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Asymptotics of the eigenvalues of the Dirichlet-
Laplace problem in a domain with thin tube excluded

X.Claeys *f

Abstract

We consider a Laplace problem with Dirichlet boundary condition in a three dimen-
sional domain containing an inclusion taking the form of a thin tube with small thickness
0. We prove convergence in operator norm of the resolvent of this problem as § — 0, estab-
lishing that the perturbation induced by the inclusion on the resolvent is not greater than
O(]Ino]~7) for some v > 0. We deduce convergence of the eigenvalues of the perturbed
operator toward the limit operator.

1 Introduction

Analysis of singular perturbations of elliptic boundary value problems by inclusions of
small volume has received a lot of attention in the past decades due to its numerous
applications to modeling and numerical simulation of multi-scale problems, and its possible
use in efficient inverse problem [1, 2] or shape optimization [20] strategies.

For Laplace equation, many works of the existing literature have been dedicated to
asymptotic analysis involving the presence of an inclusion that has small size in all di-
rections of space (typically small balls), in the case of either impenetrable (homogeneous
Dirichlet, Neumann, or Robin) or penetrable (transmission problem) boundary conditions.
Such asymptotics have been provided for both 2-D and 3-D problems, in the case of either
a single inclusion or many, see [19, 18, 17, 16, 10]. The books [14, 9] are landmarks on
this type of problem.

As regards Laplace equation perturbed by a small inclusion that takes the form of a
thin tube, much less work is available in the literature. Some works can be found in
the case of a tube centered around a smooth closed contour without self-intersecting
point. The analysis of Laplace equation in 3-D with Neumann and Dirichlet boundary
condition was provided in [5, 6] where the author considers either a tube centered at
a non-self-intersecting smooth closed contour, or a tube centered at a straight segment.
This analysis is refined and generalized to arbitrary dimensions in [15] and [14, Chap.12].
Similar results were established for acoustics and Helmholtz equation in [3, 7, 22].

It should be pointed out that, in the case of a 3-D Laplace equation perturbed by a
thin elongated inclusion, the cases of the homogeneous Dirichlet or Robin boundary con-
dition lead to much more challenging analysis than the case of Neumann or transmission
conditions: while Neumann/transmission conditions lead to rather standard asymptotic
constructions, matching of asymptotics in the Dirichlet/Robin case leads to an ill-posed
1-D integral equation.
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On the other hand, asymptotic analysis of the Laplace problem with Dirichlet bound-
ary condition has many important applications in particular in electrical engineering and
antenna based electric/electronic devices, as it is commonly taken as a rough model
for electromagnetic diffraction by perfectly conducting thin wires, see for example [11,
Chap.6]. In this context, the study of eigenvalues is of particular importance as it is re-
lated to resonance phenomena. Yet, in the case of thin elongated inclusions with Dirichlet
boundary condition, only Planida [21] has addressed this issue so far. In this reference,
the author establishes convergence of eigenvalues in the case where the inclusion is cen-
tered around a smooth closed curve that does not self-intersect. However no explicit rate
of convergence is provided.

In the present article, we study Laplace equation with homogeneous Dirichlet condition,
and the associated eigenvalue problem, perturbed by the presence of a small elongated
inclusion that takes the form of a thin tube. We establish convergence in the operator
norm, of the resolvent of the perturbed problem toward the resolvent of the limit problem.
A first novel ingredient here compared to previously established results concern the geo-
metrical configurations under consideration that only require the inclusion to concentrate
around a parametrized curve. Contrary to pre-existing works, the present analysis does
not require the inclusion to be connected, or admit any symmetry of revolution. The
limit curve considered here may admit self-crossing points which, to our knowledge, has
never been investigated in the existing literature (at least in the case of an homogeneous
Dirichlet boundary condition). In addition, we establish a convergence result (with error
estimates) for eigenvalues with explicit error estimate showing that the presence of an
elongated inclusion induces a shift of order O(]Ind|~7) of the eigenvalues, for some v > 0.

