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ON THE NONSTANDARD ANALYSIS AND THE INTERRELATION BETWEEN MECHANICS
OF MASS-POINT SYSTEMS AND CONTINUUM MECHANICS

Czestaw WO ZNIAK (WARSZAWA)

INTRODUCTION. Methods of the nonstandard analysis, introduced for the first time
by A. RosinsoN, [1, 2], and then developped in many publications, cf. [3 - 11], are based
on the fact that for every mathematical structure 9t there exists another structure * 9N
which is called an enlargement of 9. By the mathematical structure we mean here a pair
I = (X, M), where X is an infinite set of elements called individuals*? and M is a system
of relations (of an arbitrary order, i.e., including also relations between relations and
between individuals and relations, etc.) for which X is its ,,underlying’’ set. The enlargement
*IM = (*X, *M) is a model of IM = (X, M), i.e., every statement about 9 (expressed
in a certain formal language) which is meaningfull and true is also meaningfull and true
as a statement about * 9. At the same time *9)t is an extension of M, i.e., X < *X
and M < *M elements of X and those of M are called standard entities of * 1. If X is an
infinite set then *X is a proper extension of X, i.e., *X contains nonstandard elements.
Moreover, every infinite set consisting of standard entities only is not contained in the
structure *Jt and is called external in *3IN (is not an element of *M). Entities belonging
to *M are called relations internal in *9%. It must be emphasized that the statements
which are meaningfull and true for M are also meaningfull and true for *IN provided
that we interpret them exclusively in terms of the totality of internal entities only (indi-
viduals and relations of * 9). Following [6] we recapitulate the key properties of an
enlargement *IN = (*X, *M) of M = (X, M) by the principles stated below:

1. Permanence Principle. Every mathematical statement which is meaningfull and
true for Mt is also meaningfull and true for *IN, provided that it is interpreted exclusively
in terms of internal entities, i.e., entities of *M.

2. Extension Principle. Every mathematical notion which is meaningfull for 9t is also
meaningfull for * 9. Tt follows that any entity of Mt extends naturally and uniquely to
an entity of *9N. The extended entity is called standard in * 90,

3. Enlargement Principle. Every standard set *.5 of * 901 which is infinite, and only.
in this case, contains nonstandard elements, i.e., *SN\.S # @, where S is a set of all standard
elements of *S.

) We assumne that elements of X are not sets, i.e., if x €X then x # @ and the assertion 7€ x is
always false, cf. [11], p. 11.

@ We have assumed that a single formal language describes both structures It and * 9.

3 Sets are treated as a special kinds of relations; If r € M then the corresponding standard entity
of *M will be denoted by *r. Thus *S is an extension of a set S in M.



4. Externity Principle. Every infinite set S which consists of only standard elements
does not belong to *M (is said to be external in *%R).

The enlargement *M of a given mathematical structure I is not defined uniquely.
However, from a point of view of applications, all we néed is that such enlargement exists
and has the relevant properties outlined above. Putting X = R and assuming that M is
the set of all relations for which the real number system R is the underlying set™, we shall
refer the enlargement * 9N = (*X, *M) to as a nonstandard model of analysis. We have
R & *R where R is a set of all standard real numbers in *I. Moreover, *R constitutes
a non-Archimedean ordered field, i.e., it contains positive numbers which are greater then
any standard number (infinite positive real numbers). The reciprocals of infinite positive
real numbers are infinitesimal numbers; they are positive and smaller then any positive
standard real number. The set of all infinitesimal numbers is denoted by u(0) and is said
to be the monad of zero. By the monad of an arbitrary standard number r, r € R, we mean
the set u(r) := {ala € *R, a~r € u(0)}. Every finite number of *R (i.e., the number which
is not unfinite) can be uniquely represented by a sum r = °r+¢, where °r is a standard
number and e is an infinitesimal number, °r € R, & € u(0). The number °r is called the
standard part of a finite number r. Analogously, in every Euclidean space *R" we define
the set R", R" < *R", of standard points, and for every point x € *R" we define its monad
u(x) putting pu(x) 1= {y}o(x,y) € p(0)}, 0:*R"x*R" —» *R being the distance function
in *R . Points of *R with all finite coordinates are said to be finite. Every finite point x
has a unique representation x = °x+4, with “x as a standard point and & as an infinitesimal
vector (all componeuts of & are infinitesimal numbers). For further informations the
reader may consult ref. [1,2,8, 11}

In this paper we are to show that, using the methods of the nonstandard analysis, the
fundamental relations of continuum mechanics (for an elastic response) can be derived
directly from the Newtonian mass-point mechanics (cf. also [14]). To do this we shall
include the basic relation of Newtonian mechanics into a certain structure 9N = (X, M)
and then reinterpret them within an enlargement *R = (*X, *M) of M. This procedure
was detailed in [12] and in a simplified form will be outlined in Sec. 1. Then we shall prove
that there exists a class of ,,nonstandard” mass-point systems which have ,,standard”
properties of some continuous systems. The presented approach has two main advantages.
Firstly, it treats the continuum mechanics as a special case of the Newtonian mass-point
mechanics. Secondly, it yields an interpretation of the basic concepts of continvum mecha-
nics (such as a mass density, body force, stress tensor, strain energy function, etc.) in terms
of the concepts of mass-point mechanics. In the first case the non-standard approach to
continuum mechanics is conservative because any standard result that has been obtained
by nonstandard methods can be also obtained without using these methods, [2]. However,
the methods of the nonstandard analysis are more desirable from a purely analytical
point of view, mainly by the avoidance of passages to a limit at different stages, [5]. They
are also more desirable from an heuristic point of view, namely the obtained standard

