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Asymptoti
s of the eigenvalues of the Diri
hlet-

Lapla
e problem in a domain with thin tube ex
luded

X.Claeys

∗†

Abstra
t

We 
onsider a Lapla
e problem with Diri
hlet boundary 
ondition in a three dimen-

sional domain 
ontaining an in
lusion taking the form of a thin tube with small thi
kness

δ. We prove 
onvergen
e in operator norm of the resolvent of this problem as δ → 0, estab-
lishing that the perturbation indu
ed by the in
lusion on the resolvent is not greater than

O(| ln δ|−γ) for some γ > 0. We dedu
e 
onvergen
e of the eigenvalues of the perturbed

operator toward the limit operator.

1 Introdu
tion

Analysis of singular perturbations of ellipti
 boundary value problems by in
lusions of

small volume has re
eived a lot of attention in the past de
ades due to its numerous

appli
ations to modeling and numeri
al simulation of multi-s
ale problems, and its possible

use in e�
ient inverse problem [1, 2℄ or shape optimization [20℄ strategies.

For Lapla
e equation, many works of the existing literature have been dedi
ated to

asymptoti
 analysis involving the presen
e of an in
lusion that has small size in all di-

re
tions of spa
e (typi
ally small balls), in the 
ase of either impenetrable (homogeneous

Diri
hlet, Neumann, or Robin) or penetrable (transmission problem) boundary 
onditions.

Su
h asymptoti
s have been provided for both 2-D and 3-D problems, in the 
ase of either

a single in
lusion or many, see [19, 18, 17, 16, 10℄. The books [14, 9℄ are landmarks on

this type of problem.

As regards Lapla
e equation perturbed by a small in
lusion that takes the form of a

thin tube, mu
h less work is available in the literature. Some works 
an be found in

the 
ase of a tube 
entered around a smooth 
losed 
ontour without self-interse
ting

point. The analysis of Lapla
e equation in 3-D with Neumann and Diri
hlet boundary


ondition was provided in [5, 6℄ where the author 
onsiders either a tube 
entered at

a non-self-interse
ting smooth 
losed 
ontour, or a tube 
entered at a straight segment.

This analysis is re�ned and generalized to arbitrary dimensions in [15℄ and [14, Chap.12℄.

Similar results were established for a
ousti
s and Helmholtz equation in [3, 7, 22℄.

It should be pointed out that, in the 
ase of a 3-D Lapla
e equation perturbed by a

thin elongated in
lusion, the 
ases of the homogeneous Diri
hlet or Robin boundary 
on-

dition lead to mu
h more 
hallenging analysis than the 
ase of Neumann or transmission


onditions: while Neumann/transmission 
onditions lead to rather standard asymptoti



onstru
tions, mat
hing of asymptoti
s in the Diri
hlet/Robin 
ase leads to an ill-posed

1-D integral equation.
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On the other hand, asymptoti
 analysis of the Lapla
e problem with Diri
hlet bound-

ary 
ondition has many important appli
ations in parti
ular in ele
tri
al engineering and

antenna based ele
tri
/ele
troni
 devi
es, as it is 
ommonly taken as a rough model

for ele
tromagneti
 di�ra
tion by perfe
tly 
ondu
ting thin wires, see for example [11,

Chap.6℄. In this 
ontext, the study of eigenvalues is of parti
ular importan
e as it is re-

lated to resonan
e phenomena. Yet, in the 
ase of thin elongated in
lusions with Diri
hlet

boundary 
ondition, only Planida [21℄ has addressed this issue so far. In this referen
e,

the author establishes 
onvergen
e of eigenvalues in the 
ase where the in
lusion is 
en-

tered around a smooth 
losed 
urve that does not self-interse
t. However no expli
it rate

of 
onvergen
e is provided.

In the present arti
le, we study Lapla
e equation with homogeneous Diri
hlet 
ondition,

and the asso
iated eigenvalue problem, perturbed by the presen
e of a small elongated

in
lusion that takes the form of a thin tube. We establish 
onvergen
e in the operator

norm, of the resolvent of the perturbed problem toward the resolvent of the limit problem.

