IN TERRELATION BETWEEN MECH AN ICS OF MASS-POIN T SYSTEMS AN D CON TIN U U M MECH AN ICS

CZESŁ AW WOŹ N U K (WARSZAWA)

 we recapitulate the key properties of an enlargement *93? = (*X, *Af) of 9ft = (X, M) by the principles stated below:

1. Permanence Principle. Every mathematical statement which is meaningfull and true for 931 is also meaningfull and true for *93t, provided that it is interpreted exclusively in terms of internal entities, i.e., entities of *M.

2. Extension Principle. Every mathematical notion which is meaningfull for SCR is also meaningfull for *93?. It follows that any entity of SCR extends naturally and uniquely to an entity of *93?. The extended entity is called standard in *93?.

3. Enlargement Principle. Every standard set *S of *93? (3> which is infinite, and only, in this case, contains nonstandard elements, i.e., *S"\ S ^ 0, where S is a set of all standard elements of *S.

(1) We assume that elements of X are not sets, i.e., if x eX then x =£ 0 and the assertion / e x is always false, cf. [11], p. 11.

( 2) We have assumed that a single formal language describes both structures 9JI and * 9JŁ .

(3)

Sets are treated as a special kinds of relations; If r eM then the corresponding standard entity of *M will be denoted by *r. Thus *S is an extension of a set S in M. ' PaD 

4. Externity Principle. Every infinite set S which consists of only standard elements does not belong to *M (is said to be external in *9K).

The enlargement *2Jt of a given mathematical structure 9Ji is not defined uniquely. H owever, from a point of view of applications, all we need is that such enlargement exists and has the relevant properties outlined above. Putting X = R and assuming that M is the set of all relations for which the real number system R is the underlying set (4) , we shall refer the enlargement * 501 = (*X, *M) to as a nonstandard model of analysis. We have RŚ £ *R where R is a set of all standard real numbers in *9Jt Moreover, *R constitutes a non-Archimedean ordered field, i.e., it contains positive numbers which are greater then any standard number (infinite positive real numbers). The reciprocals of infinite positive real numbers are infinitesimal numbers; they are positive and smaller then any positive standard real number. The set of all infinitesimal numbers is denoted by ^(0) and is said to be the monad of zero. By the monad of an arbitrary standard number r,r e R, we mean the set (i{r) := {a\a e *R, a-r e / u(0)}. Every finite number of *R (i.e., the number which is not unfinite) can be uniquely represented by a sum r = °r+e, where °r is a standard number and e is an infinitesimal number, °r e R, e e ^(0). The number °r is called the standard part of a finite number r. Analogously, in every Euclidean space *R n we define the set R", R" c *R", of standard points, and for every point x e *R" we define its monad fi(x) putting fx{x) := {}>}\Q(X,y) 6/ ^(0)}, e:*R"x*R" -+ *R being the distance function in *R . Points of *R with all finite coordinates are said to be finite. Every finite point x has a unique representation x = "x+8, with °x as a standard point and 5 as an infinitesimal vector (all components of S are infinitesimal numbers). For further informations the reader may consult ref. [START_REF] Robinson | Non-standard analysis[END_REF][START_REF] Robinson | Non-Standard Analysis[END_REF][START_REF] Machover | Lectures on the Non-Standard Analysis[END_REF][START_REF] Davis | Applied Non-Standard Analysis[END_REF].