) The set M of ,,all” relations based on R contains only relations of a definite type, i.e., we exclude
from M certain abnormal relations such as sets containing simultaneously individuals and sets of indi-
viduals, ete, cf. [1, 2, 9].



relations of confinuum mechanics describe certain properties of some ,,nonstandard”’
mass point systems and are not limit cases of the relations of mass-point mechanics. As
we have mentioned above, the nonstandard passage from Newtonian mass-point mechanics
to continuum mechanics also yields an interrelation between the known continuum con-
cepts and those of the mass-point mechanics. Such interrelation can be formulated only
in nonstandard terms. It must be also emphasized that the nonstandard formulation of
the Newtonian mass-point mechanics yields more extensive class of mathematical models
of the real bodies then the classical formulation. The nonstandard terms used in a descrip-
tion of different phenomena within mechanics have, as a rule, well determined physical
meaning. For example, the infinitesimal interpartide distances or the infinitesimal masses
of points can be treated as distances and masses, respectively, which can not be neglected
but are too small to be measured in a class of problems under consideration, [12]. At the
same time the standard parts of finite numbers can be treated as suitable approximations
due to the character of the mathematical models of physical problems we deal with.

1. Nonstandard model of Newtonian mechanics.

To develop Newtonian mechanics of mass-point systems within certain mathematical
structure I = (X, M), we shall assume that R =« X and # < X, # being certain
infinite but countable set of elements called points. Since we are to deal with finite systems
of points, we shall assume that there is known an arbitrary but fixed sequence

o0 _

@ = {D,}nen+; Ul D,= 4, D,=n.
Every D, D = #, such that D = D, for some positive integer n, is called a point system.
By C(D) we shall define the set of all injections %:D 3 P — »(P) € R®. A continuous
mapping I> t — %, € C(D), I being an open interval of R, such that 3,(P), %,(P) exist
for every tel, Pe D, will be called a motion of D. Let Do D := {(P,Q)|P,Q €D,
P # O}. By 4/ we shall define the set of all quadruples (D, (mp)rep, {(fe)ren, (0pa)ce,0yenon )
where D € {D,, D,, Dy, ...}, mp € R* and

friR3*XR®* - RS gpg:RY - R; 0pg = 0gp,

are sufficiently regular functions. An arbitrary element of A will be called Newtonian
mass-point system; D is a point system, mp is a mass assigned to a point P, f» (#.(P), #.(P))
tel, is an external force acting at P in an arbitrary motion of D and O‘pQ(Q( #:(P), %.(0) )) ,
tel (p:R*xR®— R is a distance function) will be treated as a value of an interaction
force between points P, Q € D in this motion. As a basic statement of Newtonian mechanics
we shall assume that for every Newtonian mass-point system (D, (p)pen,(fr)ren,
(9pa)cp,0)pon), @ motion of its point system D has to satisfy the relation

(1.1) mpit,(P) = fp(%,(P), ;'c,(P))+ 2 fro ("t(P)’ "r(Q))’

QeD\ (P}
PeD,tel,



where we have denoted

(12) Fra (P, %0)) = el (4 (P, QD)) 5 B s

We have tacitly assumed here that.4" is a set of all unconstrained Newtonian mass-point
systems (cf. also [12]). Substituting RHS of Egs. (1.2) into Egs. (1.1) we arrive at the well
known Newtonian equations. Every motion of a point system D satisfying Newton equation
(i-e., Eqs. (1.1) with the denotations (1.2)) will be referred to as motion of a Newtonian
mass-point system (D: (mp)pep, (fp)rep> (Opa)p.0)enen)- _

Passing to an enlargement *I = (*X, *IM) of M = (X, M), we obtain *R < *X,
*# < *X. A sequence ¢ isnow uniquely extended to a standard sequence *¢ = {D,}ucen+

o0 =
with () D, = *4#, D, = n, where n runs over all positive integers *N* (finite and infinite).