A �rst novel ingredient here 
ompared to previously established results 
on
ern the geo-

metri
al 
on�gurations under 
onsideration that only require the in
lusion to 
on
entrate

around a parametrized 
urve. Contrary to pre-existing works, the present analysis does

not require the in
lusion to be 
onne
ted, or admit any symmetry of revolution. The

limit 
urve 
onsidered here may admit self-
rossing points whi
h, to our knowledge, has

never been investigated in the existing literature (at least in the 
ase of an homogeneous

Diri
hlet boundary 
ondition). In addition, we establish a 
onvergen
e result (with error

estimates) for eigenvalues with expli
it error estimate showing that the presen
e of an

elongated in
lusion indu
es a shift of order O(| ln δ|−γ) of the eigenvalues, for some γ > 0.
The outline of the present arti
le is as follows. In Se
tion 2 we des
ribe in detail the

geometry under 
onsideration. In Se
tion 3 we introdu
e weighted δ-dependent norms

adapted to our analysis, and establish a stability property for the Lapla
e operator in

terms of these norms. The next se
tion is dedi
ated to proving Hardy type inequalities

that will be ne
essary for the subsequent error estimates. In the last se
tion we derive an

upper bound for the di�eren
e, in operator norm, between the resolvents of the perturbed

problem and the limit problem.

2 Geometry under 
onsideration

We start by des
ribing in detail the geometri
al setting under 
onsideration. Let Ω ⊂ R3

refer to a Lips
hitz domain. Consider a C 1
-fun
tion γ : R 7→ Ω that is L-periodi
 for

some L > 0, and su
h that 0 < α− ≤ |dγ
dz
(z)| ≤ α+, ∀z ∈ R for �xed 
onstants α± > 0.

Then we set Γ := γ(R), whi
h is a Lips
hitz 
urve. We shall need to refer to the distan
e

fun
tion

d(x) := inf
y∈Γ

|x− y|. (1)

Then we 
onsider (Ξδ)δ>0 as any family of Lips
hitz domains su
h that there exists a

�xed 
onstant C > 0 independent of δ for whi
h

sup
x∈Ξδ

d(x,Γ) ≤ C δ. (2)

This 
ondition imposes that, as δ → 0, the sets Ξδ are more and more 
on
entrated around

Γ. Changing the index parameter δ through multipli
ation by some fa
tor if ne
essary,

we may assume that C < 1 in (2) without restri
ting generality. Then we denote

Ωδ := Ω \ Ξδ.
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The geometri
al 
on�gurations des
ribed above may be used to 
onsider resonan
e prob-

lems in 
avities 
ontaining in
lusions whose geometry is similar to wires. Note that we

do not require γ to be one-to-one over a period so that, under the assumptions above,

the 
urve Γ may self-interse
t. Note also that Ξδ do not need to be 
onne
ted and may

degenerate, as δ → 0, to only a part of Γ with tips. As a 
onsequen
e, the present setting


overs su
h geometri
al 
on�gurations as the ones presented in pi
tures below.

Figure 1 Three examples of geometri
al 
on�gurations


overed by the analysis presented here.

3 Weighted Sobolev spa
es

Given any bounded open Lips
hitz domain ω ⊂ R3
, the set L2(ω) shall refer to the spa
e of

square integrable fun
tions over ω equipped with the pairing u, v 7→ (u, v)ω :=
∫

ω
u v dx

and the norm ‖u‖L2(ω) =
√

(u, u)ω . As usual, H1
0(ω) shall refer to the 
ompletion of

C ∞
0 (ω) := {ϕ ∈ C∞(R3), ϕ = 0 on R3 \ ω, supp(ϕ) bounded} for the norm ‖ϕ‖H1

0
(ω) :=

‖ϕ‖L2(ω) + ‖∇ϕ‖L2(ω). Finally H−1(ω) will refer to the topologi
al dual to H1
0(ω).

For a given parameter δ > 0 small enough, we are interested in studying the eigenvalues

of the operator Aδ : H
1
0(Ωδ) → H−1(Ωδ) de�ned by

〈Aδ(u), v〉 := (∇u,∇v)Ω ∀u, v ∈ H1
0(Ωδ). (3)

We shall 
ompare its eigenvalues with those of the limit operator A0 : H1
0(Ω) → H−1(Ω)

that is de�ned similarly but in a domain without any perturbation i.e. 〈A0(u), v〉 :=
(∇u,∇v)Ω ∀u, v ∈ H1

0(Ω).

