = {1, 2}. The first-order optimality condition for
cost functionals of type (2.12) and (2.13) can be formulated as

u = PK(u− ϑ∇F (u)) ∀ϑ > 0(3.5)

for u ∈ R
m, F = F2 or F = FMT with projection PK as in (3.4). We introduce

p = y−ϑ∇F (y) and choose ϑ such that ϑ∇F (u) is of the same scale as y and rewrite
(3.5) as

u− PK(p) = 0,

u− ϑ∇F (u)− p = 0.

Setting β = max(1, ‖max(0, p)‖2) we define

E(u, p, β) =





βu−max(0, p)
u− ϑ∇F (u)− p

β −max(1, ‖max(0, p)‖2)



 .

Now the optimality condition can be formulated as

E(z) = 0

with z = (u, p, β). Then we set up a semismooth Newton method as presented in
Algorithm 3.

Algorithm 3: Semismooth Newton algorithm

Data: Choose n = 0, initialization z0 ∈ UI × R
m × R, η > 0.

repeat

Solve the Newton equation for δz ∈ UI × R
m × R given by









βnI Dχpn≥0
yn

I − ϑ∇2F (un) −I 0

0 χmn≥1
−pT

nDχpn≥0

mn
1









δz = −E(zn)(3.6)

(with matrix Dχpn≥0
= diag(χpn≥0) and mn = ‖max(0, pn)‖2).

Update

zn+1 = zn + δz.(3.7)

Set n = n+ 1.
until ‖zn − zn−1‖Rm×Rm×R < η;
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We address solvability of (3.6).
Lemma 3.4. Set M = I − ϑ∇2F (un) and q+ = max(0, q) for q ∈ R

m. The

Newton matrix is regular if one of the following two conditions is satisfied:

1. mn < 1: βn 6= 0,
(

1
βn

MDχpn≥0 + I
)

regular.

2. mn ≥ 1: βn 6= 0,

I − 1

βn

M regular(3.8)

and

{

− 1
mn

(p+)T (I − 1
βn

M+)−1
(

−M+ u+
n

βn
+ z+4 )

)+

+ 1

}

6= 0, where the

components of p = (p+, p−) are ordered with respect to active and inactive

sets and M+ denotes the submatrix corresponding to p+.

Remark 3.5. For βn ≈ 1 condition (3.8) is closely related to the regularity of
the Hessian of F . Moreover, if we set K = supu∈U{1,2}

‖∇2F (u)‖ and assume that βn

are bounded away from 1 (i.e. βn ≥ κ > 1) then the choice ϑ < κ−1
K

implies (3.8). �

Proof of Lemma 3.4. The two cases are considered separately. For mn < 1, the
Newton-Matrix is given by

DE(zn) =





βnI Dχpn≥0
un

M −I 0
0 0 1



 .

The regularity of the matrix follows from the regularity of

(

βnI Dχpn≥0

M −I

)

and hence

of
(

1
βn

MDχpn≥0 + I
)

.

For mn ≥ 1 the Newton-matrix is given by

DE(zn) =





βnI Dχpn≥0
un

M −I 0

0 −(p+)T

mn
1





and leads to the Newton equations

βnδu− δp+ + δβun = z1,(3.9)

Mδu− δp = z2,(3.10)

− 1

mn

(p+)T δp+ + δβ = z3(3.11)

for suitable z1, z2 ∈ R
m, z3 ∈ R independent of (δu, δp, δβ). From the first and second

equations we obtain

− 1

βn

M(δp+ − δβun) + δp = z4

for z4 ∈ R
m. Without loss of generality we assume that the components of δp =

(δp+, δp−) are ordered with respect to active and inactive sets. Then we have

(I − 1

βn

M+)δp+ + δβM+u+
n

βn

= z4(3.12)
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and therefore

δp+ = δβ(I − 1

βn

M+)−1

(

−M+u+
n

βn

+ z+4

)

.(3.13)

With (3.11) we obtain

{

− 1

mn

(p+)T (I − 1

βn

M+)−1

(

−M+u+
n

βn

+ z+4 )

)+

+ 1

}

δβ = β̄.(3.14)

�

Theorem 3.6. Let ū be a strict local minimizer of (2.11). Under the assump-

tions of Lemma 3.4 the semismooth Newton method converges locally superlinearly or

terminates after a finite number of steps at ū.

Proof. The operator E is semismooth and is as a composition of Lipschitz contin-
uous functions again Lipschitz continuous. Furthermore from Lemma 3.4 we obtain
the boundedness of the inverse derivative in a neighbourhood of ū.

Consequently, the assertion follows from [21, p. 29] and [15, p. 220, Thm. 8.3].