In this paper we are to show that, using the methods of the nonstandard analysis, the fundamental relations of continuum mechanics (for an elastic response) can be derived directly from the N ewtonian mass-point mechanics (cf. also [START_REF] Cz | On the Non-Standard Interrelation Between Mass-Point Mechanics and Continuum Mechanics[END_REF]). To do this we shall include the basic relation of N ewtonian mechanics into a certain structure 9JI = (X, M) and then reinterpret them within an enlargement *SR = (*X, *M) of 5CR. This procedure was detailed in [START_REF] Cz | Analiza niestandardowa w mechanice newtonowskiej punktu materialnego (N onstandard analysis in N ewtonian mass-point mechanics[END_REF] and in a simplified form will be outlined in Sec. 1. Then we shall prove that there exists a class of "nonstandard" mass-point systems which have "standard" properties of some continuous systems. The presented approach has two main advantages. Firstly, it treats the continuum mechanics as a special case of the N ewtonian mass-point mechanics. Secondly, it yields an interpretation of the basic concepts of continuum mechanics (such as a mass density, body force, stress tensor, strain energy function, etc.) in terms of the concepts of mass-point mechanics. In the first case the non-standard approach to continuum mechanics is conservative because any standard result that has been obtained by nonstandard methods can be also obtained without using these methods, [START_REF] Robinson | Non-Standard Analysis[END_REF]. H owever, the methods of the nonstandard analysis are more desirable from a purely analytical point of view, mainly by the avoidance of passages to a limit at different stages, [START_REF] Kelemen | The nonstandard k$%(x): model[END_REF]. They are also more desirable from an heuristic point of view, namely the obtained standard w The set M of "all" relations based on R contains only relations of a definite type, i.e., we exclude from M certain abnormal relations such as sets containing simultaneously individuals and sets of individuals, etc, cf. [START_REF] Robinson | Non-standard analysis[END_REF][START_REF] Robinson | Non-Standard Analysis[END_REF][START_REF] Luxemburg | A General Theory of Monads[END_REF]. relations of continuum mechanics describe certain properties of some "nonstandard'' mass point systems and are not limit cases of the relations of mass-point mechanics. As we have mentioned above, the nonstandard passage from N ewtonian mass-point mechanics to continuum mechanics also yields an interrelation between the known continuum concepts and those of the mass-point mechanics. Such interrelation can be formulated only in nonstandard terms. It must be also emphasized that the nonstandard formulation of the N ewtonian mass-point mechanics yields more extensive class of mathematical models of the real bodies then the classical formulation. The nonstandard terms used in a description of different phenomena within mechanics have, as a rule, well determined physical meaning. For example, the infinitesimal interpartide distances or the infinitesimal masses of points can be treated as distances and masses, respectively, which can not be neglected but are too small to be measured in a class of problems under consideration, [START_REF] Cz | Analiza niestandardowa w mechanice newtonowskiej punktu materialnego (N onstandard analysis in N ewtonian mass-point mechanics[END_REF]. At the same time the standard parts of finite numbers can be treated as suitable approximations due to the character of the mathematical models of physical problems we deal with.

1. N onstandard model of N ewtonian mechanics.

To develop N ewtonian mechanics of mass-point systems within certain mathematical structure 9Jt = (X, M), we shall assume that R < = X and Ji c X, Ji being certain infinite but countable set of elements called points. Since we are to deal with finite systems of points, we shall assume that there is known an arbitrary but fixed sequence < p={A,W; UA = if, A, = B.

Every D, D c Jl, such that D = D" for some positive integer n, is called a point system.

By C{D) we shall define the set of all injections xiflsf-t x{P)sR 3 .

A continuous mapping la t -* x, e C(D), I being an open interval of R, such that it t (P), x t (P) exist for every teI,PeD, will be called a motion of D. Let D ° D := {(P, Q)\ P, Q e D, P ź Q}-By Jf we shall define the set of all quadruples (D , (m P ) PeD , (f P ) PED , (.OPQXP^GVOD) where D e {D lt D 2 , D 3 , ...}, m P sR + and f P :R 3 xR 3 -+R 3 , c PQ :R + -+R; a PQ = are sufficiently regular functions. An arbitrary element of JV will be called N ewtonian mass-point system; D is a point system, m P is a mass assigned to a point P, f P (x t (P), ic, (P)) t B I, is an external force acting at P in an arbitrary motion of D and o> Q (g( %t{P), *t(2) )). t el (Q:R 3 XR 3 -» R is a distance function) will be treated as a value of an interaction force between points P, Q e D in this motion. As a basic statement of N ewtonian mechanics we shall assume that for every N ewtonian mass-point system (D, (m P ) Pe o,{fp)peD, (°1PQ)(P,(?)D OD ) J a motion of its point system D has to satisfy the relation We have tacitly assumed here that^F is a set of all unconstrained N ewtonian mass-point systems (cf. also [START_REF] Cz | Analiza niestandardowa w mechanice newtonowskiej punktu materialnego (N onstandard analysis in N ewtonian mass-point mechanics[END_REF]). Substituting RH S of Eqs. (1.2) into Eqs. (1.1) we arrive at the well known N ewtonian equations. Every motion of a point system D satisfying N ewton equation (i.e., Eqs. (1.1) with the denotations (1.2)) will be referred to as motion of a N ewtonian mass-point system (D, (m P ) PED , {f P ) PeD , OW^^D -B) •