n=1
The set C(D) (here and in what follows D = D, for some n € *N*+).analogously as before,
is the set of all internal injections %:D 3 P — »(P) € *R3, which will be called configu-
rations of D. Symbol I stands now for an arbitrary internal interval of *R. An arbitrary
internal continuous mapping 1>t — %, € C(D), such that ¥,(P), %,(P) exist for every
tel, Pe D, is said to be a motion of D. The set A4~ extends uniquely to a standard set
* A of all quadruples s = (D, (mp)pep, (fe)pens (0ro)p.0yenen), Where fp:*R3 X *R? —
- *R3 and 6pq: *R™ — *R, 0pg = 0¢p, are sufficiently regular internal functions. An
arbitrary element s of *.4 will be called a Newtonian mass-point system with D as a point
system (without any specification; mind, that D = D, for some n € *N*¥), mp as a mass
of P, fp(2.(P), %,(P)) asan external force acting on P and ope(0(%(P), %,(Q))) as a value
of an interaction between P, Q in an arbitrary motion of D (by the definition every motion
is an internal mapping). By 4 we shall denote the set of all quadruples (D, (mp)pep,
(fe)reps (apo)(P,Q)EDOD) consisting exclusively of standard elements (here D = D,
for some standard n, n € N*); elements of .4 will be called standard mass-poirt systems‘>’-
Tt is obvious that 4 & *.4, i.e., there exist nonstandard mass-point systems (cf. also the
Enlargement Principle). Such systems have no counterparts in the known formulation
of mechanics. Thus, in the nonstandard model of Newtonian mechanics, we deal with
more extensive class of mass-point systems (i.e., more extensive class of mathematical
models of certain physical phenomena) then that in the classical (standard) model of
Newtonjan mechanics. The basic statement of Newtonian mechanics (which can be for-
mulated within a certain formal language, cf. [2], p. 60), formulated above, is also true
in *M = (*X, *M). Tt means that for every s = {D, (Mp)pep, (fr)rens (Tra)ir,0)enon),
motion of D has to satisfy Eqgs. (1.1), (1.2). Thus the form of Newton’s equations of mo-
tion remains unchanged after passage to a non-standard model of Newtonian mechanics.
At the same time these equations now describe more extensive class of mathematical
models of physical phenomena then the ,,standard” equations. Generally speaking, within
nonstandard model of Newtonian mechanics we can deal with point systems D which are

infinite from the ,standard” point of view (i.e., D = n where n € *N\WV is a fixed but

¢ Mind that 4" is an external relation (cf. the Externity Principle).



nonstandard natural- number®. To each point we can assign an infinitesimal (infinite)
mass. Distances and values of interactions between points can be infinitesimal or infinite.
Thus the question arises how to interpret, from the purely physical point of view, the
nonstandard quantities (nonstandard real numbers) in problems of mechanics. The answer
to this questidn depends on the physical character of the problem under consideration.
Roughly speaking, the quantities of the different order in magnitude (i.e., not belonging
to the same Archimedean system‘”’) will be treated as describing the features of phenomena
which can not be simultaneously measured and compared (from a quantitative point
of view) in an experiment. In what follows we shall see that an existence of quantities of
a different order in magnitude (an existence of non-Archimedean systems in the nonstan-
dard analysis) makes it possible to investigate continuum mechanics as a special case of
mass-point mechanics.

2. Kinematics of nonstandard point systems.

Let s = (D, (mp)pep, (fe)peps (Opo)p.oyepon) be a certain (fixed in what follows)
nonstandard Newtonian mass-point system in which D = D, for some infinite n,
n € *N\N. Every set D,, n € *N N, is a nonstandard point system. By Cy(D) we shall
denote the subset of C(D), defined by Co(D):= {x|x € C(D)x(P) is a finite point in
*R? for every P € D}. Following [2], for an arbitrary subset K of *R? we shall define the
set (possible empty) °K, putting °K := {x|x € R®A [u(x)nK] # F}. The set °K will be
called the standard representation of a set K, provided that all points of K are finite (cf.
Introduction). It can be proved that if K is an internal set in *R? then °K is closed in R?
(cf. [2], p. 101). Let xg: D — *R> be the known configuration of D such that x; € Cy(D)
and °xg(D) = 2, where Q is a certain regular region in R* (here 2 = °(*) and *2 is
a standard regular region in *R?, cf. [2], p. 102®). The set of all such configurations will
be denoted by Cs(D). The triples @ = (0%) = xx(P), @ = (%) = °xx(P), P € D.
o= 1,2, 3, will be referred to as Q-material and S-material coordinates of P, respectively.
It can be easily observed that the Q-material coordinates @, are related to a discrete struc-
ture of an internal set xx(D) in *R? and play the role of certain micro-coordinates of D.
At the same time S-material coordinates @ (standard coordinates) can be interpreted as
macro-coordinates; mind that all points of xx(D) belonging to one monad have the same
S-material coordinates. Thus the internal set xx(D) in *R?, where xy € Cs(D), having the
standard reprezentation 2 = °xx(D) (2 is a regular region in R3), can be interpreted from
two different points of view. Firstly, it is a discrete set in *R3, i.e., for every xz(P), P € D,
there exists a ball B(xz(P),r) with a center xx(P) and a radius r € *R*, such that

B(%r(P), r) " [xr(D)\ {xx(P)}] = &. Secondly, to xg(D) we can uniquely assign a re-

& Mind, that from the point of view of the nonstandard analysis all point systems under conside-
ration are finite.

 The numbers «, § €*R, 0 < o < B, are assumed to belong to the same Archimedean system if
and only if there exists such standard natural number n, n € N, that na > 8.

) A region (2 in R extends uniquely to a standard region *£2 in *R3, ¢f. also the footnote in the
Introduction.



gular standard region * in *R3, such that 2 = °x(D) is a standard representation of
%#x(D) in R3. It means that the nonstandard discrete set xz(D) in *R* has the features of
a certain standard region *{2 and a nonstandard point systems D in every configuration
% € Cs(D) has certain properties of a standard but ,,continuous” system®.

Let D be a nonstandard point system (D = D,) for an infinite positive integer ) and
% be its arbitrary configuration such that s € Cg(D) (i.e. (D) has a standard representation
in a form of a closure of a certain regular standard region). Let 2 = °¢(D) stands for
a standard representation of »#(D) and let us define

02 = {xlp(x)n*0Q + B},
ints*Q: = {x|u(x) c *Q}.