3.3. Approach for cost functionals of type (2.13). To treat the problem
(2.11) for cost functionals of type (2.13) we present an alternative approach. We
show that all possible minimizers are located on the sphere or in the origin; cf. also
the discussion in [10] where a linear functional is considered. To minimize over the
sphere we parameterize the sphere by polar coordinates and consider the restriction
of the functional on the sphere. There the minimizer can be found by applying a
classical Newton method.

Lemma 3.7. For control problems (2.11) with cost functional (2.13) for r = 0 all

minimizers are located either on the sphere or in the origin.

Proof. For simplicity we consider the case (2.11) for d = 2 and I = {1, 2}. Let
F (u) = du1 + bu1u2 + eu2, u ∈ R

2, d, b, e ∈ R. Then we have

∇F (u) =

(

d+ bu2

e+ bu1

)

, ∇2F (u) =

(

0 b

b 0

)

.

This implies, we have for b 6= 0 a saddle point with eigenvalues ±1 in

u1 = −e

b
, u2 = −d

b
.

For b = 0 the minimum is reached in u = (0, 0)T . Consequently, all minimizers are
on the boundary of ∂U{1,2}. However, since the restriction of the bilinear functional
to the axes is linear the assertion follows immediately.

In two dimensions the functional F restricted to the sphere is given by

F̃ (ϕ) = a cos(ϕ) +
b

2
sin(2ϕ) + c sin(ϕ), 0 ≤ ϕ ≤ π

2
.

3.4. The non-smooth case: Cost functionals of type (2.14) and (2.15).
In this section we consider two types of control constraints, box constraints as well as
Euclidean constraints. Finally, we also present a splitting approach.
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3.4.1. Semismooth Newton in case of Euclidean norm constraints. In
this section we restrict the consideration to equations of eikonal type and present
the approach for a two dimensional problem. Therefore the control set is given by
U = {u ∈ R

2 : ‖u‖2 ≤ 1}. Let us consider the equivalent problem formulation

min
u∈R2

E(u) + h(u),(3.15)

where E : R2 → R is smooth and

(3.16) h(u) =

{

α(|u1|+ |u2|), if u ∈ UI ,
∞, if u 6∈ UI .

The optimality condition for the nonsmooth problem (3.15) is given by

0 ∈ ∇E(u) + ∂h(u) ,

where ∂h denotes the subdifferential of the convex function h. Setting q = −∇E(u)
the optimality condition can be equivalently written as

(3.17)

{

q = −∇E(u),

q ∈ ∂h(u).

With the convex conjugate we obtain equivalently

(3.18)

{

q = −∇E(u),

u ∈ ∂h∗(q) ,

with

h∗(q) = sup
v∈UI

(v · q − h(v)).

Note that on UI

v · q − h(v) = (q1 − α1)v1 + (q2 − α2)v2

with

α1 = sgn(L1)α, α2 = sgn(L2)α(3.19)

and

L1 =

{

1, if I = {1, 2} or I = {1},
−1, if I = {2} or I = ∅, , L2 =

{

1, if I = {1, 2} or I = {2},
−1, if I = {1} or I = ∅.

(3.20)

For fixed q and v ∈ UI we define

l(v) = (q1 − α1)v1 + (q2 − α2)v2.

The sup of this linear function is attained on ∂UI . We distinguish four cases

sgn(q1 − α1) 6= sgn(L1) ∧ sgn(q2 − α2) 6= sgn(L2) : h∗
L1,L2

(q) = 0,

sgn(q1 − α1) = sgn(L1) ∧ sgn(q2 − α2) 6= sgn(L2) : h∗
L1,L2

(q) = q1 − α,

sgn(q1 − α1) 6= sgn(L1) ∧ sgn(q2 − α2) = sgn(L2) : h∗
L1,L2

(q) = q2 − α,

sgn(q1 − α1) = sgn(L1) ∧ sgn(q2 − α2) = sgn(L2) :

h∗
L1,L2

(q) = sup
ϕ∈Λ

(q1 − α1) cosϕ+ (q2 − α2) sinϕ ,
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with

Λ =















0 ≤ ϕ ≤ π
2 if I = {1, 2},

π
2 < ϕ ≤ π if I = {2},
π < ϕ ≤ 3π

2 if I = ∅,
3π
2 < ϕ ≤ 2π if I = {1}.