Passing to an enlargement *3ft = (*X, *2K) of 9ft = (X, M), we obtain *R <= *X, *J{ c *X. A sequence <p is now uniquely extended to a standard sequence *q = {A,} ne , w+ with (_J Z>" = ' *J(, D" -n, where n runs overall positive integers *N + (finite and infinite).

n = X

The set C(D) (here and in "what follows D -D n for some n e *N + ) analogously as before, is the set of all internal injections x.Da P -+ %{P) e *R 3 , which will be called configurations of D. Symbol / stands now for an arbitrary internal interval of *R. An arbitrary internal continuous mapping la t-*it t e C{D), such that k,{P), yc,(P) exist for every t s I, P e D, is said to be a motion of D. The set Jf extends uniquely to a standard set *JV of all quadruples s = (D , (m P ) PeD , {f P ) PeD , (O> Q ) (P , Q)6 D<,D), where

f P :*R 3 x*R 3 -> -v *R
3 and a PQ : *R + -+ *R, a PQ = a QP , are sufficiently regular internal functions. An arbitrary element 5 of *JV will be called a N ewtonian mass-point system with D as a point system (without any specification; mind, that D = D" for some n e *N + ), m P as a mass of P, f P (x t (P), x,(P)) as an external force acting on P and CT P0 (p(x t (P), ^tiQ)))

as a value of an interaction between P, Q in an arbitrary motion of D (by the definition every motion is an internal mapping). By ./ / " we shall denote the set of all quadruples (D, (m P ) P< = D , {Jp)peD,{opą j iPi Q^D aD ) consisting exclusively Of standard elements (here D = D n for some standard n, n e N + ); elements of Jf will be called standard mass-point systems (5> -It is obvious that JV $ *Jf, i.e., there exist nonstandard mass-point systems (cf. also the Enlargement Principle). Such systems have no counterparts in the known formulation of mechanics. Thus, in the nonstandard model of N ewtonian mechanics, we deal with more extensive class of mass-point systems (i.e., more extensive class of mathematical models of certain physical phenomena) then that in the classical (standard) model of N ewtonian mechanics. The basic statement of N ewtonian mechanics (which can be formulated within a certain formal language, cf. [START_REF] Robinson | Non-Standard Analysis[END_REF], p. 60), formulated above, is also true

in *93t = {*X, *M). ft means that for every s = {£», (m P ) PsD , (f P ) PeD , {0PQ)(P,Q-,<=D°D),
motion of D has to satisfy Eqs. (1.1), (1-2). Thus the form of N ewton's equations of motion remains unchanged after passage to a non-standard model of N ewtonian mechanics. At the same time these equations now describe more extensive class of mathematical models of physical phenomena then the ,,standard" equations. G enerally speaking, within nonstandard model of N ewtonian mechanics we can deal with point systems D which are infinite from the "standard" point of view (i.e., D = n where n e *N\ N is a fixed but (5) Mind that uV is an external relation (cf. the Externity Principle).

gular standard region *Q in *R 3 , such that Q = °xR (D) is a standard representation of x R (D) in R 3 .
It means that the nonstandard discrete set x R (D) in *R 3 has the features of a certain standard region *Q and a nonstandard point systems D in every configuration x e C S (E>) has certain properties of a standard but "continuous" system (9) . Let D be a nonstandard point system (£> -£>") for an infinite positive integer n) and x be its arbitrary configuration such that x e C S (D) (i.e. x(D) has a standard representation in a form of a closure of a certain regular standard region). Let Q = °x(D) stands for a standard representation of x(D) and let us define