The foregoing sets are said to be S-boundary and S-interior of *£, respectively, cf. [2]
p. 107 - 108. Now putting Bound (D) = #(D)nds*2, Intx(D) = »(D)nints*£2, we shall
refer Bound (D) and Intx(D) to as a boundary and an interior, respectively, of a discrete
set %2(D) in *R®. It means that to every configuration x, » € Cs(D), of a nonstandard
point system D, we can uniquely assign a set of boundary points and a set of interior points.
Analogously, denoting by S an arbitrary smooth surface in 2 = °%(D) and putting L : =
= {x|pu(x)n*S # @}, Ls = *R®, we shall refer the set %(D)nLs to as a discrete material
surface in %#(D). Thus we conclude that for every » € Cs(D) there exists one-to-one corres-
pondence between certain discrete subsets of a discrete set 2(D) in *R® and certain smooth
manifolds of a closure of a regular region £ in R*. This correspondence is not only formal
but also gives interpretation of a material smooth surface or a boundary of a continuous
body in more physical terms of configurations of mass-point systems.

Now let I = (74, 7;) be an open interval in R and let *[51—> % € Cs(D) be a certain
motion of a nonstandard point system D. Let us.define the function @x 15 (©,1) —»
- p(@, 1) € R® setting p(@, t) = °%,(P) with @ = °xx(P), for every PeD, tel Let
p:2xT— R3be a function, such that p(- , 1) is smooth in £ and invertible in  for every
tel (i.e., detVp(@,t) > 0,0 € £Q), having continuous first and second time derivaties,
and satisfying conditions: p(@, 1) = °x,(P), p(@,t) = °%,(P), p(O,t) = °%,(P),O =
°%r(P), for every te*I, PeD. Function p(:) will be referred to as the deformation
function (related to the reference configuration xy € Cs(D)) for a motion *Ist— % €
€ Cs(D). Motions of D for which there exist deformation functions (related to a certain
reference configuration »z:D — *R%) will be called S-regular®®. Putting ¢(@5p, 1) =
= %,(P), PeD,te*l, we can define the function ¢:xx(D)x*I —» *R3, representing
the motion of D by use of the ,,microcoordinates” @p & xz(D), P € D, It can be seen that
the deformation function for this motion (if it exists) is nothing else but a standard part
of the function g, i.e., p(+) = °g(-) (c.f. [2], p. 115, for the definition of a standard part
of'a function). ' .

In the sequel we are to show under which conditions a motion a nonstandard point
system D (provided that D belongs to a certain nonstandard Newtonian mass-point
system) can be S-regular.

 The problem of different interpretations of discrete sets of points in *R? has been detailed in [13].
% A terminology used here slightly differs from that used in [13].



3. Mass-distribution In certain nonstandard Newtonian mass-point syste;ns

Let %z € Cs(D) be fixed reference configuration of a point-system D(D = D, for some
infinite n, n € *N\N) belonging to a certain Newtoilian mass-point system s = (D,
(mp)pen, (fp)ren, (opo)p.gep-n). We have “xx(D) = 2, £ being a regular region in
R3 (c.f. Sec. 2). Let 4 be an arbitrary subset of ¥*R>. To every 4 we shall assign (provided

that xg is fixed) the subset Dp(4) of D, putting
(3.1 Dg(d) :={P|P € DA xg(P) € A}.

Thus Dg(4) is a set of points of D which in the reference configuration #; occupy the
places in *R® belonging to 4.

Now let @ be an arbitrary point in S-interior of *Q, @ eints*2, and let r, stands for
an arbitrary but fixed positive standard number. Setting r,, = r,/m form = 1,2,3, ...
(m runs over the sequence of all positive integers, finite and unfinite) and denoting by
B(O, r,) the ball in *R? with a center ® and a radius r, we shall construct the sequence

— ] V! -
(3.2) 0m(O) o1B(O . ;‘;",)_ Peo,ﬁfe,.-",)) Mmp, m=1,2,3,...,
where vol B(@, r,,) = 4ran /3 is a volume of B(@, r,). We see that g,(0) is a mean mass.
density (in a ball with a center @ € ints*£2 and a radius r,) of a mass-point system under
consideration in its reference configuration. Sequences (3.2) are obviously not conver-
gent(l l)_ )

In what follows we shall apply the known concept of an F-limit of an infinite sequence
{a,}, n €*N of points a, in a certain metric space (*T, p) (cf. 2, p. 109). The space (*T, p)
is an extension of a metric space (7, o), where o is a distance function in 7 and hence
a distance function in *T. In the sequel *7 will always stand for a Euclidean space *R*, k
being a fixed positive standard integer. We say that point a, a € *T, is a F-limit of {a,},
a € Flima,, if and only if for every e € R* there exists n, € N* such that p(a, a,) < ¢
for all finite n, n > n,. If @ € Flima, is a finite point in *T (i.e., if there exist a standard
point x in *T such that p(a, x) € £(0)'?) then a standard point °e will be called S-limit
of a sequence {a,}. Mind that if @ = Flima, then for every b € u(a) (b is an arbitrary point-
in *T such that p(a, b) is infinitesimal positive number) we also have be Flima,. It
follows that F-limit of a sequence {a,} (if it exists) is not determined uniquely (but S-limit
is defined uniquely).