(3.21)

In the following for simplicity we only consider the problem for I = {1, 2}. From
the first order condition we obtain the following relation between q and ϕ

tanϕ =
q2 − α

q1 − α
> 0.(3.22)

Summarizing we have

(3.23) h∗(q) =



















(q1 − α) cosϕ+ (q2 − α) sinϕ, if q1, q2 ≥ α,

q2 − α, if q1 < α, q2 > α,

0, if q1, q2 < α,

q1 − α, if q1 > α, q2 < α ,

with ϕ given by (3.22) and for the generalized derivative

(3.24) ∂h∗(q) =























(w1(q), w2(q))
T , if q1, q2 > α,

(0, 1)T , if q1 < α, q2 > α,

(0, 0)T , if q1 < α, q2 < α,

(1, 0)T , if q1 > α, q2 < α

where

(w1(q), w2(q)) = ∇((q1 − α) cosϕ+ (q2 − α) sinϕ) .

To set up a semismooth Newton method we introduce a piecewise affine, contin-
uous regularization of the gradient in a ε-tube around the discontinuity and define

(3.25)

(∂h∗)ε(q) =















































































(w1(q), w2(q))
T , if q1, q2 > α+ ε,

(0, 1)T , if q1 < α, q2 > α+ ε,
(

0,
q2 − α

ε

)T

, if q1 < α, α < q2 < α+ ε,

(0, 0)T , if q1 < α, q2 < α,
(

q1 − α

ε
, 0

)T

, if α < q1 < α+ ε, q2 < α,

(1, 0)T , if q1 > α+ ε, q2 < α,

r

ε
(w1(qp), w2(qp))

T , if α < q1, α < q2, and ‖q − (α, α)T ‖2 ≤ ε,

where

r = ‖q − (α, α)‖2 , θ = tan−1

(

q2 − α

q1 − α

)

, and qp = ε(cos(θ), sin(θ)) + (α, α).
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The semismooth Newton method is presented in Algorithm 4.

Algorithm 4: Semismooth Newton algorithm

Data: Choose n = 0, initialization z0 = (q0, u0) ∈ R
2 × UI , η > 0.

repeat

Solve the Newton equation for δz ∈ R
2 × UI given by

(

I ∇2E(un)
−D(∂h∗)ε(qn) I

)

δz =

(

qn +∇E(un)
−(∂h∗)ε(qn) + un

)

,(3.26)

where D(·) denotes the Newton derivative.

Update

zn+1 = zn + δz.(3.27)

Set n = n+ 1.
until ‖zn − zn−1‖R2×R2 < η;

We can conclude the following theorem.
Theorem 3.8. Let u ∈ R

2 be a strict local minimum of (3.15). If

I −∇2E(un)D(∂h∗)ε(qn)(3.28)

is regular for all k, the semismooth Newton converges locally superlinearly.

Proof. We introduce the piecewise affine function

G : R2 × R
2 → R

2 × R
2, G(q, u) = (qn +∇E(u),−(∂h∗)ε(q) + un).

G is semismooth and together with condition (3.28) we get directly the regularity of
the Hessian in the Newton equation given in (3.26). From both conditions we derive
locally superlinear convergence as in Theorem 3.6.

3.4.2. Semismooth Newton in case of box constraints. Now, let the con-
trol set be given by U = {u ∈ R

m : ua ≤ u ≤ ub} with ua ≤ 0 ≤ ub, ua, ub ∈ R
2. As

in the previous section, we consider a cost functional of the type

min
u∈R2

E(u) + h(u),(3.29)

where E is smooth and

(3.30) h(u) =

{

α(|u1|+ |u2|), if u ∈ UI ,
∞, if u 6∈ UI .

Proceeding as in the previous section we distinguish four cases

sgn(q1 − α1) 6= sgn(L1) ∧ sgn(q2 − α2) 6= sgn(L2) : h∗
L1,L2

(q) = 0,

sgn(q1 − α1) = sgn(L1) ∧ sgn(q2 − α2) 6= sgn(L2) : h∗
L1,L2

(q) = |q1 − α1|ua,

sgn(q1 − α1) 6= sgn(L1) ∧ sgn(q2 − α2) = sgn(L2) : h∗
L1,L2

(q) = |q2 − α2|ub,

sgn(q1 − α1) = sgn(L1) ∧ sgn(q2 − α2) = sgn(L2) : h∗
L1,L2

(q) = |q1 − α1|ua

+ |q2 − α2|ub ,
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with α1, α2 as in (3.19) and L1, L2 as in (3.20). Further, there holds

(3.31) ∇h∗(q) =























(sgn(q1)ua, sgn(q2)ub)
T , if q1 > α, q2 > α,

(0, sgn(q2)ub)
T , if q1 < α, q2 > α,

(0, 0)T , if q1 < α, q2 < α,

(sgn(q1)ua, 0)
T , if q1 > α, q2 < α ,

for I = {1, 2} and accordingly for the other cases. To set up a semismooth Newton
method we regularize the first component of the gradient with ramps of width ε at
|q1| = α and the second component with ramps at |q2| = α. The overall algorithm
has the same form as the semismooth Newton method in (3.26).