The outline of the present article is as follows. In Section 2 we describe in detail the
geometry under consideration. In Section 3 we introduce weighted §-dependent norms
adapted to our analysis, and establish a stability property for the Laplace operator in
terms of these norms. The next section is dedicated to proving Hardy type inequalities
that will be necessary for the subsequent error estimates. In the last section we derive an
upper bound for the difference, in operator norm, between the resolvents of the perturbed
problem and the limit problem.

2 Geometry under consideration

We start by describing in detail the geometrical setting under consideration. Let  C R?
refer to a Lipschitz domain. Consider a ¢'-function v : R + Q that is L-periodic for
some L > 0, and such that 0 < a_ < |Z—Z(z)| < a4,z € R for fixed constants ay > 0.
Then we set I' := (R), which is a Lipschitz curve. We shall need to refer to the distance
function
d(x) := inf |z — y|. 1
(z) := inf |2 —y| (1)
Then we consider (Z5)s>0 as any family of Lipschitz domains such that there exists a
fixed constant C > 0 independent of § for which

sup d(x,T") < Co. (2)

rEZs

This condition imposes that, as § — 0, the sets =5 are more and more concentrated around
I". Changing the index parameter § through multiplication by some factor if necessary,
we may assume that C < 1 in (2) without restricting generality. Then we denote

Q(; = Q\E(;



The geometrical configurations described above may be used to consider resonance prob-
lems in cavities containing inclusions whose geometry is similar to wires. Note that we
do not require v to be one-to-one over a period so that, under the assumptions above,
the curve I may self-intersect. Note also that =5 do not need to be connected and may
degenerate, as § — 0, to only a part of I" with tips. As a consequence, the present setting
covers such geometrical configurations as the ones presented in pictures below.

O |

Figure 1 Three examples of geometrical configurations
covered by the analysis presented here.

3 Weighted Sobolev spaces

Given any bounded open Lipschitz domain w C R3, the set L?(w) shall refer to the space of
square integrable functions over w equipped with the pairing u,v — (u,v), := fw uvdx

and the norm [lulli2) = v/(u,U)w. As usual, Hj(w) shall refer to the completion of
650 (w) = {p € €°(R?), p = 0 on R* \ @, supp(p) bounded} for the norm ¢l () =
lellizw) + IVellLz(w). Finally H™!(w) will refer to the topological dual to Hj(w).

For a given parameter § > 0 small enough, we are interested in studying the eigenvalues
of the operator As : Hj(Qs) — H™(Qs) defined by

(As(u),v) := (Vu, Vo)g  Vu,v € Hp(Qs). (3

~—

We shall compare its eigenvalues with those of the limit operator A : Hy(2) — H=1(Q
that is defined similarly but in a domain without any perturbation i.e. (Ag(u),v) :
(Vu, Vo)q Yu,v € H ().

~—

To study these two operators, we need to introduce adapted -dependent weighted Sobolev
norms. These are not classical weighted norms such as those characterizing Kondratiev’s
spaces, see e.g. [13]. The norms we consider here involve d-dependent logarithmic weights:
given a # € R, and a Lipschitz open set w C R?, we define

12 s = 1Ry s + 1R
2
L 9 — Ind 7213%65
eIy o= | ndoo)l ™ i
Wiy = / | lnds(z)| > |Vol* dz

with ds(x) :=dy(z) +6 where di(z):=min(d(z),e"1/2).

For 6 > 0,8 € R fixed, the norm above is obviously equivalent to || ||g1(w). However
these norms "behave" differently as 6 — 0. The norms (4) are specifically tailored for our
analysis.