To study these two operators, we need to introdu
e adapted δ-dependent weighted Sobolev
norms. These are not 
lassi
al weighted norms su
h as those 
hara
terizing Kondratiev's

spa
es, see e.g. [13℄. The norms we 
onsider here involve δ-dependent logarithmi
 weights:

given a β ∈ R, and a Lips
hitz open set ω ⊂ R2
, we de�ne

‖v‖2
V1

β,δ
(ω)

:= |v|2
V1

β,δ
(ω)

+ |v|2
V0

β,δ
(ω)

where |v|2V0

β
(ω) :=

∫

ω

| ln dδ(x)|
−2β |v(x)|2

|dδ(x) ln dδ(x)|2
dx

|v|2V1

β
(ω) :=

∫

ω

| ln dδ(x)|
−2β |∇v|2 dx

with dδ(x) := d⋆(x) + δ where d⋆(x) := min(d(x), e−1/2).

(4)

For δ > 0, β ∈ R �xed, the norm above is obviously equivalent to ‖ ‖H1(ω). However

these norms "behave" di�erently as δ → 0. The norms (4) are spe
i�
ally tailored for our

analysis.
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The 
ondition d⋆(x) ≤ e−1/2 ∀x ∈ Ω guarantees that |d⋆(x) ln d⋆(x)| ≤ |dδ(x) ln dδ(x)|
for all x ∈ Ω and for δ < e−1/2. On the other hand, re
all that d is a distan
e fun
tion

to a 
ompa
t set so it is Lips
hitz with ‖∇d‖L∞(Ω) = 1, see [4, Prop.1D.4℄ for example.

Hen
e d⋆ is a Lips
hitz fun
tion, and dδ is non-vanishing with dδ(x) ≥ δ, ∀x ∈ Ω. We

dedu
e that Υδ
β(v) := v(x) lnβ dδ(x) isomorphi
ally maps H1

0(Ω) onto itself, and there

exist 
onstants c±, δ0 > 0 independent of δ su
h that

0 < c− ≤
‖Υδ

β(v)‖V1

β,δ
(Ω)

‖v‖V1

0,δ
(Ω)

≤ c+ ∀v ∈ H1
0(Ω), ∀δ ∈ (0, δ0). (5)

We shall also 
onsider the 
orresponding dual norms, ea
h of whi
h providing a norm for

H−1(Ω), and 
arrying at the same time some dependen
y with respe
t to δ,

‖f‖V−1

β,δ
(ω) := sup

v∈H1

0
(ω)\{0}

|〈f, v〉|

‖v‖V1

−β,δ
(ω)

.

Let us examine the 
ontinuity properties of the operators A0,Aδ with respe
t to these

norms. First of all, both A0 and Aδ easily appear as uniformly 
ontinuous with respe
t

to these norms i.e. a dire
t 
al
ulus shows that

lim sup
δ→0

(

sup
v∈H1

0
(Ω)\{0}

‖A0(v)‖V−1

β,δ
(Ω)

‖v‖V1

β,δ
(Ω)

+ sup
v∈H1

0
(Ωδ)\{0}

‖Aδ(v)‖V−1

β,δ
(Ωδ)

‖v‖V1

β,δ
(Ωδ)

)

< +∞.

Uniform invertibility of these operators also hold under 
ertain hypothesis on the weight

exponent β.

Proposition 3.1.

There exists β⋆ > 0 su
h that, for |β| < β⋆, the inverses of both A0 and Aδ remain

uniformly bounded with respe
t to δ in terms of the weighted norms

lim sup
δ→0

(

sup
f∈H−1(Ω)\{0}

‖A−1
0 (f)‖V1

β,δ
(Ω)

‖f‖V−1

β,δ
(Ω)

+ sup
f∈H−1(Ωδ)\{0}

‖A−1
δ (f)‖V1

β,δ
(Ωδ)

‖f‖V−1

β,δ
(Ωδ)

)

< +∞ .