By a similar consideration as in the previous section Theorem 3.8 holds also for
the semismooth Newton method described above.

3.4.3. A splitting approach. To treat the cost functionals (2.14) and (2.15)
with ℓ1-terms we can reformulate the problem without non-differentiable terms by
doubling the number of variables. This is illustrated for the two dimensional case
with two dimensional control (u, v) ∈ UI . For a scalar z ∈ R we define z+ =
max(0, z), z− = min(0, z) (in particular z+z− = 0 and |z| = z+ − z−). Then problem
(2.11) with cost functional (2.15) is given by























































min
u+,u−,v+,v−

au2
+ + au2

− + cv2+ + cv2− + bu+v+ − bu−v+ − bu+v− + bu−v−

+ l(u+ − u−) + s(v+ − v−) + d(u+ + u−) + e(v+ + v−) + r, s.t.

gi + bi

(

u+ − u−
v+ − v−

)

≥ 0,

u+u− = 0, v+v− = 0,

u+ ≥ 0, v+ ≥ 0, u− ≥ 0, v− ≥ 0,

‖u‖22 + ‖v‖22 ≤ 1, u, v ∈ UI

with g chosen as in (2.4) and bi as the columns of B. This problem formulation can
be simplified, by distinguishing four cases depending on I; for example, for U{1,2} we
obtain the equivalent problem

(3.32)



































min
u+,v+

au2
+ + cv2+ + bu+v+ + (l + d)u+ + (s+ e)v+ + r, s.t.

gi + bi

(

u+

v+

)

≥ 0, i = 1, 2,

u+ ≥ 0, v+ ≥ 0,

u2
+ + v2+ ≤ 1.

Problem (3.32) can be solved by using algorithms of Section 3.1.

4. Numerical examples. In this section we present a set of numerical tests
aiming at studying the performance and accuracy of the algorithms presented in the
previous sections. We begin by assessing the performance of the proposed numerical
optimization routines as a separate building block.
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4.1. Preliminary tests. We consider a generic two-dimensional minimization
problem of the form

(4.1) min
u∈U

1

2
‖u‖22 + L · u+ γ‖u‖1

subject to Euclidean norm or box constraints, i.e. U = {u ∈ R
2 | ‖u‖2 ≤ 1} or

U = {u ∈ R
2 | 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1}, respectively. Results presented in Tables 4.1,

4.2 and 4.3 show the different performance scenarios found under different costs and
constraints. For every setting we can observe that the minimization by the comparison
algorithm (see Section 3) requires very fine discretizations of the control variable
(and thus, higher CPU time) to achieve similar error levels as the optimization-based
counterpart.

Algorithm Tolerance Iterations CPU time ‖ · ‖2 error

Chambolle-Pock 1E-4 9 7.3E-5 [s] 4.31E-5
Semismooth Newton 1E-4 5 1.3E-2 [s] 7.74E-9

Comparison (1E4 evaluations) – – 1.1E-3 [s] 1.6E-2
Comparison (2E3 evaluations) – – 6.6E-4 [s] 4.1E-2

Table 4.1: Performance tests for an ℓ2-cost (i.e. γ = 0) with Euclidean norm constraint.

Algorithm Tolerance Iterations CPU time ‖ · ‖2 error

Semismooth Newton 1E-4 101 4.53E-3 [s] 1.51E-3
Comparison (4E4 evaluations) – – 5.18E-3 [s] 5.77E-3
Comparison (2E5 evaluations) – – 2.08E-2 [s] 2.80E-3

Table 4.2: Combined ℓ2- and ℓ1-cost (γ = 0.1) with box constraint.

Algorithm Tolerance Iterations CPU time ‖ · ‖2 error

Semismooth Newton 1E-4 58 1.47E-2 [s] 1.23E-3
Comparison (2E3 evaluations) – – 8.56E-4 [s] 4.18E-2
Comparison (1E5 evaluations) – – 1.20E-2 [s] 1.47E-2

Table 4.3: Combined ℓ2- and ℓ1-cost (γ = 0.1) with Euclidean norm constraint.