0},

The foregoing sets are said to be S-boundary and S'-interior of *Q, respectively, cf. [START_REF] Robinson | Non-Standard Analysis[END_REF] p. 107 -108. N ow putting Boundx(D ) = x(D)nd s *Q, Intx(D ) a x(D)nint s *Q, we shall refer Bound x(D) and Intx(D ) to as a boundary and an interior, respectively, of a discrete set x{U) in *J? 3 . It means that to every configuration x,x e C s (£>), of a nonstandard point system D, we can uniquely assign a set of boundary points and a set of interior points. Analogously, denoting by S an arbitrary smooth surface in Q = °x(D) and putting L s : -= {x\ -/ i(x)n*S =£ 0}, L s c *.R 3 , we shall refer the set x(D)nL s to as a discrete material surface in x(D). Thus we conclude that for every x e C S (D) there exists one-to-one correspondence between certain discrete subsets of a discrete set x{D) in *R i and certain smooth manifolds of a closure of a regular region Q in R 3 . This correspondence is not only formal but also gives interpretation of a material smooth surface or a boundary of a continuous body in more physical terms of configurations of mass-point systems.

N ow let / = (T 0 , T t ) be an open interval in R and let *Is t -+ x t e C S (D) be a certain motion of a nonstandard point system D. Let us define the function QXIB (0,t)^> -+p(&, t) eJ? 3 setting p(0, t) = °xt (P) with 0 = °xR (P), for every P e D, tel. Let p :Q x / -• R 3 be a function, such that p(' , t) is smooth in i2 and invertible in Q for every tel (i.e., detV^(ć > , ?) > 0, 0 eQ), having continuous first and second time derivaties, and satisfying conditions: p(0, t) = °xt (P),p(0, t) = °k,(P), p{0, t) = o x,{P),'0 = "^(P), for every t e *1, P e D. Function / ?(-• ) will be referred to as the deformation function (related to the reference configuration x R E C S {D)) for a motion *Js t -> x t e e C S (Z>). Motions of Z> for which there exist deformation functions (related to a certain reference configuration x R :D -+ *i?

3 ) will be called 5-regular (10) . Putting q(0 P , t) = = x t (P), P 6 D, t e*I, we can define the function q:x R (D)x */ -• *R 3 , representing the motion of D by use of the "microcoordinates" 0 P e x R {D~), P e D. It can be seen that the deformation function for this motion (if it exists) is nothing else but a standard part of the function q, i.e., / >(• ) = °q( • ) (c.f. [START_REF] Robinson | Non-Standard Analysis[END_REF], p. 115, for the definition of a standard part of a function).

In the sequel we are to show under which conditions a motion a nonstandard point system D (provided that D belongs to a certain nonstandard N ewtonian mass-point system) can be S-regular. (9) The problem of different interpretations of discrete sets of points in *R 3 has been detailed in [START_REF] Cz | Non-Standard Analysis and Material Systems in Mechanics[END_REF].

(l0> A terminology used here slightly differs from that used in [START_REF] Cz | Non-Standard Analysis and Material Systems in Mechanics[END_REF], belonging to a certain Newtonian masspoint system s = (D,. (m P )peD, (fp)psD, (ffpQ)(F,Q)eD,fl) We have °xR (D) = Q, Q being a regular region in R 3 (c.f. Sec. 2). Let A be an arbitrary subset of *i? 3 . To every /I we shall assign (provided that x R is fixed) the subset D R (A) of D, putting Thus B R (A) is a set of points of D which in the reference configuration x R occupy the places in *R 3 belonging to A. Now let 6 be an arbitrary point in Sinterior of *Q, 0 e int s *i3, and let i\ stands for an arbitrary but fixed positive standard number. Setting r m -i\/m for m = 1,2, 3, ... {m runs over the sequence of all positive integers, finite and unfinite) and denoting by B{0, r m ) the ball in *R 3 with a center 0 and a radius r, we shall construct the sequence

(3.2) Q m (&) =I •£ m P) m= 1,2,3,..., lB(0, r m )
where voli?(0, r m ) = Ar^n/'h is a volume of B(&, ;•",). We see that g m ( 0) is a mean mass density (in a ball with a center 0 e int s *i2 and a radius /",) of a masspoint system under consideration in its reference configuration. Sequences (3.2) are obviously not conver gent"».