Proof:

We need to provide an upper bound for both A−1
δ and A−1

0 . We prove su
h a bound

only for A−1
δ , as the derivation for A−1

0 is very similar and slightly easier. First of all

observe that, a

ording to the uniform bounds (5), this is equivalent to proving that, for

β ∈ R �xed su
h that |β| < β⋆, there exists a 
onstant Cβ > 0 independent of δ su
h that

Cβ ≤ sup
v∈H1

0
(Ωδ)\{0}

|〈Aδ ·Υ
δ
β(u),Υ

δ
−β(v)〉|

‖u‖V1

0,δ
(Ω)‖v‖V1

0,δ
(Ω)

. (6)

We have 〈Aδ ·Υ
δ
β(u),Υ

δ
−β(v)〉 = (∇Υδ

β(u),∇Υδ
−β(v))Ωδ

, a

ording to the de�nition of Aδ.

Expanding this expression yields

(∇Υ+β(u),∇Υ−β(v))Ωδ
= (∇u,∇v)Ωδ

+β

∫

Ω

∇d⋆(x) ·
u∇v − v∇u

dδ(x) ln dδ(x)
dx− β2

∫

Ω

u v

|dδ(x) ln dδ(x)|2
dx.

(7)

Observe that, taking v = u, the se
ond term in the right hand side above is purely

imaginary. In addition, sin
e |d⋆(x) ln d⋆(x)| ≤ |dδ(x) ln dδ(x)| for all x ∈ Ω, using
Proposition 4.1 below and the fa
t that v ∈ H1

0(Ωδ) ⊂ H1
0(Ω), we obtain

ℜe{ (∇Υ+β(u),∇Υ−β(v))Ωδ
} ≥ (1− |β/β⋆|

2) ‖∇u‖2L2(Ωδ)

≥
1− |β/β⋆|

2

1 + 1/β2
⋆

‖u‖2V1

0,δ
(Ωδ)

.
(8)
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Inequality (8) leads to the 
on
lusion of the proof sin
e it yields the inf-sup 
ondition (6)

with a 
onstant independent of δ. �

4 Hardy type inequalities

This se
tion is dedi
ated to proving two inequalities that take a form similar to Hardy's

inequality, but adapted to our geometri
al setting. The �rst result below may be under-

stood as a 
ylindri
al version of Hardy's inequality. The proof, though, is made tri
ky by

the rather general geometry under 
onsideration here and, in parti
ular, the possibility

for Γ to admit self-
rossing points.

Proposition 4.1.

There exists a 
onstant β⋆ > 0 su
h that

1

β2
⋆

:= sup
v∈H1

0
(Ω)\{0}

{ 1

‖∇v‖2L2(Ω)

∫

Ω

|v(x)|2dx

|d⋆(x) ln d⋆(x)|2

}

< +∞. (9)

Proof:

During this proof, we shall refer to e3(t) := ∂tγ(t)/|∂tγ(t)|, 
onsider a C 0
-ve
tor �eld

t 7→ e1(t) ∈ R3
su
h that e1(t) ·e3(t) = 0, ∀t ∈ R, and set e2(t) := e3(t)×e1(t). Denoting

Iǫ := (−ǫ,+ǫ) and Dǫ ⊂ R2
the disk of 
enter 0 and radius ǫ, for ea
h t ∈ R, there exists

a small 
ylinder Q̂t = Dǫt × Iǫt with ǫt > 0 su
h that the map φt : Q̂t → R3
de�ned by

φt(x, y, z) := γ(t+ z) + xe1(t) + ye2(t)

is an immersion. Pi
k �nitely many t1, t2, . . . tn su
h that [0, L] ⊂ ∪n
j=1(tj − ǫtj , tj + ǫtj ).

Denote Q̂j := Q̂tj , Qj := φtj (Q̂j) and Γj := Γ∩Qj so that, in parti
ular, Γ ⊂ Q1∪· · ·∪Qn.

Let ωη = {x ∈ Ω | d(x) < η}. Let us prove that, if η is 
hosen small enough, then for any

x ∈ ωη there is one j su
h that x ∈ Qj and d(x) = infy∈Γj
|x−y|. To show this, pro
eed

by 
ontradi
tion, assuming for a moment that su
h is not the 
ase.