4.2. Interplay with the semi-Lagrangian scheme. Having embedded the
minimization routines within a semi-Lagrangian scheme, we show in Fig. 4.1 the
evolution of the average iteration count per gridpoint (at every fixed point iteration
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of the semi-Lagrangrian scheme), for both a minimum time and an infinite horizon
optimal control problem subject to eikonal dynamics. Note the difference in the
evolution of the subiteration count depending on the considered control problem. In
the minimum time problem nodes that have not received information propagating
from the optimality front are still minimized with irrelevant information until they
are reached by the optimality front, whereas in the infinite horizon case “correct”
information is available for every node from the first iteration due to the presence
of a running cost. In this latter case, the impact of the available information from
the previous semi-Lagrangian iteration is similar to a warm start of the optimization
routine.
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Fig. 4.1: Subiteration count for 2D control problems with eikonal dynamics

4.3. Infinite horizon problems with ℓ2 running cost. We present three dif-
ferent numerical tests for infinite horizon optimal control problem with cost functional
and running cost given by

J(u, x) =

∫ ∞

0

l(x(s), u(s))e−λsds , and l(u, x) =
1

2
‖x‖22 +

γ2

2
‖u‖22 , γ2 > 0, λ > 0 .

As common setting, the fixed point iteration is solved until

‖V n+1 − V n‖ ≤ 1

5
k2 , n = 1, 2, 3, . . . ,

where k stands for the space discretization parameter and the stopping tolerance for
the inner optimization routine is set to 10−4. Further common parameters are λ = 0.1
and γ2 = 2, and specific settings for every problem can be found in Table 4.4.

Test Ω U h

Test 1 [−1, 1]2 ‖u‖2 ≤ 1
√
2
4 k

Test 2 [−1, 1]3 ‖u‖2 ≤ 1 1
2k

Test 3 [−1, 1]3 ‖u‖∞ ≤ 0.3 1
5k

Table 4.4: Parameters for Tests 1-3.
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Test 1: 2D eikonal dynamics. In this test we consider eikonal dynamics of
the form

(4.2) f(x, u) = (u1, u2)
T , ‖(u1, u2)‖2 ≤ 1 .

We study the accuracy and performance of the semi-Lagrangian scheme with dif-
ferent minimization routines: discretization of the control set and minimization by
comparison, a semismooth Newton method given in Algorithm 3, and the approach
by Chambolle and Pock given in Algorithm 2. In order to make a fair study of the
different routines, we choose the discrete set of controls for the comparison algorithm
such that the CPU time for the semismooth Newton method and the Chambolle-Pock
algorithm is almost the same. Table 4.5 shows errors in both the value function and
in the optimal control between the exact solutions v and u and their numerical ap-
proximations Vh and Uh for the different schemes. Errors are computed with respect
to the exact solution of the Hamilton-Jacobi-Bellman equation, which is not readily
available in the literature. Since it is useful for numerical investigations, it is provided
in Appendix B. The results show that we have similar CPU time of the approaches
and independently of the meshsize, the optimization-based schemes yield more accu-
rate approximations of the value function and the associated optimal control than the
approach based on comparison. Further results are shown in Fig. 4.2, where we also
consider nonhomogeneous eikonal dynamics

(4.3) f(x, u) = (1 + χx2>0.5(x))(u1, u2)
T , ‖(u1, u2)‖2 ≤ 1

with χx2>0.5(x) corresponds to the indicator function of the set {x = (x1, x2) |x2 >

0.5}. The figure shows that both approaches, the SL-scheme with a semismooth inner
optimization block and the one with a comparison-based routine, lead to very similar
value functions. This is clearly not the case for the optimal control fields depicted
in rows 2 and 3 of Fig. 4.2. Even by a post-processing step it would be difficult to
obtain the results in the third row from those in the second row.

k = 0.05, (402 DoF) k = 0.025, (802 DoF)

Algorithm CPU time ‖v − Vh‖1 ‖u− Uh‖1 CPU time ‖v − Vh‖1 ‖u− Uh‖1

Comparison 63.52 [s] 3.12E-2 3.84E-2 5.76E2 [s] 1.96E-2 1.74E-2
Semismooth Newton 77.25 [s] 2.62E-2 1.61E-2 7.27E2 [s] 1.36E-2 7.21E-3
Chambolle-Pock 63.05 [s] 2.60E-2 1.42E-2 5.77E2 [s] 1.36E-2 6.83E-3

Table 4.5: Infinite horizon control of 2D eikonal dynamics. CPU time and errors for a
semi-Lagrangian scheme with different minimization routines. The comparison algorithm
was run with a discrete set of 1280 control points in every node.

Test 2: 3D eikonal dynamics. In order to illustrate that our approach can
be extended to higher dimensions, we consider the infinite horizon optimal control of
three dimensional eikonal dynamics

f(x, u) = (u1, u2, u3)
T , ‖(u1, u2, u3)‖2 ≤ 1 .
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Fig. 4.2: Infinite horizon control with 2D eikonal dynamics. Left: continuous dynamics.
Right: discontinuous dynamics.