The condition d,(z) < e~!/2Vz € Q guarantees that |d.(x)Ind,(z)| < |ds(z)Inds(x)|
for all z € Q and for § < e~!/2. On the other hand, recall that d is a distance function
to a compact set so it is Lipschitz with [|[Vd|[p ) = 1, see [4, Prop.1D.4] for example.
Hence d, is a Lipschitz function, and ds is non-vanishing with ds(x) > 4, Ve € Q. We
deduce that Tg(v) .= v(x) In” ds(x) isomorphically maps H}(Q) onto itself, and there
exist constants c,dg > 0 independent of § such that

T3y
<c_ < o0 Vs <cy Yo € Hy(Q), V6 € (0,d). (5)
||U||vg,5 Q)
We shall also consider the corresponding dual norms, each of which providing a norm for
H~1(€), and carrying at the same time some dependency with respect to &,

[(f,v)]
oy = sup
k vEHY (w)\ {0} ||U||v113 5(w)
Let us examine the continuity properties of the operators Ay, As with respect to these
norms. First of all, both Ay and Aj easily appear as uniformly continuous with respect
to these norms i.e. a direct calculus shows that
) ||AO(U)||\/E15(Q) ||A6(U)||v[§15(95)
lim sup ( sup _ sup —)
5§—0 vEHL(Q)\ {0} ||U||v;75(9) vEHL(26)\{0} ||U||v;aya(95)
Uniform invertibility of these operators also hold under certain hypothesis on the weight
exponent, 3.

Proposition 3.1.
There exists Byx > 0 such that, for |8| < s, the inverses of both Ay and Ajs remain
uniformly bounded with respect to § in terms of the weighted norms

. 1AG (Dlvs o 1A (Dlva o)
lim sup ( sup —_— : )
=0 FeH~1(Q)\{0} ||f||v;,15(9) FEH~1(Q2s)\{0} ||f||vl;,15(95)
Proof:

We need to provide an upper bound for both Agl and Aal. We prove such a bound
only for Agl, as the derivation for Ay Uis very similar and slightly easier. First of all
observe that, according to the uniform bounds (5), this is equivalent to proving that, for
B € R fixed such that || < S, there exists a constant Cz > 0 independent of § such that

As-To(u), Yo
Cr<  wp LA THO. TN
vEHL(Q25)\{0} ||U||\/[;5(Q)||U||v1 ()

We have (A; - Tg(u), T‘iﬁ(v)> = (VT% (u), VY 5(v))q,, according to the definition of As.
Expanding this expression yields

(VY ip(u), VY _5(v))a, = (Vu, Vo),

(6)

wo (7)

—ovVu 9
+ﬂ/w >1nda<> 7 @ mds @)

Observe that, taking v = @, the second term in the right hand side above is purely
imaginary. In addition, since |di(x)Indi(x)| < |ds(x)Inds(x)| for all x € Q, using
Proposition 4.1 below and the fact that v € H}(Qs) C H} (), we obtain

Re{ (VY¥ip(w), VI _p(v)a; } = (1 —18/B:) IVullfz(q,)

L—1B/B:l? | 12 (8)
= W ||U||V(1,75(Qg)'



Inequality (8) leads to the conclusion of the proof since it yields the inf-sup condition (6)
with a constant independent of §. O

4 Hardy type inequalities

This section is dedicated to proving two inequalities that take a form similar to Hardy’s
inequality, but adapted to our geometrical setting. The first result below may be under-
stood as a cylindrical version of Hardy’s inequality. The proof, though, is made tricky by
the rather general geometry under consideration here and, in particular, the possibility
for " to admit self-crossing points.

Proposition 4.1.
There exists a constant 3, > 0 such that

1 1 / [v(z)|*dz
— = sup < 400. 9)
7t o el o i@ P )

Proof:

During this proof, we shall refer to e3(t) := 9;y(t)/|0:y(t)|, consider a €°-vector field
t + e1(t) € R? such that e (t)-es(t) = 0,Vt € R, and set es(t) := e3(t) x e1(¢). Denoting
I := (—¢,+€) and D, C R? the disk of center 0 and radius ¢, for each ¢ € R, there exists
a small cylinder Qt =D, x I, with ¢ > 0 such that the map ¢, : Qt — R? defined by

de(x,y, 2) =yt + 2) + ze1(t) + yea(t)

is an immersion. Pick finitely many ¢1,%2,...t, such that [0, L] C UJ_,(t; — e, t; + €;).
Denote Qj = Qtj, Qj = ¢y, (QJ) and I'; := I'NQ); so that, in particular, I' C Q1U---UQy.