This means that there exists a sequen
e xp ∈ Ω with limp→∞ d(xp) = 0 and su
h

that, for any x
∗
p ∈ Γ satisfying |xp − x

∗
p| = d(xp), none of the Qj's both 
ontain xp

and x
∗
p. Sin
e Γ is 
ompa
t, extra
ting a sub-sequen
e if ne
essary, we may assume that

limp→∞ xp = limp→∞ x
∗
p = x∞ ∈ Γ. Take a Qm 
ontaining x∞. Then, sin
e Qm is an

open neighborhood of x∞, for su�
iently large p we have both xp ∈ Qm and x
∗
p ∈ Qm

whi
h 
ontradi
ts our initial assumption.

From now on, we assume that η > 0 is 
hosen small enough to guarantee the property

dis
ussed in the previous paragraph. Denote dj(x) = infy∈Γj
|x− y|, and let 1Qj

refer to

the 
hara
teristi
 fun
tion of Qj . What pre
edes shows that, for any x ∈ ωη, we have

1

|d⋆(x) ln d⋆(x)|
≤

n∑

j=1

1Qj
(x)

|dj(x) ln dj(x)|
. (10)

Choose a smooth open set Q0 ⊂ R3
su
h that Q0 ∪ Q1 · · · ∪ Qn a
hieves a 
overing of

Ω. Using a partition of unity subordinated to this 
overing, one may de
ompose any

v ∈ H1
0(Ω) in the form v = v0 + · · ·+ vn where vj ∈ H1

0(Qj). This remark, together with

Inequality (10), shows that it su�
es to prove the existen
e of a 
onstant C > 0 su
h that

∫

Qj

|v(x)|2dx

|dj(x) ln dj(x)|2
≤ C

∫

Qj

|∇v|2dx ∀v ∈ H1
0(Qj) ∀j = 1 . . . n. (11)
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From now on, and until the end of the proof, we take a j �xed. Let us relabel for a moment

ǫ = ǫtj , φ = φtj and set Q̂ = Q̂j = Dǫ × Iǫ, Σ := {0} × Iǫ and v̂ = v ◦ φ. For any x̂ ∈ Q̂

we also set d̂(x̂) = inf ŷ∈Σ |x̂ − ŷ|. The di�eomorphism φ and its inverse φ−1
are both

Lips
hitz, so there are 
onstants c± > 0 su
h that c−|x̂− ŷ| ≤ |φ(x̂)−φ(ŷ)| ≤ c+|x̂− ŷ|.
Routine veri�
ations show that this implies existen
e of two 
onstants c′, c′′ > 0 su
h that

c′d̂(x̂) ≤ d
(
φ(x̂)

)
≤ c′′d̂(x̂) ∀x̂ ∈ Q̂. (12)

Let r, θ refer to the polar 
oordinates in R2
so that the 
ylinder Q̂ is parametrized by the


ylindri
al 
oordinates (r, θ, z) ∈ [0,+ǫ) × [0, 2π] × Iǫ. The 
lassi
al Hardy's inequality

applied in Q̂, see [8℄, shows that
∫

Q̂

|v̂|2rdrdθdz

|r ln(r)|2
≤ C

∫

Q̂

|∇v̂|+ |v̂|2dx̂ ∀v̂ ∈ H1(Q̂). (13)

There only remains to observe that d̂(x̂) = r, to use (12), and to apply the 
hange

of variables x = φ(x̂) in the integrals (13). Denoting Dφ the di�erential of φ, sin
e
‖Dφ‖L∞(Q̂) and ‖Dφ−1‖L∞(Qj) are both bounded, this �nally yields inequality (11) with

‖∇v‖2L2(Qj)
+ ‖v‖2L2(Qj)

instead of just ‖∇v‖2L2(Ω). We 
on
lude by using Poin
are's in-

equality in Qj . �

We will also need another δ-dependent weighted inequality. This one involves a weighted

L2
-norm evaluated only over a 
oronal 
ylinder of radius δ, and is not primarily based on

the 
lassi
al Hardy's inequality. Instead it is derived by means of Kondratiev's analysis.

Proposition 4.2.

Denoting Qδ := {x ∈ Ω | δ < d(x) < 2δ} we have

lim sup
δ→0

sup
v∈H2(Ω)∩H1

0
(Ω)\{0}

{ 1

‖∆v‖2L2(Ω)

∫

Qδ

∣
∣
∣
v(x)

d⋆(x)

∣
∣
∣

2

dx
}

< +∞.

