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Spetral asymptotis for the Dirihlet-Laplae

problem in a domain with thin tube exluded

X.Claeys

∗†

Abstrat

We onsider a Laplae problem with Dirihlet boundary ondition in a three dimen-

sional domain ontaining an inlusion taking the form of a thin tube with small thikness

δ. We prove onvergene in operator norm of the resolvent of this problem as δ → 0, estab-
lishing that the perturbation indued by the inlusion on the resolvent is not greater than

O(| ln δ|−γ) for some γ > 0. We dedue onvergene of the eigenvalues of the perturbed

operator toward the limit operator.

1 Introdution

Analysis of singular perturbations of ellipti boundary value problems by inlusions of

small volume has reeived a lot of attention in the past deades due to its numerous

appliations to modeling and numerial simulation of multi-sale problems, and its possible

use in e�ient inverse problem [1, 2℄ or shape optimization [20℄ strategies.

For Laplae equation, many works of the existing literature have been dediated to

asymptoti analysis involving the presene of an inlusion that has small size in all di-

retions of spae (typially small balls), in the ase of either impenetrable (homogeneous

Dirihlet, Neumann, or Robin) or penetrable (transmission problem) boundary onditions.

Suh asymptotis have been provided for both 2-D and 3-D problems, in the ase of either

a single inlusion or many, see [19, 18, 17, 16, 10℄. The books [14, 9℄ are landmarks on

this type of problem.

As regards Laplae equation perturbed by a small inlusion that takes the form of a

thin tube, muh less work is available in the literature. Some works an be found in

the ase of a tube entered around a smooth losed ontour without self-interseting

point. The analysis of Laplae equation in 3-D with Neumann and Dirihlet boundary

ondition was provided in [5, 6℄ where the author onsiders either a tube entered at

a non-self-interseting smooth losed ontour, or a tube entered at a straight segment.

This analysis is re�ned and generalized to arbitrary dimensions in [15℄ and [14, Chap.12℄.

Similar results were established for aoustis and Helmholtz equation in [3, 7, 22℄.

It should be pointed out that, in the ase of a 3-D Laplae equation perturbed by a

thin elongated inlusion, the ases of the homogeneous Dirihlet or Robin boundary on-

dition lead to muh more hallenging analysis than the ase of Neumann or transmission

onditions: while Neumann/transmission onditions lead to rather standard asymptoti

onstrution, mathing of asymptotis in the Dirihlet/Robin ase leads to an ill-posed

1-D integral equation.
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On the other hand, asymptoti analysis of the Laplae problem with Dirihlet bound-

ary ondition has many important appliations in partiular in eletrial engineering and

antenna based eletri/eletroni devies, as it is ommonly taken as a rough model

for eletromagneti di�ration by perfetly onduting thin wires, see for example [11,

Chap.6℄. In this ontext, the study of eigenvalues is of partiular importane as it is re-

lated to resonane phenomena. Yet, in the ase of thin elongated inlusions with Dirihlet

boundary ondition, only Planida [21℄ has addressed this issue so far. In this referene, the

author establishes onvergene of eigenvalues in the ase where the inlusion is entered

around a smooth losed urve that does not self-intersets. However no expliit rate of

onvergene is provided.

In the present artile, we study Laplae equation with homogeneous Dirihlet ondition,

and the assoiated eigenvalue problem, perturbed by the presene of a small elongated

inlusion that takes the form of a thin tube. We establish onvergene in the operator

norm, of the resolvent of the perturbed problem toward the resolvent of the limit problem.