Now assume that there exists the standard continuous function gg:*£2 — *R* (ob-
tained as a unique extension of the continuous function gg:2 — R*), such that

3.3) or(®) € Flimp,,(@); @ € intg*(.

it follows that gz(@) = Slimp.(@), @ € 2. We have assumed here that every infinite
sequence {0,(0)}, @ eintg*2, has such finite F-limit gr(@), that gg( ) is a continuous

D The concept of a limit in an enlargement * MM of a certain structure N is analogous to that of
a limit in the structure Pt (cf. the Extension Principle in Introduction). For example, the real number
r € ¥R is, by definition, a limit point of a sequence {rm}, m & *N, in *R, if for every ¢ € *R* and for every
» € *N there exists the natural number n, n > », such that |r—r| < &.

U2 Finite points in *7" are also called near-standard points, cf. [2], p. 93.



function defined on 2 (mind, that Q < ints*Q2, where 2 is a set of all standard points
in ints*Q). The existence of a function gg(*) depends only on mass distribution (mp)pep
and on the choice of the reference configuration %z of D, g € Cs(D). The standard function
or*Q — *R* (if it exists) will be called S-density of mass in a reference configuration
#z of a mass-pointsystem. In what follows we shall assume that for the system (D, (#p)pep,
(fr)een, (0po)p.orepen ) there exists the reference configuration xz € Cs(D) with the
S-density of mass gz . It means that the mass-point system under consideration has certain
property of a material continuum which will be referred to as_S-regular mass-distribution
in a configuration x%g. We can observe that the masses mp, for every P € D, have to be
infinitesimal. '

The interrelation between the ,,discrete’ mass distribution xxz(D) > @p -+ m(@;p) € *R™,
where m(©,) = mp, and the ,,continuous” standard mass distribution gg:*{2 — *R™*,
can be written down explicity due to the following theorem on F-limits (cf. 121, p.- 110).
Namely, if {a,}, n € *N, is an internal sequence of points &, € *T having F-limit, then
there exists an infinite natural number 4, 2 € *N~_N, such that Flima, = 4, for every
infinite » and v < A (mind, that F-limits are not uniquely defined).

Since every infinite sequence (3.2) is internal and is assumed to have S-limit®?, we

obtain
o

3.4) 0x(0) = !

—_— *
oTB(O, 1) mp), ¥ < Ao, ¥ € FN WV,

PeD x(B(O, 1))

for every @ € 2 « *0. The RHS of Eq. (3.4) represents the standard part of an arbitrary
standard number in a bracket (i.e., for an arbitrary infinite positive integer », such that
v < o). Using Q-material coordinates ©@p, @p = xx(D), and setting mp(O) = mp, we
obtain an alternative form of Eq. (3.4), given by

1
volB (O, r,)

. OpeB(B,ry)Oxng(D)

for every @ € 2 « *Q2. Egs. (3.4) or (3.5) yield the direct interrelation between the ,,dis-
crete” mass distribution in a nonstandard mass-point system and a standard ,,continuous”
mass distribution. The physical sense of Egs. (3.4) or (3.5) is evident; the values of ,,com=
tinuous’ mass density at every standard point © € 2 of * are obtained (if they exist)
as standard parts of mean mass densities in a ball with a center in a point &, provided
‘that the radius r, of this ball is infinitesimal but, roughly speaking, not too small (i.e.,
r, > 1, for some infinite 2, and » € *N\N).

4
3.5  ox(®) = ( m(@,,)), » < Aoy ¥ EXN WV,

4. Distributions of external and Internal forces In certain
non-standard Newtonlan mass-point systems.

Now let *ITet— %, € Cs(D) be an arbitrary S-regular motion of the nonstandard
point system and let us construct the sequences

13 We confine ourselves to mass-point systems with S-regular mass-distribution in a reference
.configuration xg.



“.n b (O, 1) = ;/OI—B(I('-’),—I‘,"—) Z fl;(xt(P)i J.‘z(P)),

PeD(B(O, r,)

dm(@’ t) VOIB(@ ’m) Z 2 f;’Q( (”!(P)’ xt(Q))

PeDR(B(O rm))
QeD\ (P}

forevery @ eintg*2, t € *J. It can be easily seen that b,(@, 1), d (@, 1) are mean densities
of external and internal forces (in a ball with a center @ and a radius r,, = r /m, me *N*)
for a certain S-regular motion of a mass-point system under consideration. As a rule, the
sequences (4.1) are not convergent. However, it may happen that the sequences {b,,(@, t)},
{d,(0, 1)} have S-limits for every @ eints*Q2, t e *I. In what follows we shall confine
ourselves only to such non-standard mass-point systems s = (D, (mp)pzp, (fe)ren s
(6r@)p.0yeron )> that for every S-regular motion of D there exist the standard continuous
functions bz(@, 1), dR(@ 1), @ € *Q, t e *I (i.e., the extensions of continuous functions
be:QxT— R3, dg:2x I — R? respectively), such that -~

be(@, t) = Slimb (0, 1).

(4.2) . . . =
_ dy(©, 1) = Slimd,(@,1); O eints*Q2, 1 e *I.