Let w, = {x € Q| d(x) < n}. Let us prove that, if 7 is chosen small enough, then for any
x € wy, there is one j such that © € Q; and d(x) = infycr, |z —y|. To show this, proceed
by contradiction, assuming for a moment that such is not the case.

This means that there exists a sequence x, € Q with lim, , d(x,) = 0 and such

that, for any z; € I satisfying |z, — x| = d(z;), none of the Q;’s both contain =z,
and x;. Since I' is compact, extracting a sub-sequence if necessary, we may assume that

lim, o0 p = limp 00 T = To € I'. Take a @, containing . Then, since @, is an
open neighborhood of x, for sufficiently large p we have both x, € @, and z; € Qm,
which contradicts our initial assumption.

From now on, we assume that 1 > 0 is chosen small enough to guarantee the property
discussed in the previous paragraph. Denote d;(x) = infycr, [z — y[, and let 1¢, refer to
the characteristic function of J;. What precedes shows that, for any = € w,, we have

; < lQJ—(m) (10)
|du(@) Indy(2)| — = |d;(z) Ind;(z)|

Choose a smooth open set Qo C R? such that Qy U Q1 --- U Q, achieves a covering of
Q. Using a partition of unity subordinated to this covering, one may decompose any
v € H§(Q2) in the form v = vy + - - + v, where v; € H}(Q;). This remark, together with
Inequality (10), shows that it suffices to prove the existence of a constant C' > 0 such that

2d
A%S%W% WweHy(Q) Yi=1..n  (11)

J



From now on, and until the end of the proof, we take a j fixed. Let us relabel for a moment
e=¢,,d=¢y and set Q = Q; =D, x I, £ := {0} x I, and o = v o ¢. For any & € Q
we also set d(&) = infges |# — g|. The diffeomorphism ¢ and its inverse ¢~! are both
Lipschitz, so there are constants ¢y > 0 such that c_|z — y| < [¢(Z) — d(9)| < et | — F|-
Routine verifications show that this implies existence of two constants ¢/, ¢’ > 0 such that

dd(@) < d(o(z)) < "d(@) Vi e Q. (12)

Let r, 6 refer to the polar coordinates in R? so that the cylinder () is parametrized by the
cylindrical coordinates (r,6,2) € [0,+¢) x [0,2n] x I.. The classical Hardy’s inequality
applied in @, see [8], shows that

2rd d@d A
/ [o]*rdrdfdz c/ Vol + |6)2de Vo € HY(Q). (13)
Crln(r))? o

There only remains to observe that J(ﬁ:) = r, to use (12), and to apply the change
of variables * = ¢(&) in the integrals (13). Denoting D¢ the differential of ¢, since
[D¢ |l () and D¢~ || (q,) are both bounded, this finally yields inequality (11) with
IVlI2(q,) + IvlIE2(q,) instead of just [Vo|[f.q,. We conclude by using Poincare’s in-
equality in @Q;. O

We will also need another d-dependent weighted inequality. This one involves a weighted
L2-norm evaluated only over a coronal cylinder of radius 6, and is not primarily based on
the classical Hardy’s inequality. Instead it is derived by means of Kondratiev’s analysis.

Proposition 4.2.
Denoting Qs :={x € Q|6 < d(x) < 20} we have

lim sup sup { ! / ’ dw} < +o0.
§—0 veHZ(Q)ﬁH (Q)\ {0} ||Av||L2(Q) Qs
Proof:

To establish this result, we follow a path similar to that of the proof of Proposition 4.1,
and use the same notations. Take any & € w,,. According to the first part of the preceding
proof, there exists j such that © € Q; and d;(x) = d.(x), hence § < d(z) < 26 = 0 <
dj(x) < 20. As a consequence Q; C UJ. 1(@] where Q} = {z € Q;, § < d;(x) < 20}
which implies 1g, < 23:1 Qi Hence 1t suffices to prove, for each j, the existence of
constants C, g > 0 independent of ¢ such that