In what follows we shall apply the known concept of an Flimit of an infinite sequence {«("}, ne*N of points a n in a certain metric space (*T, g) (cf. 2, p. 109). The space (*T, Q} is an extension of a metric space (T, Q), where Q is a distance function in T and hence a distance function in *T. In the sequel * Twill always stand for a Euclidean space *R k , k being a fixed positive standard integer. We say that point a, ae *T, is a .Flimit of {<*"},. a e .Flimff", if and only if for every e e R + there exists n 0 e N + such that c>(a, a n ) < E for all finite n,n > n 0 . If a e .Flim<i" is a finite point in *T (i.e., if there exist a standard point x in *T such that q{a, x) e ,a(0) 12) ) then a standard point °a will be called Slimit of a sequence {a t }. Mind that if a = Flima" then for every b e ft(a) (b is an arbitrary point in *T such that g(a;b) is infinitesimal positive number) we also have b e Flima n . It follows that Flimit of a sequence {«"} (if it exists) is not determined uniquely (but Slimit is defined uniquely). Now assume that there exists the standard continuous function Q R :*Q * *R^ (ob tained as a unique extension of the continuous function

Q R :Q * R + ), such that (3.3) Q R (0) 6 FlimQ m (0); 0 e int s *Q.
It follows that Q R {0) -Sl\mc> m (0), 0 eQ. We have assumed here that every infinite sequence {£m(<=>)}, 0 e int s *Q, has such finite Flimit Q R (0), that Q R ( •) is a continuous (11) The concept of a limit in an enlargement * 331 of a certain structure 9JŁ is analogous to that of a limit in the structure SD J: (cf. the Extension Principle in Introduction). For example, the real number r e*R is, by definition, a limit point of a sequence {r m }, m e *JV, in *R, if for every e e *R + and for every v B *N there exists the natural number n, n > v, such that \ r-r"\ < e.

<12) Finite points in Tare also called near-standard points, cf. (if it exists) will be called ^-density of mass in a reference configuration x R of a mass-point system. In what follows we shall assume that for the system (D, (m P ) PED , (fp)peD, (<7pQ\ p,Q)eD°D) there exists the reference configuration x R eC s (D) with the S'-density of mass Q R . It means that the mass-point system under consideration has certain property of a material continuum which will be referred to as. S'-regular mass-distribution in a configuration x R . We can observe that the masses m P , for every P e D, have to be infinitesimal.

The interrelation between the "discrete" mass distribution x R {D) 3 f -> m(0 P ) s *R + , where m{0 P ) = m P , and the "continuous" standard mass distribution Q R :*Q -> *R + , «an be written down explicity due to the following theorem on F-limits (cf. [START_REF] Robinson | Non-Standard Analysis[END_REF], p. 110). N amely, if {<*"}, n e *N, is an internal sequence of points a n e *T having F-limit, then there exists an infinite natural number X, X e*N\ N, such that Flima" = a, for every infinite v and v < X (mind, that F-limits are not uniquely defined).

Since every infinite sequence (3.2) is internal and is assumed to have 5-limit (13) , we obtain '4

for every 0 e Q c *Q. The RH S of Eq. (3.4) represents the standard part of an arbitrary standard number in a bracket (i.e., for an arbitrary infinite positive integer v, such that v < X o ). U sing g-material coordinates © P ,0 P -x R (D), and setting m P (&) = m P , we obtain, an alternative form of Eq. (3.4), given by