A �rst novel ingredient here ompared to previously established results onern the geo-

metrial on�gurations under onsideration that only require the inlusion to onentrate

around a parametrized urve. Contrary to pre-existing work, the present analysis does

not require the inlusion to be onneted, or admit any symmetry of revolution. The

limit urve onsidered here may admit self-rossing points whih, to our knowledge, has

never been investigated in the existing literature (at least in the ase of an homogeneous

Dirihlet boundary ondition). In addition, we establish a onvergene result (with error

estimates) for eigenvalues with expliit error estimate showing that the presene of an

elongated inlusion indues a shift of order O(| ln δ|−γ) of the eigenvalues, for some γ > 0.
The outline of the present artile is as follows. In Setion 2 we desribe in detail the

geometry under onsideration. In Setion 3 we introdue weighted δ-dependent norms

adapted to our analysis, and establish a stability property for the Laplae operator in

terms of these norms. The next setion is dediated to proving Hardy type inequalities

that will be neessary for the subsequent error estimates. In the last setion we derive an

upper bound for the di�erene, in operator norm, between the resolvents of the perturbed

problem and the limit problem.

2 Geometry under onsideration

We start by desribing in detail the geometrial setting under onsideration. Let Ω ⊂ R3

refer to a Lipshitz domain. Consider a C 1
-funtion γ : R 7→ Ω that is L-periodi for

some L > 0, and suh that 0 < α− ≤ |dγ
dz
(z)| ≤ α+, ∀z ∈ R for �xed onstants α± > 0.

Then we set Γ := γ(R), whih is a Lipshitz urve. We shall need to refer to the distane

funtion

d(x) := inf
y∈Γ

|x− y|. (1)

Then we onsider (Ξδ)δ>0 as any family of Lipshitz domains suh that there exists a

�xed onstant C > 0 independent of δ for whih

sup
x∈Ξδ

d(x,Γ) ≤ C δ. (2)

This ondition imposes that, as δ → 0, the sets Ξδ are more and more onentrated around

Γ. Changing the index parameter δ through multipliation by some fator if neessary,

we may assume that C < 1 in (2) without restriting generality. Then we denote

Ωδ := Ω \ Ξδ.
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The geometrial on�gurations desribed above may be used to onsider resonane prob-

lems in avities ontaining inlusions whose geometry is similar to wires. Note that we

do not require γ to be one-to-one over a period so that, under the assumptions above,

the urve Γ may self-interset. Note also that Ξδ do not need to be onneted and may

degenerate, as δ → 0, to only a part of Γ with tips. As a onsequene, the present setting

overs suh geometrial on�gurations as the ones presented in pitures below.

Figure 1 Three examples of geometrial on�gurations

overed by the analysis presented here.

3 Weighted Sobolev spaes

Given any bounded open Lipshitz domain ω ⊂ R3
, the set L2(ω) shall refer to the spae of

square integrable funtions over ω equipped with the pairing u, v 7→ (u, v)ω :=
∫

ω
u v dx

and the norm ‖u‖L2(ω) =
√

(u, u)ω . As usual, H1
0(ω) shall refer to the ompletion of

C ∞
0 (ω) := {ϕ ∈ C∞(R3), ϕ = 0 on R3 \ ω, supp(ϕ) bounded} for the norm ‖ϕ‖H1

0
(ω) :=

‖ϕ‖L2(ω) + ‖∇ϕ‖L2(ω). Finally H−1(ω) will refer to the topologial dual to H1
0(ω).

For a given parameter δ > 0 small enough, we are interested in studying the eigenvalues

of the operator Aδ : H
1
0(Ωδ) → H−1(Ωδ) de�ned by

〈Aδ(u), v〉 := (∇u,∇v)Ω ∀u, v ∈ H1
0(Ωδ). (3)

We shall ompare its eigenvalues with those of the limit operator A0 : H1
0(Ω) → H−1(Ω)

that is de�ned similarly but in a domain without any perturbation i.e. 〈A0(u), v〉 :=
(∇u,∇v)Ω ∀u, v ∈ H1

0(Ω).