Proof:

To establish this result, we follow a path similar to that of the proof of Proposition 4.1,

and use the same notations. Take any x ∈ ωη. A

ording to the �rst part of the pre
eding

proof, there exists j su
h that x ∈ Qj and dj(x) = d⋆(x), hen
e δ < d(x) < 2δ ⇒ δ <

dj(x) < 2δ. As a 
onsequen
e Qδ ⊂ ∪n
j=1Q

j
δ where Q

j
δ := {x ∈ Qj , δ < dj(x) < 2δ}

whi
h implies 1Qδ
≤

∑n
j=1 1Q

j

δ
. Hen
e it su�
es to prove, for ea
h j, the existen
e of


onstants C, δ0 > 0 independent of δ su
h that

∫

Q
j

δ

∣
∣
∣
v(x)

dj(x)

∣
∣
∣

2

dx ≤ C

∫

Ω

|∆v|2dx ∀v ∈ H2(Ω) ∩ H1
0(Ω), ∀δ ∈ (0, δ0).

Fixing j, and using a 
hange of variables like in the previous proof, the inequality above

boils down to establishing the existen
e of 
onstants C, δ0 > 0 independent of δ su
h that,

for any v ∈ H2(Q̂) ∩ H1
0(Q̂) and any δ ∈ (0, δ0) we have

∫

Q̂δ

|v|2

r2
rdrdθdz ≤ C

∫

Q̂

|∆v|2 + |∇v|2 + |v|2dx̂. (14)

where we re
all that Q̂ = Dǫ × Iǫ, the variables r, θ, z refer to the 
ylindri
al 
oordinates

in Q̂, and Q̂δ := {x̂ ∈ Q̂ | δ < r < 2δ}. To establish (14), set ∆⊥v = r−2((r∂r)
2 + ∂2θ )v.

De
ompose ea
h point x̂ ∈ Q̂ as x̂ = (x̂⊥, z), so that x̂⊥ = (r cos θ, r sin θ) and r = |x̂⊥|.
Introdu
e the Fourier de
omposition of v in the z variable, setting

vp(x̂⊥) :=
1

2ǫ

∫ +ǫ

−ǫ

v(x̂⊥, z) exp(−iπ z/ǫ)dz. (15)

6



Then we have vp ∈ H2(Dǫ) ∩ H1
0(Dǫ) and −∆⊥vp ∈ L2(Dǫ) for all p ∈ Z, if v ∈ H2(Q̂) ∩

H1
0(Q̂). Applying Kondratiev's analysis in Dǫ \ {0}, see Chapter 6 of [13℄, we �nd the

existen
e of 
oe�
ients αp ∈ C and a 
onstant C > 0 independent of p su
h that

|αp|
2 +

∫

Dǫ

|vp(x̂⊥)− αp|
2

|x̂⊥|3
dx̂⊥ ≤ C

∫

Dǫ

|∆⊥vp|
2dx̂⊥ ∀p ∈ Z.

Parseval identity asso
iated to De
omposition (15), together with the estimate above,

indi
ates that

∑+∞
p=−∞ |αp|

2 < +∞ so that there exists a fun
tion α = α(z) ∈ L2(Iǫ) and

onstants C,C′ > 0 independent of v satisfying

‖α‖2L2(Iǫ)
+

∫

Q̂

|v(x̂⊥, z)− α(z)|2

|x̂⊥|3
dx̂⊥dz

≤ C‖f‖2
L2(Q̂)

= C‖∆⊥v‖
2
L2(Q̂)

≤ C′‖∆v‖2
L2(Q̂)

∀v ∈ H2(Q̂) ∩ H1
0(Q̂).

(16)

The inequality above is justi�ed by standard ellipti
 a priori estimates for the Lapla
e

operator, see [13, Chap.3℄ for example. Finally, let us pi
k an arbitrary v ∈ H2(Q̂)∩H1
0(Q̂).

Plugging (16) into the left hand side of (14) yields

∫

Q̂δ

|v|2

r2
rdrdθdz =

∫

Q̂δ

|v(x̂)|2

|x̂⊥|2
dx̂ ≤

∫

Q̂δ

|α(z)|2

|x̂⊥|2
dx̂+

∫

Q̂

|v(x̂)− α(z)|2

|x̂⊥|3
dx̂

≤ ‖α‖2L2(Iǫ)

(∫ 2δ

δ

dr

r

)

︸ ︷︷ ︸

=ln(2)

+C‖∆v‖2
L2(Q̂)

≤ C′‖∆v‖2
L2(Q̂)

.