A

Fixing j, and using a change of variables like in the previous proof, the inequality above
boils down to establishing the existence of constants C, dp > 0 independent of ¢ such that,
for any v € H2(Q) N H}(Q) and any 6 € (0,8p) we have

|AvPdz Vo e HX(Q)NHL(Q), Vo e (0,5).
Q

2
/ |:—2rdrd9dz < c/ |Av]? + Vo] + |v]?dz. (14)
s Q

where we recall that Q = D, x I, the variables r, 6, z refer to the cylindrical coordinates
in Q, and Qs := {& € Q| § < r < 28}. To establish (14), set A v = r=2((r9,)? + 93)v.
Decompose each point & € Q as & = (Z1,2), so that &, = (rcosf,rsind) and r = |&_|.
Introduce the Fourier decomposition of v in the z variable, setting

+e
vp(&y) = i[ v(Z 1, z)exp(—imz/e)dz. (15)

2e



Then we have v, € H(D.) N H}(D.) and —A v, € L*(D,) for all p € Z, if v € H*(Q) N
Hé(@) Applying Kondratiev’s analysis in D, \ {0}, see Chapter 6 of [13]|, we find the
existence of coefficients oy, € C and a constant C' > 0 independent of p such that

L2
|ap|2+/ WGI@_SC/ |A v, |?dE,  Vp € Z.
D.

Parseval 1dent1ty associated to Decomposition (15), together with the estimate above,
indicates that p ° o lap|? < 400 so that there exists a function o = a(z) € L?(1,) and
constants C,C’ > 0 1ndependent of v satisfying

€

P 10

< C||f|| = CllALvI, ) < C'llAV]T Yo € H(Q) N Hy(Q).

L2(Q) L2(Q) L2(Q)

The inequality above is justified by standard elliptic a priori estimates for the Laplace
operator, see [13, Chap.3] for example. Finally, let us pick an arbitrary v € H*(Q)NH}(Q).
Plugging (16) into the left hand side of (14) yields

2 ~\ |2
/ 1, ardod- _/ @)l d:i:g/ / (@) — o) 4
Qs r2 Qs .| Qs |z |? |mJ-|

20

dr
<llalay ([ ) +C1avIE g, < CIAGIE,

W_/

=In(2)

Since v was chosen arbitrarily in H? (Q) N Hé(@), and the constant C’ > 0 is independent
of 9, this concludes the proof. O

5 Norm convergence of the resolvent

We will now use the previous analysis to show that Agl strongly converges toward Ay Lin
some appropriate operator norm. Before stating this result let us just point out that, using
extension by 0, we have H{(Qs) C H}(2) so that H71(Q) < H™(Qs). The expression
A5 (f) with f € H™1(Q) should be understood according to these inclusions.

Proposition 5.1.
For B« > 0 as in Proposition 3.1, and for each S € R satisfying |8| < Px, there ewxist
constants cg, g > 0 independent of 6, such that

1A () = AT (Hllve
sup . ° Vs @ s

> Vo € (0,(50)
FEL2(2)\{0} [ £llLz e [Ino|s

Proof:

First of all consider a € cut-off function x : R — R such that x(¢) = 0 for t < 1 and
x(t) = 1for t > 2, and set xs(x) := x(d(x)/d) and s := 1 — xs. In the remaining of this
proof, we shall denote Q5 := supp(Vxs) so that, for any « € Qs, we have 6 < d(x) < 20.
We introduce the operator Rs : H=1(Q2) — H}(€s) defined by

Rs(f) == xsAg ' (f) VfeH(Q).