To study these two operators, we need to introdue adapted δ-dependent weighted Sobolev
norms. These are not lassial weighted norms suh as those haraterizing Kondratiev's

spaes, see e.g. [13℄. The norms we onsider here involve δ-dependent logarithmi weights:

given a β ∈ R, and a Lipshitz open set ω ⊂ R2
, we de�ne

‖v‖2
V1

β,δ
(ω)

:= |v|2
V1

β,δ
(ω)

+ |v|2
V0

β,δ
(ω)

where |v|2V0

β
(ω) :=

∫

ω

| ln dδ(x)|
−2β |v(x)|2

|dδ(x) ln dδ(x)|2
dx

|v|2V1

β
(ω) :=

∫

ω

| ln dδ(x)|
−2β |∇v|2 dx

with dδ(x) := d⋆(x) + δ where d⋆(x) := min(d(x), e−1/2).

(4)

For δ > 0, β ∈ R �xed, the norm above is obviously equivalent to ‖ ‖H1(Ω). However

these norms "behave" di�erently as δ → 0. The norms (4) are spei�ally tailored for our

analysis.
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The ondition d⋆(x) ≤ e−1/2 ∀x ∈ Ω guarantees that |d⋆(x) ln d⋆(x)| ≤ |dδ(x) ln dδ(x)|
for all x ∈ Ω and for δ < e−1/2. On the other hand, reall that d is a distane funtion

to a ompat set so it is Lipshitz with ‖∇d‖L∞(Ω) = 1, see [4, Prop.1D.4℄ for example.

Hene d⋆ is a Lipshitz funtion, and dδ is non-vanishing with dδ(x) ≥ δ, ∀x ∈ Ω. We

dedue that Υδ
β(v) := v(x) lnβ dδ(x) isomorphially maps H1

0(Ω) onto itself, and there

exist onstants c±, δ0 > 0 independent of δ suh that

0 < c− ≤
‖Υδ

β(v)‖V1

β,δ
(Ω)

‖v‖V1

0,δ
(Ω)

≤ c+ ∀v ∈ H1
0(Ω), ∀δ ∈ (0, δ0). (5)

We shall also onsider the orresponding dual norms, eah of whih providing a norm for

H−1(Ω), and arrying at the same time some dependeny with respet to δ,

‖f‖V−1

β,δ
(ω) := sup

v∈H1

0
(ω)\{0}

|〈f, v〉|

‖v‖V1

−β,δ
(ω)

.

Let us examine the ontinuity properties of the operators A0,Aδ with respet to these

norms. First of all, both A0 and Aδ easily appear as uniformly ontinuous with respet

to these norms i.e. a diret alulus shows that

lim sup
δ→0

(

sup
v∈H1

0
(Ω)\{0}

‖A0(v)‖V−1

β,δ
(Ω)

‖v‖V1

β,δ
(Ω)

+ sup
v∈H1

0
(Ωδ)\{0}

‖Aδ(v)‖V−1

β,δ
(Ωδ)

‖v‖V1

β,δ
(Ωδ)

)

< +∞.

Uniform invertibility of these operators also hold under ertain hypothesis on the weight

exponent β.

Proposition 3.1.

There exists β⋆ > 0 suh that, for |β| < β⋆, the inverses of both A0 and Aδ remain

uniformly bounded with respet to δ in terms of the weighted norms

lim sup
δ→0

(

sup
f∈H−1(Ω)\{0}

‖A−1
0 (f)‖V1

β,δ
(Ω)

‖f‖V−1

β,δ
(Ω)

+ sup
f∈H−1(Ωδ)\{0}

‖A−1
δ (f)‖V1

β,δ
(Ωδ)

‖f‖V−1

β,δ
(Ωδ)

)

< +∞ .

Proof:

We need to provide an upper bound for both A−1
δ and A−1

0 . We prove suh a bound

only for A−1
δ , as the derivation for A−1

0 is very similar and slightly easier. First of all

observe that, aording to the uniform bounds (5), this is equivalent to proving that, for

β ∈ R �xed suh that |β| < β⋆, there exists a onstant Cβ > 0 independent of δ suh that

Cβ ≤ sup
v∈H1

0
(Ωδ)\{0}

|〈Aδ ·Υ
δ
β(u),Υ

δ
−β(v)〉|

‖u‖V1

0,δ
(Ω)‖v‖V1

0,δ
(Ω)

. (6)

We have 〈Aδ · Υ
δ
β(u),Υ

δ
−β(v)〉 = (∇Υδ

β(u),Υ
δ
−β(v))Ωδ

, aording to the de�nition of Aδ.