From the foregoing assumption it follows that bz(@,t) = Slimb, (@, 1), dg(@, 1) =
= Slimd,,(@, 1) for every standard (@,t)eQxI < *Qx*I. The standard functions

R FQ X * o *R3 de:*Qx *] > *R3 will be called S-body force and S-density of in-
teraction, respectively, related to a reference configuration xg, %g € Cs(D).

Since the infinite sequences 5,,(@, 1), ,(@, t) are internal, then by virtue of a theorem
on Flimits (cf. Sec. 3) we obtain

° 1 .
bp(@,1) = (W) 2 So(3,(P), “:(P))), v < A,

PeDg(B(0, )

(4.3)
0 1
dg(0,1) = (;OI—B(@-:I'—J ZZ fpo("r(P),"r(Q))), v < 4y,

PEDR(B(Q )
/ QeD\{P}
for every standard (@, 1) € @x1 = ¥*Qx*I,» € *N\N.

Thus we conclude, that the Newtonian mass-point system under consideration, in
an arbitrary S-regular motion of its point system D, has certain features of a material
continuum. These features are expressed by the existence of uniquely defined continuous
fields bg:Q2x I — R3, dg:Q2 x I — R3, characterizing the distribution of external and internal
forces. At the same time Egs. (4.3)-yield an interrelation between the system of forces in
a ,,discrete” mass-point system and a certain ,,continuous” distribution of forces (S-body
force and S-density of interaction). The physical interpretation of the RHS of Egs. (4.3)
is rather clear; we deal here with certain mean densities of forces in an infinitesimal ball
B(©, r,) which, roughly speaking, is not sufficiently small (has an infinitesimal radius
ry but greater then r), 1 = max(4,, 1,)).



5. Passage to standard laws of motion.

From now on we shall assume that the Newtonian nonstandard mass-point system
s = (D, (mp)pen, (fe)ren> (Opa)p,oep-p) under consideration satisfies all assumptions
introduced in Secs. 3.4. Thus we assume that there exists the reference configuration
#z: D — *R3, such that 2 = %,(D) is a closure of a certain regular region £ in R* and
such that the function pg:2 — R*, defined by Eq. (3.4), exists and is continuous in Q.
Moreover, we assume that for every S-regular motion of D there exist functions bg:82 x
x I — R3, dg:Q xT— R3, defined by Egs. (4.3), which are continuous in 2 x 7. A Newto-
nian mass-point system satisfying the forementioned conditions will be called regular.
Now the question arises which necessary conditions are imposed on S-regular motion
of D (if it exists) by Newton’s equations of motion (1.1), (1.2) for a regular Newtonian
mass-point system. -

To obtain these conditions let us observe that for every @ €2, tel, me*N*, from
Egs. (1.1) it follows that

l R . 1 Sw , )
Vol B(O, ) 2 mp(P) =SB0, 7y So(#(P), 3,(P))~
(5.1 o PeD (B(O,ry)) ™ PeD (B(a ru))

volB(@ ) 2 2 Jra ("r(P),%(Q)) =0,

PeD(B(O, .,,,))
QeD\({P

where *I's t — %, € C(D) is a motion of the point system D. Let Eqgs. (5.1) be satisfied by
a certain S-regular motion. It means that
»,(P) = p(0, t)+u,(P),
5.2 #(P) = p(O, t)+i,(P),
%(P) = p(O, 1)+ (P); @ = °xz(P),
hold for every P e D, t e*], where u,(P), it,(P), it,(P) afe certain infinitesimal vectors

in *R3, Substituting the RHS of Eq. (5.2) into Eq. (5.1) and putting m = v, where » < 4,
A = max(dy, 4., 4,) and » e *N\WV, cf. Eqgs. (3.5), (4.3), we shall arrive at the relation

which has to hold for every @ € 2, r € I. Passing from Egs. (5.1), (5.2); to Eqgs. (5.3) we
have taken into account formulas (3.5), (4.3) and a relation

o 1 j‘

5.4 L) w(P)) =

6.4 _ (volB(@, ) mPu,(P)) 0, ©ef.
PeDR(B(O, )

In order to prove that Eqgs. (5.4) holds let us observe that the RHS of the foregoing formula

can be interpreted as S-limits of internal sequences

' 1
5.5 — -S-' o N+
(5.5) . Vol B(@, 7 mpu,(P), me*N
PeD (B0, 1))



But the existence of F-limit of an infinite sequence {a,}, n € *N, of points in a certain
metric space *7T depends only on terms a, for n € N. Because all these terms for sequence
(5.5) are infinitesimal (it follows from the fact that all such terms of sequence (3.2) are
finite) then S-limit of this sequence is equal to zero and Eq. (5.4) hold for every © e 2.

Eqs. (5.3) constitute the interrelation among the deformation function p:QxJ — R3,
S-density of mass pg:2 — R*, S-density of interaction dz:2x7J — R3 and S-body force
bp:R2x I > R3. Thus Eqs. (5.3) can be called standard laws of motion and their form coin-
cides with that of laws of motion for a certain material continuum, occupying in the refe-
rence configuration a regular region £2 in R*. Because the interactions have been assumed
non-local, we do not deal here with any contact forces (which are introduced and detailed
in [15]). It must be emphasized that Eqs. (5.3) have to hold only if the motion of a nonstan-
dard point system D, satisfying Egs. (1.1), (1.2), is S-regular. At the same time Eq. (5.3)
(in which p(@, t) = ®xg(P), @ = ®xx(P), cf. (5.2);( together with Egs. (3.4), (4.3) re-
present the necessary condition imposed on the S-regular motion of a regular Newtonian
mass-point system (provided that such motion exists).