(3 -5)
for every 0 BQ C *Q. Eqs. (3.4) or (3.5) yield the direct interrelation between the "discrete" mass distribution in a nonstandard mass-point system and a standard "continuous" mass distribution. The physical sense of Eqs. (3.4) or (3.5) is evident; the values of "coiTtinuous" mass density at every standard point 0 e Q of *Q are obtained (if they exist) as standard parts of mean mass densities in a ball with a center in a point 0, provided that the radius / • " of this ball is infinitesimal but, roughly speaking, not too small (i.e., </ * • > > r x c for some infinite X o and v e *N\N). for every 0 e int s *.Q, t e*I.It can be easily seen that b m (0, t), d m (0, t) are mean densities of external and internal forces (in a ball with a center 0 and a radius r m = r ly /?H, m e *JV + ) for a certain Sregular motion of a masspoint system under consideration. As a rule, the sequences (4.1) are not convergent. However, it may happen that the sequences {b m {0, t)}, {d m (0, t)} have Slimits for every 0 eint s *,Q, t e */. In what follows we shall confine ourselves only to such nonstandard masspoint systems s = (D, (tn P ) PBD , (f P ) PsD , (&PQ)<.P,Q)<BD°D), that for every Sregular motion of D there exist the standard continuous functions b R (0, t), d R {0, t), 0 e *Q, t e*F(i.e., the extensions of continuous functions > R z , d R :QxI+ R 3 , respectively), such that A K (0,t)= Slimb m (0,t). d R {0, t) = Slimd m (0, t); 0 e int s *i3, t e */. From the foregoing assumption it follows that b R (0, t) = Slimb m (0, t), d R (0, t) = = Shmd m (0,t) for every standard (0,/)efix/c *Ł2x*I. The standard functions b R :*Qx*I+ *R 3 , d R :*Qx*T+ *R 3 will be called Sbody force and Sdensity of in teraction, respectively, related to a reference configuration x s , Xg 6 C S (D).

Since the infinite sequences b m {0, t), d m {0, t) are internal, then by virtue of a theorem on Flimits (cf. Sec. 3) we obtain for every standard (0,t)eQxl cz *Qx */, v e *N\N. Thus we conclude, that the. Newtonian masspoint system under consideration, in an arbitrary Sregular motion of its point system D, has certain features of a material continuum. These features are expressed by the existence of uniquely defined continuous 3 , characterizing the distribution of external and internal forces. At the same time Eqs. (4.3) yield an interrelation between the system of forces in a "discrete" masspoint system and a certain "continuous" distribution of forces (5body force and Sdensity of interaction). The physical interpretation of the RHS of Eqs. (4.3) is rather clear; we deal here with certain mean densities of forces in an infinitesimal ball B(0,r r ) which, roughly speaking, is not sufficiently small (has an infinitesimal radius r, but greater then r x , X = max^, A 2 )). From now on we shall assume that the N ewtonian nonstandard mass-point system S = (Z>, (m P ) PeD , (fp) PeD , (CPQ\ P,Q)ŁD=D) under consideration satisfies all assumptions introduced in Sees. 3.4. Thus we assume that there exists the reference configuration x R : D -» *R i , such that Q a °xK (D) is a closure of a certain regular region Q in JR 3 and such that the function Q R :Q -> R + , defined by Eq. (3.4), exists and is continuous in Q. Moreover, we assume that for every S-regular motion of D there exist functions b R :Qx x / -» R 3 , d R :Qxl-+ R 3 , defined by Eqs. (4.3), which are continuous in Qxl. A N ewtonian mass-point system satisfying the forementioned conditions will be called regular. N ow the question arises which necessary conditions are imposed on ^-regular motion of D (if it exists) by N ewton's equations of motion (1.1), (1.2) for a regular N ewtonian mass-point system.

fields b R :Q xl' > R 3 , d R \Q x T> R
To obtain these conditions let us observe that for every 0 e Q, t e / , me *N~+, from Eqs. In order to prove that Eqs. (5.4) holds let us observe that the RHS of the foregoing formula can be interpreted as Slimits of internal sequences (5.5) vol B(0,r m )

But the existence of Flimit of an infinite sequence {a,,}, n e *N, of points in a certain metric space *T depends only on terms a n for neN. Because all these terms for sequence (5.5) are infinitesimal (it follows from the fact that all such terms of sequence (3.2) are finite) then Slimit of this sequence is equal to zero and Eq. (5.4) hold for every 0 e Q.