Expanding this expression yields

(∇Υ+β(u),∇Υ−β(v))Ωδ
= (∇u,∇v)Ωδ

+β

∫

Ω

∇d⋆(x) ·
u∇v − v∇u

dδ(x) ln dδ(x)
dx− β2

∫

Ω

u v

|dδ(x) ln dδ(x)|2
dx.

(7)

Observe that, taking v = u, the seond term in the right hand side above is purely

imaginary. In addition, sine |d⋆(x) ln d⋆(x)| ≤ |dδ(x) ln dδ(x)| for all x ∈ Ω, using
Proposition 4.1 below and the fat that v ∈ H1

0(Ωδ) ⊂ H1
0(Ω), we obtain

ℜe{ (∇Υ+β(u),∇Υ−β(v))Ωδ
} ≥ (1− |β/β⋆|

2) ‖∇u‖2L2(Ωδ)

≥
1− |β/β⋆|

2

1 + 1/β2
⋆

‖u‖2V1

0,δ
(Ωδ)

.
(8)
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Inequality (8) leads to the onlusion of the proof sine it yields the inf-sup ondition (6)

with a onstant independent of δ. �

4 Hardy type inequalities

This setion is dediated to proving two inequalities that take a form similar to Hardy's

inequality, but adapted to our geometrial setting. The �rst result below may be under-

stood as a ylindrial version of Hardy's inequality. The proof, though, is made triky by

the rather general geometry under onsideration here and, in partiular, the possibility

for Γ to admit self-rossing points.

Proposition 4.1.

There exists a onstant β⋆ > 0 suh that

1

β2
⋆

:= sup
v∈H1

0
(Ω)\{0}

{ 1

‖∇v‖2L2(Ω)

∫

Ω

|v(x)|2dx

|d⋆(x) ln d⋆(x)|2

}

< +∞. (9)

Proof:

During this proof, we shall refer to e3(t) := ∂tγ(t)/|∂tγ(t)|, onsider a C 0
-vetor �eld

t 7→ e1(t) ∈ R3
suh that e1(t) ·e3(t) = 0, ∀t ∈ R, and set e2(t) := e3(t)×e1(t). Denoting

Iǫ := (−ǫ,+ǫ) and Dǫ ⊂ R2
the disk of enter 0 and radius ǫ, for eah t ∈ R, there exists

a small ylinder Q̂t = Dǫt × Iǫt with ǫt > 0 suh that the map φt : Q̂t → R3
de�ned by

φt(x, y, z) := γ(t+ z) + xe1(t) + ye2(t)

is an immersion. Pik �nitely many t1, t2, . . . tn suh that [0, L] ⊂ ∪n
j=1(tj − ǫtj , tj + ǫtj ).

Denote Q̂j := Q̂tj , Qj := φtj (Q̂j) and Γj := Γ∩Qj so that, in partiular, Γ ⊂ Q1∪· · ·∪Qn.

Let ωη = {x ∈ Ω | d(x) < η}. Let us prove that, if η is hosen small enough, then for any

x ∈ ωη there is one j suh that x ∈ Qj and d(x) = infy∈Γj
|x−y|. To show this, proeed

by ontradition, assuming for a moment that suh is not the ase.

This means that there exists a sequene xp ∈ Ω with limp→∞ d(xp) = 0 and suh

that, for any x
∗
p ∈ Γ satisfying |xp − x

∗
p| = d(xp), none of the Qj's both ontain xp

and x
∗
p. Sine Γ is ompat, extrating a sub-sequene if neessary, we may assume that

limp→∞ xp = limp→∞ x
∗
p = x∞ ∈ Γ. Take a Qm ontaining x∞. Then, sine Qm is an

open neighborhood of x∞, for su�iently large p we have both xp ∈ Qm and x
∗
p ∈ Qm

whih ontradits our initial assumption.