6. Passage to standard constitutive relations.

Now let us substitute the RHS of Egs. (5.2),,, into Eqs. (4.3),. Setting
A (p(O, 1), D(O, 1); t(P), u(P)) =
= fo(p(@, )+u,(P), p(O, )+, (P))~fo(p(O, 1), P(O, 1)),

let us assume that the relation

0 1 7 ) .
(6.1) (WB(Tr,) Z Aﬁ»(p(@,t),p(('),t),u,(P),u,(P)))EO

PeDy(B(0,1y))

holds for every infinitesimal u,(P), i,(P). Let us also define the function pr:£2 x R®x R3 —
- R3 by means of

(6'2) ﬂR(@aP(@’ t),j)(@,t))E (m(l—@T,) Z fP(p(@’t)a P(@; t)))

PeDR(B(@, 1))

In Egs. (6.1), (6.2), as usual, we have v € *N~\ N and v < A for a certain infinite positive
integer A. Thus we conclude that if the conditions of the form (6.1) are satisfied for every
O € 2 then we can characterize the S-body forces by the formulas

(6'3) bR(@; t)= BR(@ap(@a t)9 .i’(@’ t))a @EQ’tEI_a

with the RHS of Egs. (6.3) defined by Egs. (6.2). Egs. (6.2), (6.3) yield the interrelation

. between the ,,continuous” S-body force and the ,,discrete’ distribution of external forces
in the regular Newtonian mass-point system under consideration. This interrelation is
valid under the conditions that the value of S-body force in any S-regular motion of a
nonstandard point system D (cf. Sec. 2) depends only on the deformation function for
this motion. It can be shown that such situation will take place if the external fields in
*R3, determining the form of functions fp:*R3x *R® — *R3, are standard.



Now let us detail the possible interrelation between the S-density of interaction dg (@, 1)
and the deformation function p(-) of an arbitrary S-regular motion of a nonstandard
point system D. To this aid we shall use Eq. (4.3), with the functions fpq:*R* x R* — *R?
defined by Eq. (1.2). For every S-regular motion *I3 t =%, € Cs(D) with the deformation
function 2xI3(0,1)— p(@,t)e R? (where p(@,1t) = °%,(P) with @ = %xx(P) cf.
Sec. 2) we have ‘

(6.4) %,(P) = p(@p, )+w,(P); ©Op=xx(P),PeD, te*l,

where now p:*@Q x *I - *R? stands for an extension of the deformation function (which
can be called a standard deformation function) and w,(P) are infinitesimal vectors in *R3,
Instead of S~material coordinates @ = %%gx(P) (macro-coordinates), which have been used
before (cf. Eq. (5.2)), we apply now Q-material coordinates @p = xg(P) (micro-coordi-
nates). If w,(P) = 0, P € D, t € ], then Eq. (6.4) will tepresent a special S-regular motion
of D in which material points are ,,frozen” in a certain standard ,,material continuum”;
motion of this ,,material continuum” is described by a standard deformation function
PF*Rx*I5 (0,1) - p(@,1) € *R? (i.e., by an extension of a deformation function for
the motion of D). -

In what follows we shall confine ourselves to a certain subclass of a class of all S-regular
motions of a point system D under consideration. This subclass contains motions in which
the values of a function w,(P),PeD,te *I in Eq. (6.4) are not only infinitesimal but
also, roughly speaking, ,,sufficiently small”. To be more precise we shall assume that for
every pair (P, Q) of interacting material points (i.e., points for which f»o( *) is not identi-
cally equal to zero) in the subclass of motions under consideration we have

(6.5) w,(P)—w,(Q) = E(P, @, )[x.(P)—=/(Q)],
where E(P, Q,t) is a certain 3 x 3 matrix of infinitesimal numbers. Eq. (6.5) can be also
written down in a form

.W,(P)— wl(Q) _E O'(JC,(P)'*M,(Q)),
where by o(x), x = (x;, x,, x¥3) € *R3, we denote the set of all triples y= (y,, y,, y3) € *R3,
such that y; = Ef x;, i,/ = 1,2,3, where Ef are infinitesimal (cf. also [2], p. 79). By
virtue of Eq. (1.2), for a class of S-regular motions of D satisfying Eq. (6.5), we obtain

(6-6) Sfro (x,(P), xr(Q))—fl;Q (p(@m ), P(Qo, 1)) eo'(fpo (_”:(P), ”r(Q))),

for every P, Qe D, P+ Q,te*]. It means that, roughly speaking, the interactions in
a motion determined by Eqs. (6.4), (6.5) are ,,nearly the same” as the interactions in a mo-
tion characterized by Eq. (6.4) with w,(P) = 0 for every Pe D, t€ *J. Motions of D
satisfying Eq. (6.5) (for every pair of interacting points P, Q and every ¢ € *I) will be called
-strictly S-regular. '

For motions of D which are strictly S-regular it can be shown that the S-density of
interactions is uniquely determined by the deformation function. Namely from Eq. (6.6)
it follows that