Errors and CPU time are shown in Table 4.6. Since the values for the semismooth
Newton and the Chambolle-Pock algorithms are similar, we only include the data
for this latter one. With the Chambolle-Pock algorithm we obtain more accurate
solutions of the control field for a similar amount of CPU time as the comparison
approach.

Test 3: Triple integrator with two control variables. In this test the
dynamics are given by a triple integrator with two control variables subject to box
constraints

f(x, u) = (x2, x3 + u1, u2)
T , |u1| ≤ a, |u2| ≤ b, a, b ∈ R.
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k = 0.1, (203 DoF) k = 0.05, (403 DoF)

Algorithm CPU time ‖v − Vh‖1 ‖u− Uh‖1 CPU time ‖v − Vh‖1 ‖u− Uh‖1

Comparison 93.76 [s] 2.49E-2 2.46E-2 2.89E2 [s] 1.02E-2 1.89E-2
Chambolle-Pock 97.25 [s] 9.92E-3 2.07E-2 2.01E2 [s] 5.66E-3 1.22E-2

Table 4.6: Infinite horizon control of 3D eikonal dynamics. CPU time and errors for a
semi-Lagrangian scheme with different minimization routines. The comparison algorithm
was run with a discrete set of 5120 control points.

The purpose of this example is to stress that the minimization strategy that we have
introduced can be also applied to non-eikonal dynamics, where the correspondence
between octants in the state space and the control field is not trivial. For the sake of
completeness the control space decomposition procedure for this example can be found
in Appendix A. In this particular case, every octant will have associated a different
rectangular sector in the control space for its arrival points. Results for the value
function, optimal controls and trajectories are shown in Fig. 4.3. In the second row
of this figure, we observe distinct differences between the optimal controls obtained
from the Chambolle-Pock and comparison-based algorithms. These differences in the
control lead to different approximated steady states as it can be seen in the left of the
second row of Fig. 4.3. To highlight also the effect of closed-loop control we carried
out an experiment with additive structural and output noise. In the third row of
Fig. 4.3, the resulting states from open and closed-loop control can be compared.

4.4. Infinite horizon problems with combined ℓ2 and ℓ1-costs. We present
two numerical tests for infinite horizon optimal control problems with cost function
and running cost given by

J(u, x) =

∫ ∞

0

l(x(s), u(s))e−λsds ,

l(u, x) =
1

2
‖x‖22 +

γ2

2
‖u‖22 + γ1‖u‖1 , γ2 > 0, γ1 > 0, λ > 0 .

The stopping rule for the fixed point iteration is defined in the same way as in the
previous set of examples. All the optimization-based routines have been solved with
a semismooth Newton method as the inner block, with a regularization parameter
ε = 1e− 3. Further common parameters are λ = 0.1 and γ2 = 2, and specific settings
for every problem can be found in Table 4.7.

Test Ω U h k

Test 4 [−1, 1]2 ‖u‖2 ≤ 1
√
2
4 k 0.025

Test 5 [0, 2π]3 ‖u‖∞ ≤ 0.3 0.2k 0.2

Table 4.7: Parameters for Tests 4-5.
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Fig. 4.3: Triple integrator with two controls, numerical results with k = 0.05. Top: different
isosurfaces. Middle: differences in the optimal control lead to different trajectories. Bottom:
the feedback approach leads to robustness with respect to noise in the dynamics.

Test 4: 2D eikonal dynamics. This test considers the same two dimensional
dynamics as in Test 1, the only difference being the inclusion of an ℓ1-term in the
cost functional. For the inner optimization block we apply the semismooth Newton
method presented in Algorithm 4. Results are shown in Fig. 4.4, where differences
in the shape of the value function can be observed as the γ1 weight increases. In the
second row of Fig. 4.4, the effect of sparsity on the first control component can be
seen from the fact that it is identically zero in a band around the origin. Moreover,
the width of the band increases with γ1. As for the value function, introducing the
ℓ1-term breaks its radially symmetric structure, as it is shown in the first row of
Fig. 4.4.

Test 5: 3D car model. In our last test, the dynamics are given by a nonlinear
3D car model with two control variables:

f(x, u) = (u1 cos(x3), u1 sin(x3), u2)

with u1 ∈ [−ω1 , ω1], and u2 ∈ [−ω2, ω2], ω1 > 0, ω2 > 0. For this problem we imple-
ment the semismooth Newton algorithm with box constraints introduced in Section
3.4.2. Results are shown in Fig. 4.5. The first row shows same isovalues for different
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Fig. 4.4: Sparse control of eikonal dynamics. Top: inclusion of an ℓ1-cost breaks the radially
symmetric structure of the solution. Bottom: the sparsity of the optimal control translates
into a zero band around of the origin, depending on the weight γ1.

costs. The addition of an ℓ1-term shrinks the region of a given isovalue. The second
and third rows depict the effect of sparsity in both control variables, creating regions
of zero action. A direct consequence of this can be seen at the bottom of Fig. 4.5,
where the inclusion of the additional ℓ1-cost generates optimal trajectories which do
not reach the origin due to the interplay between the control cost and the discount
factor of the optimal control problem.