From now on, we assume that η > 0 is hosen small enough to guarantee the property

disussed in the previous paragraph. Denote dj(x) = infy∈Γj
|x− y|, and let 1Qj

refer to

the harateristi funtion of Qj . What preedes shows that, for any x ∈ ωη, we have

1

|d⋆(x) ln d⋆(x)|
≤

n∑

j=1

1Qj
(x)

|dj(x) ln dj(x)|
. (10)

Choose a smooth open set Q0 ⊂ R3
suh that Q0 ∪ Q1 · · · ∪ Qn ahieves a overing of

Ω. Using a partition of unity subordinated to this overing, one may deompose any

v ∈ H1
0(Ω) in the form v = v0 + · · ·+ vn where vj ∈ H1

0(Qj). This remark, together with

Inequality (10), shows that it su�es to prove the existene of a onstant C > 0 suh that

∫

Qj

|v(x)|2dx

|dj(x) ln dj(x)|2
≤ C

∫

Qj

|∇v|2dx ∀v ∈ H1
0(Qj) ∀j = 1 . . . n. (11)
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From now on, and until the end of the proof, we take a j �xed. Let us relabel for a moment

ǫ = ǫtj , φ = φtj and set Q̂ = Q̂j = Dǫ × Iǫ, Σ := {0} × Iǫ and v̂ = v ◦ φ. For any x̂ ∈ Q̂

we also set d̂(x̂) = inf ŷ∈Σ |x̂ − ŷ|. The di�eomorphism φ and its inverse φ−1
are both

Lipshitz, so there are onstants c± > 0 suh that c−|x̂− ŷ| ≤ |φ(x̂)−φ(ŷ)| ≤ c+|x̂− ŷ|.
Routine veri�ations show that this implies existene of two onstants c′, c′′ > 0 suh that

c′d̂(x̂) ≤ d
(
φ(x̂)

)
≤ c′′d̂(x̂) ∀x̂ ∈ Q̂. (12)

Let r, θ refer to the polar oordinates in R2
so that the ylinder Q̂ is parametrized by the

ylindrial oordinates (r, θ, z) ∈ [0,+ǫ) × [0, 2π] × Iǫ. The lassial Hardy's inequality

applied in Q̂, see [8℄, shows that
∫

Q̂

|v̂|2rdrdθdz

|r ln(r)|2
≤ C

∫

Q̂

|∇v̂|+ |v̂|2dx̂ ∀v̂ ∈ H1(Q̂). (13)

There only remains to observe that d̂(x̂) = r, to use (12), and to apply the hange

of variables x = φ(x̂) in the integrals (13). Denoting Dφ the di�erential of φ, sine
‖Dφ‖L∞(Q̂) and ‖Dφ−1‖L∞(Qj) are both bounded, this �nally yields inequality (11) with

‖∇v‖2L2(Qj)
+ ‖v‖2L2(Qj)

instead of just ‖∇v‖2L2(Ω). We onlude by using Poinare's in-

equality in Qj . �

We will also need another δ-dependent weighted inequality. This one involves a weighted

L2
-norm evaluated only over a oronal ylinder of radius δ, and is not primarily based on

the lassial Hardy's inequality. Instead it is derived by means of Kondratiev's analysis.

Proposition 4.2.

Denoting Qδ := {x ∈ Ω | δ < d(x) < 2δ} we have

lim sup
δ→0

sup
v∈H2(Ω)∩H1

0
(Ω)\{0}

{ 1

‖∆v‖2L2(Ω)

∫

Qδ

∣
∣
∣
v(x)

d⋆(x)

∣
∣
∣

2

dx
}

< +∞.