Sin
e v was 
hosen arbitrarily in H2(Q̂)∩H1
0(Q̂), and the 
onstant C′ > 0 is independent

of δ, this 
on
ludes the proof. �

5 Norm 
onvergen
e of the resolvent

We will now use the previous analysis to show that A−1
δ strongly 
onverges toward A−1

0 in

some appropriate operator norm. Before stating this result let us just point out that, using

extension by 0, we have H1
0(Ωδ) ⊂ H1

0(Ω) so that H−1(Ω) ⊂ H−1(Ωδ). The expression

A−1
δ (f) with f ∈ H−1(Ω) should be understood a

ording to these in
lusions.

Proposition 5.1.

For β⋆ > 0 as in Proposition 3.1, and for ea
h β ∈ R satisfying |β| < β⋆, there exist


onstants cβ , δ0 > 0 independent of δ, su
h that

sup
f∈L2(Ω)\{0}

‖A−1
0 (f)−A−1

δ (f)‖V1

β,δ
(Ω)

‖f‖L2(Ω)
≤

cβ
| ln δ|β

∀δ ∈ (0, δ0).

Proof:

First of all 
onsider a C∞

ut-o� fun
tion χ : R → R su
h that χ(t) = 0 for t ≤ 1 and

χ(t) = 1 for t ≥ 2, and set χδ(x) := χ( d(x)/δ ) and ψδ := 1−χδ. In the remaining of this

proof, we shall denote Qδ := supp(∇χδ) so that, for any x ∈ Qδ, we have δ ≤ d(x) ≤ 2δ.
We introdu
e the operator Rδ : H−1(Ω) → H1

0(Ωδ) de�ned by

Rδ(f) := χδA
−1
0 (f) ∀f ∈ H−1(Ω).

Now take any f ∈ L2(Ω), and set uδ := A−1
δ (f) ∈ H1

0(Ωδ), ûδ := Rδ(f) ∈ H1
0(Ωδ) and

u0 := A−1
0 (f) ∈ H2(Ω) ∩ H1

0(Ω). Let us look at the problem solved by the di�eren
e
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uδ − ûδ. There exist 
onstants c, c
′ > 0 independent of δ su
h that, for any v ∈ H1

0(Ωδ),
we have

|〈Aδ(uδ − ûδ), v〉| = |(∇(uδ − ûδ),∇v)Ω|

= |(f, ψδv)Ω + (∇χδ, u0∇v − v∇u0)Qδ
|

≤ ‖f‖L2(Ω)‖ψδv‖L2(Ω) + |(∇χδ, u0∇v − v∇u0)Qδ
|.

(17)

To derive an upper bound for the se
ond term in the right hand side above, observe

that δ ≤ d(x) ≤ 2δ for x ∈ supp(∇χδ). Sin
e |∇d| ≤ 1, we have sup
x∈Ω |∇χδ| ≤

2d(x)−1 sup
x∈Ω |∂tχ|. So Cau
hy-S
hwarz inequality, together with Proposition 4.1 ap-

plied to ∇u0, and Proposition 4.2 applied to u0, yield the existen
e of a 
onstant C > 0
independent of δ su
h that

|(∇χδ, u0∇v − v∇u0)Qδ
| ≤ C( ‖∇v‖L2(Qδ) + ‖v‖L2(Qδ) )‖∆u0‖L2(Ω)

≤ C′ | ln δ|−β‖v‖V1

−β,δ
(Ω)‖f‖L2(Ω).

(18)

The �rst term in the right hand side of (17) 
an be bounded by noting that δ ≤ dδ(x) ≤ 2δ
on supp(ψδ). So applying Hardy's inequality (9) yields a 
onstant C > 0 independent of δ
su
h that ‖ψδv‖L2(Ω) ≤ Cδ| ln δ|1−β‖v‖V1

−β,δ
(Ω) for all v ∈ H1

0(Ωδ). Plugging this together

with Estimate (18) into Inequality (17) provides a 
onstant C > 0 independent of δ su
h
that

|〈Aδ(uδ − ûδ), v〉| ≤ C| ln δ|−β‖v‖V1

−β,δ
(Ω)‖f‖L2(Ω).