Concluding remarks. We have presented a numerical approach for the solution
of HJB equations based on a semi-Lagrangian discretization and the use of different
local minimization strategies for the approximation of the corresponding numerical
Hamiltonian. The numerical results show a more accurate resolution of the optimal
control field at a similar computational cost as the currently used schemes. Further-
more, the proposed approach can be also adapted to treat non-differential costs such
as ℓ1-penalizations on the control. Since the numerical approximation of the Hamilto-
nian constitutes one building block within the construction of approximation schemes
for HJB and related equations, the idea of using local minimization techniques can be
conveniently recast in similar problems, such as front propagation problems and dif-
ferential games, and in related approximation techniques, like fast marching schemes,
policy iteration methods and high-order approximations.

Appendix A: Decomposition of the control space for Test 3. We make
an explicit presentation of the decomposition of the control space of Test 3. The
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dynamics is given by

f(x, u) = (x2, x3 + u1, u2) , |u1| ≤ a, |u2| ≤ b, a, b ∈ R.

For a given departure point xd = (xd
1, x

d
2, x

d
3) ∈ R

3 and a sufficiently small h, we want
to identify a relation between subsets UI of the control space U = [−a, a] × [−b, b]
and the location of the corresponding arrival points

xd + h(xd
2, x

d
3 + u1, u2) , (u1, u2) ∈ UI .

In the three-dimensional case, the control set U can be decomposed into at most eight
disjoint subsets, one per octant with

U =
⋃

I⊂W

UI

for W = {1, 2, 3}. Since every octant defines a unique linear interpolant, we solve
eight different minimization problems, and then compute the global nodal minimizer
by comparison. For instance, let us consider the sector

Q{1,2,3} = {(x1, x2, x3) |xd
1 ≤ x1, x

d
2 ≤ x2, x

d
3 ≤ x3, (x1−xd

1)+(x2−xd
2)+(x3−xd

3) ≤ k} ,

where the evaluation of the arrival point is defined by the linear interpolant I{1,2,3}
depending on the points xd, xd+(k, 0, 0), xd+(0, k, 0), and xd+(0, 0, k). The subset
U{1,2,3} related to this interpolant reduces to

U{1,2,3} = {(u1, u2) ∈ U |xd
3 + u1 ≥ 0, u2 ≥ 0} .

Note that for this definition to be meaningful, we need to assume that xd
2 ≥ 0,

otherwise U{1,2,3} = ∅. Also note that the condition (x1−xd
1)+(x2−xd

2)+(x3−xd
3) ≤ k

is omitted by assuming a sufficiently small h ensuring it. The next subset U{2,3} relates
to the sector

Q{2,3} = {(x1, x2, x3) |xd
1 ≥ x1, x

d
2 ≤ x2, x

d
3 ≤ x3, −(x1−xd

1)+(x2−xd
2)+(x3−xd

3) ≤ k} ,

and is given by

U{2,3} = {(u1, u2) ∈ U |xd
3 + u1 ≥ 0, u2 ≥ 0} .

Note that U{1,2,3} ≡ U{2,3}, however, U{2,3} is nonempty only when xd
2 ≤ 0. Therefore,

for a given departure point, depending on the coordinate xd
2, only one of these two

subsets will be active with arrival points in different sectors Q{1,2,3} or Q{2,3} (with
different interpolation data). In a similar way, the remaining six subsets can be
obtained. By assuming a linear control term, the identification of the control subsets
is simple, as it will only require the resolution of linear inequalities where the departure
point enters as a fixed data.

Appendix B: Exact value function for Test 1. The exact value function
for the infinite horizon optimal control problem with eikonal dynamics in Test 1 is
derived. The HJB-equation has the form

(4.4) λv +max
u∈U

{

−uT∇v −
(‖x‖22

2
+

γ

2
‖u‖22

)}

= 0, x ∈ R
n, γ > 0,
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where U = {u ∈ R
2 | ‖u‖2 ≤ 1}, for which we want to obtain an explicit solution. If

1
γ
‖∇v‖2 < 1, then u∗ = − 1

γ
∇v provides a maximum for the expression in brackets,

and the HJB-equation becomes

λv +
1

2γ
‖∇v‖22 −

1

2
‖x‖22 = 0.