Now take any € L%(Q), and set us := A;'(f) € H(Qs), G5 := Rs(f) € H§(Q) and
ug == Ay (f) € H2(Q) N H(Q). Let us look at the problem solved by the difference



us — 1is. There exist constants ¢, ¢’ > 0 independent of § such that, for any v € H}(€25),
we have

[(As(us — ts),v)| = [(V(us — 1s), Vv)al
=|(f,vsv)a + (Vxs, uo Vv — vVug)g,]| (17)
< I fllez llsvlle ) + [(Vxs, uoVo — vVuo)g, |-

To derive an upper bound for the second term in the right hand side above, observe
that 6 < d(x) < 20 for « € supp(Vyxs). Since [Vd| < 1, we have sup, g |Vxs| <
2d(x)~! Sup,cq |9 x| So Cauchy-Schwarz inequality, together with Proposition 4.1 ap-
plied to Vug, and Proposition 4.2 applied to ug, yield the existence of a constant C > 0
independent of ¢ such that

[(Vxs, uoVo — vVuo)gs | < CCIVllLzigs) + [1vllz s M Auollrz @

. (18)
< C'|Ind| ﬂHUHVlBJ(Q)||f||L2(Q)-

The first term in the right hand side of (17) can be bounded by noting that § < ds(x) < 2§
on supp(vs). So applying Hardy’s inequality (9) yields a constant C' > 0 independent of §
such that [|15v||12(q) < Cd|In 5|1’ﬂ||v||V17ﬂ (o for all v € H§(Qs). Plugging this together
with Estimate (18) into Inequality (17) provides a constant C' > 0 independent of § such
that

[(As(us — ig), )] < Cld] P lolly ol lroce)-

Observe that As(us — @15) = (Id — AsRs) f € H71(Q). Since v € H}(Qs) was arbitrary in
the calculus above, what precedes shows that there exists a constant C' > 0 independent
of § such that

|(Id — A(;R(;)fHV L) S < C|fllLz) [Ind]~ c. (19)

Following the same calculus, but choosing a test function v € H}(£2), the same result as
(19) holds with Ag, Qs replaced by Ag, Q. To conclude the proof, there only remains to
use the stability estimates of Proposition 3.1 that yield constants C' > 0 independent of §
such that, for any f € L2(£2), we have

1A (1) = A7 DlIvy o < 1451 (F) = Rs(DlIvs e + 145 () = Ra(Hllva o)
< CIf = AoRs(Nllv=t o + I = AsRs(Dllv= o))

C| 6|2 f[lL2(e)-

A

O

The proposition above yields consistency estimates for the asymptotic source problem.
Indeed, let f € L2(Q) refer to a fixed function not depending on §, let ug € H{(Qs)
satisfy —Aug = f in Q, and let us € H}(Qs) satisfy —Aus = f in Q5. Then Proposition
5.1 implies that [[us — uoll o7y = O(/In §|7?) for any neighborhood U of T', and for
181 < Ba.

Sharper results can be obtained in terms of the L2-norm. Observe that there exists a
constant C' > 0 independent of 0 such that |[vi2@q) < C||v||V1 (o for any g € R.
Plugging this into the estimate of Proposition 5.1 yields the followmg result.

Corollary 5.1.
For 3, > 0 as in Proposition 3.1, and for any € € (0,20,), there exist constants ce,d9 > 0



independent of § such that

AT — AT
sup || 0 (f) 5 (f)||L2(Q) < CEB _
FEL2(2)\{0} [ £l o) | In |8 —¢

V6 € (0, 5o).

Recall that L2(2) ¢ H™(s), and H§(Q5) € L2(Q), so that A5 is a continuous operator
mapping L2(Q) to L2(2). As such, it is self-adjoint and compact and, as can be checked by
routine verifications, its eigenvalues with those of Agl considered as an operator mapping
L2(Qs) to L2(Qs). Then, since Ay' : L2(Q) — L*(Q) is also self-adjoint and compact,
straightforward application of Theorem 4.10 of Chapter V of [12] yields that the spectra
of A;' and Aj! are closed to each other.

Proposition 5.2.

For B, > 0 as in Proposition 3.1, and for any € € (0,20,), there exist constants dg,c. > 0
independent of § such that

1 1 c

o< —=— VY5€(0,d).

1 )\‘ = |Ind|Bx—e (0, 60)

1 1 .
— ——|+ sup inf
B A Lee(As) AeS(Ag)

sup inf
HES(Ap) AeS(As)
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