Observe that Aδ(uδ − ûδ) = (Id− AδRδ)f ∈ H−1(Ω). Sin
e v ∈ H1
0(Ωδ) was arbitrary in

the 
al
ulus above, what pre
edes shows that there exists a 
onstant C > 0 independent

of δ su
h that

‖(Id−AδRδ)f‖V−1

β,δ
(Ωδ)

≤ C‖f‖L2(Ω) | ln δ|
−β . (19)

Following the same 
al
ulus, but 
hoosing a test fun
tion v ∈ H1
0(Ω), the same result as

(19) holds with Aδ,Ωδ repla
ed by A0,Ω. To 
on
lude the proof, there only remains to

use the stability estimates of Proposition 3.1 that yield 
onstants C > 0 independent of δ
su
h that, for any f ∈ L2(Ω), we have

‖A−1
0 (f)−A−1

δ (f)‖V1

β,δ
(Ω) ≤ ‖A−1

0 (f)− Rδ(f)‖V1

β,δ
(Ω) + ‖A−1

δ (f)− Rδ(f)‖V1

β,δ
(Ωδ)

≤ C( ‖f −A0Rδ(f)‖V−1

β,δ
(Ω) + ‖f −AδRδ(f)‖V−1

β,δ
(Ωδ)

)

≤ C| ln δ|−β‖f‖L2(Ω).

�

The proposition above yields 
onsisten
y estimates for the asymptoti
 sour
e problem.

Indeed, let f ∈ L2(Ω) refer to a �xed fun
tion not depending on δ, let u0 ∈ H1
0(Ωδ)

satisfy −∆u0 = f in Ω, and let uδ ∈ H1
0(Ωδ) satisfy −∆uδ = f in Ωδ. Then Proposition

5.1 implies that ‖uδ − u0‖H1(Ω\U) = O(| ln δ|−β) for any neighborhood U of Γ, and for

|β| < β⋆.

Sharper results 
an be obtained in terms of the L2
-norm. Observe that there exists a


onstant C > 0 independent of δ su
h that ‖v‖L2(Ω) ≤ C‖v‖V1

β,δ
(Ω) for any β ∈ R.

Plugging this into the estimate of Proposition 5.1 yields the following result.

Corollary 5.1.

For β⋆ > 0 as in Proposition 3.1, and for any ǫ ∈ (0, 2β⋆), there exist 
onstants cǫ, δ0 > 0
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independent of δ su
h that

sup
f∈L2(Ω)\{0}

‖A−1
0 (f)−A−1

δ (f)‖L2(Ω)

‖f‖L2(Ω)
≤

cǫ
| ln δ|β⋆−ǫ

∀δ ∈ (0, δ0).

Re
all that L2(Ω) ⊂ H−1(Ωδ), and H1
0(Ωδ) ⊂ L2(Ω), so that A−1

δ is a 
ontinuous operator

mapping L2(Ω) to L2(Ω). As su
h, it is self-adjoint and 
ompa
t and, as 
an be 
he
ked by

routine veri�
ations, its eigenvalues with those of A−1
δ 
onsidered as an operator mapping

L2(Ωδ) to L2(Ωδ). Then, sin
e A−1
0 : L2(Ω) → L2(Ω) is also self-adjoint and 
ompa
t,

straightforward appli
ation of Theorem 4.10 of Chapter V of [12℄ yields that the spe
tra

of A−1
δ and A−1

0 are 
losed to ea
h other.

Proposition 5.2.

For β⋆ > 0 as in Proposition 3.1, and for any ǫ ∈ (0, 2β⋆), there exist 
onstants δ0, cǫ > 0
independent of δ su
h that

sup
µ∈S(A0)

inf
λ∈S(Aδ)

∣
∣
∣
1

µ
−

1

λ

∣
∣
∣+ sup

µ∈S(Aδ)

inf
λ∈S(A0)

∣
∣
∣
1

µ
−

1

λ

∣
∣
∣ ≤

cǫ
| ln δ|β⋆−ǫ

∀δ ∈ (0, δ0).
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