. _1 -
(67 (oisers D ) Fralu(P)m(@)] =

PeDg(B(O, r»)
QeDN\{P}



(6.7) [cont.] = (m 22 fPQ(p(GP’ t), p(@q, f))),

' PeDp( B(O, ry))
QeDN{P)

for every @ € 2, v e *N~\_N and » < I
Introducing the functionals

o 1 7 U
(6.8) Dr(@,p(, 1) = (m,—m) PDZ(/B%_J\.)) Sro(p(Op, 1), p(O,, f))),
QDN(B)

defined for every @ € 2 on the space of all deformation functions p:Qx 13 (@, 1) —
- p(@, 1) € R* (and hence on the space of all standard deformation functions p:*Q2x *I5
5 (0,1) - p(O, 1) € *R?) and taking into account Egs. (4.3), and (6.7), we arrive at the
relation

(6.9) dr(@,1) = De(@,p(- ,1)); @ €Q, 1€l

Eqs. (6.9), (6.8) characterize the interrelation between the ,,continuous” S-density
dr( -, t) of interactions and the ,,discrete” distribution of interactions in the regular New-
tonian mass-point system. This interrelation holds in any strictly S-regular motion of the
point system D under ¢onsideration™®,

Formulas (6.3), (6.9) can be interpreted as the constitutive relations of a certain non-
local elastic ,,material continuum”, motion of which is described by an arbitrary defor-
mation function p:2xI3 (0,t)— p(@,t) e R3. The properties of this ,,material con-
tinuum’ are uniquely determined by the properties of a regular Newtonian mass-point
system, provided that we confine ourselves to the strictly S-regular motions of its point
system.

7. Conclusions.

Summarizing the obtained results wé shall formulate the following assertions:,

1. Every S-regular motion of an arbitrary regular Newtonian mass-point system®>
(if it exists) has to satisfy Eq. (5.3) together with Eqgs. (3.5), (4.3) and with p(0, ) =
= %, (P), ©@ € %%, (P), for every P D, te I

2. If there exists strictly S-regular motion of a certain regular Newtonian mass point
system then the deformation function for this motion has to satisfy Eqs. (5.3), (6.3), (6.9)
with denotations (3.4), (6.2), (6.8).

3. Every regular Newtonian mass-point system uniquely determines certain non-local
elastic ,,material continuum™ with governing relations (5.3), (6.3), (6.9). The continuous
fields in these governing relations are expressed in terms of Newtonian mass-point mecha-
nics by Egs. (3.4), 6.2), (6.8) for every strictly S-regular motion of the Newtonian mass-
point system under consideration (if it exists).

U9 This interrelation also holds in any S-regular motion satisfying Eq. (6.7)

4% A motion of the Newtonian mass-point system was defined in Sec. 1 as the motion of its point
system satisfying Newton’s equations (1.1}, 1.2).



It must be remembered that every regular Newtonian mass-point system is, by defi-
nition, a nonstandard Newtonian mass-point system. The number of points in this system
is equal to a certain fixed infinite natural number and the masses of points are infinitesimal,
For the class of motions under consideration (for S-regular motions) also the values of
-external forces acting on the points as well as the values of interactions between the points
are infinitesimal. The assertions listed above, which interrelate certain nonstandard ,,discre-

e” functions (i.e., defined on. xx(D) = *R%) with standard continuous fields (defined
on %%g(D) = R®) can be expressed exclusively in terms of the nonstandard analysis. On
the other hand, resulting relations (5.3), (6.3), (6.9), which can be interpreted as descri-
bing certain ,,material continuum”, are standard. Thus the method of the nonstandard
analysis applied to Newtonian mass-point mechanics makes it possible to define the class
.of nonstandard mass-point systems (which were called regular Newtonian mass-point
systems) having properties of material continua (for more general approaches cf. [13]).
In this paper, starting from Newtonian mechanics, we have derived governing relations
of a nonlocal continuum mechanics; passage from Newtonian mechanics to the relations
of the elasticity theory will be described in the next paper (cf. also [15]). However, the
non-standard methods can be also applied directly to some problems of continuum me-
«<hanics, [16, 17].
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Pesmwome

HECTAHIAPTHBIN AHAJIM3 1 CBSI3E MEXIY MEXAHUKOM MATEPUAJILHEIX TOYEK
1 MEXAHMKOM KOHTUHYVYM,

B pafore JOKa3aHO, YTO YYHTHLIBAS METOMBI HECTAHJADTHOTO AHANMGA M3 YPABHEHMH MeXamKu
HroroHa CHCTEMbl MATEPHAIBHLIX TOUEK MOMHA BLIBECTH HENOCIE[CTBEHHO (DYHAAMEHTAalEHLIE ypaB-
' HEHHST MEXAHWKM KOHTHHYYM 6e3 IIpUMEHEHHST anpOKCHMAIlAM M FPaHNYHBIX IEPEXOJOR.

Streszczenie

O N ESTANDARDOWEJ ANALIZIE I ZWIAZKU MIEDZY MECHANIKA PUNKTOW
MATERIALNYCH A MECHANIKA KONTINUUM

W pracy wykazano, ze korzystajac z metod niestandardowej analizy mozna wyprowadzi¢ podstawowe
réwnania mechaniki kontinuum bez stosowania aproksymacji i przej$¢ granicznych bezpofrednio z réwnan
mechaniki Newtona ukladéw punktéw materialnych.

INSTYTUT MECHANIKX
UNIWERSYTET WARSZAWSKI