Switching to polar coordinates (r, ϕ) this equation can be expressed as

λv(r, ϕ) +
1

2γ
(vr(r, ϕ)

2 +
1

r2
vϕ(r, ϕ)

2)− r2

2
= 0,

and assuming that the solution is radially symmetric

λv(r) +
1

2γ
vr(r)

2 − r2

2
= 0.

The ansatz v1 = Ar2, leads to λAr2+ 2
γ
A2r2− r2

2 = 0 and hence A = γ
4 (
√

λ2 + 4
γ
−λ).

The resulting expression for v1 is the solution of (4.4), if (v1)r ≤ γ which results in

r ≤ 2((λ2 + 4
γ
)

1
2 − λ)−1 =: r. We note that v1(r) =

γ
2 r.

We turn to the case that 1
γ
‖∇v‖2 > 1. In this case the maximum in (4.4) is

achieved on the boundary of U at u∗ = − ∇v
‖∇v‖2

. Again we look for a radially sym-

metric solution in polar coordinates

(4.5) λv(r) + |vr(r)| −
r2

2
=

γ

2
.

Assuming that vr ≥ 0 we make the Ansatz v2(r) = ar2 + br + c + de−λr. Inserting
into (4.5) and comparing coefficients we obtain

v2(r) =
1

2λ
r2 − 1

λ2
r +

γ

2λ
+

1

λ3
+ de−λr.

Continuous concatenation with v1 at r implies that

(4.6) d = eλr
[(

γ

2
+

1

λ2

)

r − 1

2λ
r2 − γ

2λ
− 1

λ3

]

.

Note that this latter coupling yields that v(r) is a C1(R) function and therefore it is
also a classical solution of eq. (4.4). Summarizing we have

v(r) =















γ

4
(

√

λ2 +
4

γ
− λ)r2 for r ≤ r

1

2λ
r2 − 1

λ2
r +

γ

2λ
+

1

λ3
+ de−λr for r > r,

where d is given in (4.6).
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[17] A. Kröner, K. Kunisch, and H. Zidani, Optimal feedback control of the undamped wave equation

by solving a HJB equation, ESAIM: Contr. Optim. Calc. Var. (2014), to appear. doi:
10.1051/cocv/2014033.

[18] H. Maurer and G. Vossen, On L1-minimization in optimal control and applications to robotics,
Optim. Control Appl. Meth. 27 (2006), 301–321.

[19] R.T. Rockafellar, Convex analysis, Convex Analysis, Princeton University Press, 1997.
[20] J. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi equations:

Theory and algorithms, SIAM J. Numer. Anal. 41 (2003), no. 1, 325–363.
[21] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Opti-

mization Problems in Function Spaces, Society for Industrial and Applied Mathematics,
2011.

[22] C. Unrath, Nichtglatte Optimierungsstrategien in der dynamischen Programmierung, Diploma
thesis, Universität Bayreuth, 2006.

[23] T. Valkonen, A primal-dual hybrid gradient method for non-linear operators with applications

to MRI, Inverse Probl. 30 (2014), no. 5.
[24] T. Xiong, M. Zhang, Y.-T. Zhang, and C.-W. Shu, Fast sweeping fifth order WENO scheme

for static Hamilton–Jacobi equations with accurate boundary treatment, J. Sci. Comput.
45 (2010), no. 1-3, 514–536.



27

2

1

Isosurface V = 1, γ1 = 0, γ2 = 0.4

0

-1

-2-2

0

8

6

4

2

0

2

2

1

Isosurface V = 1, γ1 = 2, γ2 = 0.4

0

-1

-2-2

0

8

0

2

4

6

2

4

Optimal control u1 at θ = π with γ1 = 0, γ2 = .4

2
0

-2
-4-4

-2

0

2

1

-1

-0.5

0

0.5

4

4

Optimal control u1 at θ = π with γ1 = 2 and γ2 = .4

2
0

-2
-4-4

-2

0

2

1

0.5

0

-0.5

-1

4

5

Optimal control u2 at θ = π with γ1 = 0 and γ2 = .4

0

-54
2

0
-2

-4

1

0.5

0

-0.5

-1

5

Optimal control u2 at θ = π with γ1 = 2 and γ2 = .4

0

-54
2

0
-2

-4

0

-0.5

0.5

Time [s]
0 10 20 30 40

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Optimal trajectories and controls for initial position (0, 1, π/2)

x
2
(t) with l

1
 penalization

u
1
(t) with l

1
 penalization

x
2
(t) without l

1
 penalization

u
1
(t) without l

1
 penalization

Fig. 4.5: Sparse control of a 3D car model. Top: different isosurfaces with different ℓ1-cost.
Rows 2 and 3: effect of sparsity on the optimal control field. Bottom: optimal trajectories
with and without sparsity.