Proof:

To establish this result, we follow a path similar to that of the proof of Proposition 4.1,

and use the same notations. Take any x ∈ ωη. Aording to the �rst part of the preeding

proof, there exists j suh that x ∈ Qj and dj(x) = d⋆(x), hene δ < d(x) < 2δ ⇒ δ <

dj(x) < 2δ. As a onsequene Qδ ⊂ ∪n
j=1Q

j
δ where Q

j
δ := {x ∈ Qj , δ < dj(x) < 2δ}

whih implies 1Qδ
≤

∑n
j=1 1Q

j

δ
. Hene it su�es to prove, for eah j, the existene of

onstants C, δ0 > 0 independent of δ suh that

∫

Q
j

δ

∣
∣
∣
v(x)

dj(x)

∣
∣
∣

2

dx ≤ C

∫

Ω

|∆v|2dx ∀v ∈ H2(Ω) ∩ H1
0(Ω), ∀δ ∈ (0, δ0).

Fixing j, and using a hange of variables like in the previous proof, the inequality above

boils down to establishing the existene of onstants C, δ0 > 0 independent of δ suh that,

for any v ∈ H2(Q̂) ∩ H1
0(Q̂) and any δ ∈ (0, δ0) we have

∫

Q̂δ

|v|2

r2
rdrdθdz ≤ C

∫

Q̂

|∆v|2 + |∇v|2 + |v|2dx̂. (14)

where we reall that Q̂ = Dǫ × Iǫ, the variables r, θ, z refer to the ylindrial oordinates

in Q̂, and Q̂δ := {x̂ ∈ Q̂ | δ < r < 2δ}. To establish (14), set ∆⊥v = r−2((r∂r)
2 + ∂2θ )v.

Deompose eah point x̂ ∈ Q̂ as x̂ = (x̂⊥, z), so that x̂⊥ = (r cos θ, r sin θ) and r = |x̂⊥|.
Introdue the Fourier deomposition of v in the z variable, setting

vp(x̂⊥) :=
1

2ǫ

∫ +ǫ

−ǫ

v(x̂⊥, z) exp(−iπ z/ǫ)dz. (15)
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Then we have vp ∈ H2(Dǫ) ∩ H1
0(Dǫ) and −∆⊥vp ∈ L2(Dǫ) for all p ∈ Z, if v ∈ H2(Q̂) ∩

H1
0(Q̂). Applying Kondratiev's analysis in Dǫ \ {0}, see Chapter 6 of [13℄, we �nd the

existene of oe�ients αp ∈ C and a onstant C > 0 independent of p suh that

|αp|
2 +

∫

Dǫ

|vp(x̂⊥)− αp|
2

|x̂⊥|3
dx̂⊥ ≤ C

∫

Dǫ

|∆⊥vp|
2dx̂⊥ ∀p ∈ Z.

Parseval identity assoiated to Deomposition (15), together with the estimate above,

indiates that

∑+∞
p=−∞ |αp|

2 < +∞ so that there exists a funtion α = α(z) ∈ L2(Iǫ) and
onstants C,C′ > 0 independent of v satisfying

‖α‖2L2(Iǫ)
+

∫

Q̂

|v(x̂⊥, z)− α(z)|2

|x̂⊥|3
dx̂⊥dz

≤ C‖f‖2
L2(Q̂)

= C‖∆⊥v‖
2
L2(Q̂)

≤ C′‖∆v‖2
L2(Q̂)

∀v ∈ H2(Q̂) ∩ H1
0(Q̂).

(16)

The inequality above is justi�ed by standard ellipti a priori estimates for the Laplae

operator, see [13, Chap.3℄ for example. Finally, let us pik an arbitrary v ∈ H2(Q̂)∩H1
0(Q̂).

Plugging (16) into the left hand side of (14) yields

∫

Q̂δ

|v|2

r2
rdrdθdz =

∫

Q̂δ

|v(x̂)|2

|x̂⊥|2
dx̂ ≤

∫

Q̂δ

|α(z)|2

|x̂⊥|2
dx̂+

∫

Q̂

|v(x̂)− α(z)|2

|x̂⊥|3
dx̂

≤ ‖α‖2L2(Iǫ)

(∫ 2δ

δ

dr

r

)

︸ ︷︷ ︸

=ln(2)

+C‖∆v‖2
L2(Q̂)

≤ C′‖∆v‖2
L2(Q̂)

.

Sine v was hosen arbitrarily in H2(Q̂)∩H1
0(Q̂), and the onstant C′ > 0 is independent

of δ, this onludes the proof. �

5 Norm onvergene of the resolvent

We will now use the previous analysis to show that A−1
δ strongly onverges toward A−1

0 in

some appropriate operator norm. Before stating this result let us just point out that, using

extension by 0, we have H1
0(Ωδ) ⊂ H1

0(Ω) so that H−1(Ω) ⊂ H−1(Ωδ). The expression

A−1
δ (f) with f ∈ H−1(Ω) should be understood aording to these inlusions.

Proposition 5.1.

For β⋆ > 0 as in Proposition 3.1, and for eah β ∈ R satisfying |β| < β⋆, there exist

onstants cβ , δ0 > 0 independent of δ, suh that

sup
f∈L2(Ω)\{0}

‖A−1
0 (f)−A−1

δ (f)‖V1

β,δ
(Ω)

‖f‖L2(Ω)
≤

cβ
| ln δ|β

∀δ ∈ (0, δ0).

Proof:

First of all onsider a C∞
ut-o� funtion χ : R → R suh that χ(t) = 0 for t ≤ 1 and

χ(t) = 1 for t ≥ 2, and set χδ(x) := χ( d(x)/δ ) and ψδ := 1−χδ. In the remaining of this

proof, we shall denote Qδ := supp(∇χδ) so that, for any x ∈ Qδ, we have δ ≤ d(x) ≤ 2δ.
We introdue the operator Rδ : H−1(Ω) → H1

0(Ωδ) de�ned by

Rδ(f) := χδA
−1
0 (f) ∀f ∈ H−1(Ω).

Now take any f ∈ L2(Ω), and set uδ := A−1
δ (f) ∈ H1

0(Ωδ), ûδ := Rδ(f) ∈ H1
0(Ωδ) and

u0 := A−1
0 (f) ∈ H2(Ω) ∩ H1

0(Ω). Let us look at the problem solved by the di�erene

7



uδ − ûδ. There exist onstants c, c
′ > 0 independent of δ suh that, for any v ∈ H1

0(Ωδ),
we have

|〈Aδ(uδ − ûδ), v〉| = |(∇(uδ − ûδ),∇v)Ω|

= |(f, ψδv)Ω + (∇χδ, u0∇v − v∇u0)Qδ
|

≤ ‖f‖L2(Ω)‖ψδv‖L2(Ω) + |(∇χδ, u0∇v − v∇u0)Qδ
|.

(17)

To derive an upper bound for the seond term in the right hand side above, observe

that δ ≤ d(x) ≤ 2δ for x ∈ supp(∇χδ). Sine |∇d| ≤ 1, we have sup
x∈Ω |∇χδ| ≤

2d(x)−1 sup
x∈Ω |∂tχ|. So Cauhy-Shwarz inequality, together with Proposition 4.1 ap-

plied to ∇u0, and Proposition 4.2 applied to u0, yield the existene of a onstant C > 0
independent of δ suh that

|(∇χδ, u0∇v − v∇u0)Qδ
| ≤ C( ‖∇v‖L2(Qδ) + ‖v‖L2(Qδ) )‖∆u0‖L2(Ω)

≤ C′ | ln δ|−β‖v‖V1

−β,δ
(Ω)‖f‖L2(Ω).

(18)

The �rst term in the right hand side of (17) an be bounded by noting that δ ≤ dδ(x) ≤ 2δ
on supp(ψδ). So applying Hardy's inequality (9) yields a onstant C > 0 independent of δ
suh that ‖ψδv‖L2(Ω) ≤ Cδ| ln δ|1−β‖v‖V1

−β,δ
(Ω) for all v ∈ H1

0(Ωδ). Plugging this together

with Estimate (18) into Inequality (17) provides a onstant C > 0 independent of δ suh
that

|〈Aδ(uδ − ûδ), v〉| ≤ C| ln δ|−β‖v‖V1

−β,δ
(Ω)‖f‖L2(Ω).

Observe that Aδ(uδ − ûδ) = (Id− AδRδ)f ∈ H−1(Ω). Sine v ∈ H1
0(Ωδ) was arbitrary in

the alulus above, what preedes shows that there exists a onstant C > 0 independent

of δ suh that

‖(Id−AδRδ)f‖V−1

β,δ
(Ωδ)

≤ C‖f‖L2(Ω) | ln δ|
−β . (19)

Following the same alulus, but hoosing a test funtion v ∈ H1
0(Ω), the same result as

(19) holds with Aδ,Ωδ replaed by A0,Ω. To onlude the proof, there only remains to

use the stability estimates of Proposition 3.1 that yield onstants C > 0 independent of δ
suh that, for any f ∈ L2(Ω), we have

‖A−1
0 (f)−A−1

δ (f)‖V1

β,δ
(Ω) ≤ ‖A−1

0 (f)− Rδ(f)‖V1

β,δ
(Ω) + ‖A−1

δ (f)− Rδ(f)‖V1

β,δ
(Ωδ)

≤ C( ‖f −A0Rδ(f)‖V−1

β,δ
(Ω) + ‖f −AδRδ(f)‖V−1

β,δ
(Ωδ)

)

≤ C| ln δ|−β‖f‖L2(Ω).

�

The proposition above yields onsisteny estimates for the asymptoti soure problem.

Indeed, let f ∈ L2(Ω) refer to a �xed funtion not depending on δ, let u0 ∈ H1
0(Ωδ)

satisfy −∆u0 = f in Ω, and let uδ ∈ H1
0(Ωδ) satisfy −∆uδ = f in Ωδ. Then Proposition

5.1 implies that ‖uδ − u0‖H1(Ω\U) = O(| ln δ|−β) for any neighborhood U of Γ, and for

|β| < β⋆.

Sharper results an be obtained in terms of the L2
-norm. Observe that there exists a

onstant C > 0 independent of δ suh that ‖v‖L2(Ω) ≤ C‖v‖V1

β,δ
(Ω) for any β ∈ R.

Plugging this into the estimate of Proposition 5.1 yields the following result.
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Corollary 5.1.

For β⋆ > 0 as in Proposition 3.1, and for any ǫ ∈ (0, 2β⋆), there exist onstants cǫ, δ0 > 0
independent of δ suh that

sup
f∈L2(Ω)\{0}

‖A−1
0 (f)−A−1

δ (f)‖L2(Ω)

‖f‖L2(Ω)
≤

cǫ
| ln δ|β⋆−ǫ

∀δ ∈ (0, δ0).

Reall that L2(Ω) ⊂ H−1(Ωδ), and H1
0(Ωδ) ⊂ L2(Ω), so that A−1

δ is a ontinuous operator

mapping L2(Ω) to L2(Ω). As suh, it is self-adjoint and ompat and, as an be heked by

routine veri�ations, its eigenvalues with those of A−1
δ onsidered as an operator mapping

L2(Ωδ) to L2(Ωδ). Then, sine A−1
0 : L2(Ω) → L2(Ω) is also self-adjoint and ompat,

straightforward appliation of Theorem 4.10 of Chapter V of [12℄ yields that the spetra

of A−1
δ and A−1

0 are losed to eah other.

Proposition 5.2.

For β⋆ > 0 as in Proposition 3.1, and for any ǫ ∈ (0, 2β⋆), there exist onstants δ0, cǫ > 0
independent of δ suh that

sup
µ∈S(A0)

inf
λ∈S(Aδ)

∣
∣
∣
1

µ
−

1

λ

∣
∣
∣+ sup

µ∈S(Aδ)

inf
λ∈S(A0)

∣
∣
∣
1

µ
−

1

λ

∣
∣
∣ ≤

cǫ
| ln δ|β⋆−ǫ

∀δ ∈ (0, δ0).
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