Eqs. (5.3) constitute the interrelation among the deformation function p.QxI v JR. 3 , Sdensity of mass Q R :Q > R + , Sdensity of interaction d R :Qx.I » R 3 and S'body force b R :Q x !'> R 3 . Thus Eqs. (5.3) can be called standard laws of motion and their form coin cides with that of laws of motion for a certain material continuum, occupying in the refe rence configuration a regular region Q in R 3 . Because the interactions have been assumed nonlocal, we do not deal here with any contact forces (which are introduced and detailed in [START_REF] Cz | On the Non-Standard Model of the Theory of Elasticity[END_REF]). It must be emphasized that Eqs. (5.3) have to hold only if the motion of a nonstan dard point system D, satisfying Eqs. (1.1), (1.2), is S*regular. At the same time Eq. (5.3) (in which p(0,t) °xR (P), 0 s °xB (P), cf. (5.2) 3 ( together with Eqs. (3.4), (4.3) re present the necessary condition imposed on the ^regular motion of a regular Newtonian masspoint system (provided that such motion exists). 4/"i>O(0, t),p(0, t);ii t (P), «,(P)) m -/,(P(0, t)+u t (P),i>(@, t)+u t (P))-f P ( P (0, t),K&, 0). let us assume that the relation holds for every infinitesimal u,(P), «,(P). Let us also define the function p R :QxR 3 xR 3 y R 3 by means of (6.2) p R ( In Eqs. (6.1), (6.2), as usual, we have v e *N\N and v < 1 for a certain infinite positive integer A. Thus we conclude that if the conditions of the form (6.1) are satisfied for every 0 e Q then we can characterize the S'body forces by the formulas

(6.3) b R (0, t) = p R (0,p(0, 0, p(0, 0), e*Q,t el,
with the RHS of Eqs. (6.3) defined by Eqs.' (6.2). Eqs. (6.2), (6.3) yield the interrelation between the "continuous" Sbody force and the "discrete" distribution of external forces in the regular Newtonian masspoint system under consideration. This interrelation is valid under the conditions that the value of Sbody force in any ^regular motion of a nonstandard point system D (cf. Sec. 2) depends only on the deformation function for this motion. It can be shown that such situation will take place if the external fields in *i? 3 , determining the form of functions f P : *R 3 x *R 3 > *jR 3 , are standard.

N ow let us detail the possible interrelation between the S'-density of interaction d R (0, t) and the deformation function p{ • ) of an arbitrary S'-regular motion of a nonstandard point system D. To this aid we shall use E'q. (4.3) 2 jwith thefunctions/ PQ :*i? 3 xi? 3 -* *R 3 defined by Eq. (1.2). For every 5-regular motion *fs t ->• x, e C S (D) with the deformation function i2x/ s (0 ,t) -> p(0 ,t)e R 3 (where p(0, t) = °x,(P) with 0 = °xR (P) cf.

Sec. 2) we have (6.4) ic t (P)=p(0 P ,t) + w t (P); 0 P = x R (P),PeD,te*f, where now p :*Q x *I-> *R 3 stands for an extension of the deformation function (which can be called a standard deformation function) and n>t(P) are infinitesimal vectors in *R 3 , Instead of S-material coordinates 0 = °xR (P) (macro-coordinates), which have been used before (cf. Eq. (5.2)), we apply now Q-material coordinates 0 P = x R (P) (micro-coordinates). If w t {P) -0, P e D, t e*I, then Eq. (6.4) will represent a special 5-regular motion of D in which material points are "frozen" in a certain standard "material continuum"; motion of this "material continuum" is described by a standard deformation function p:*Qx *IB (0, t) -yp(0, t) e *R 3 (i.e., by an extension of a deformation function for the motion of D).

In what follows we shall confine ourselves to a certain subclass of a class of all S-regular motions of a point system D under consideration. This subclass contains motions in which the values of a function w,{P), P e D,t e */ , in Eq. (6.4) are not only infinitesimal but also, roughly speaking, "sufficiently small". To be more precise we shall assume that for every pair (P, Q) of interacting material points (i.e., points for which f PQ ( • ) is not identically equal to zero) in the subclass of motions under consideration we have (6.5) w t (P)-w,(Q) = E(P, Q, t)[x t (P)-x t (Q)],

where E(P, Q, t) is a certain 3x3 matrix of infinitesimal numbers. Eq. (6.5) can be also written down in a form where by a(x), x s (x t t x 2 ,Xz) e *R 3 , we denote the set of all triples y= (y lt y 2 , y 3 ) e *i? 3 , such that y\ = E\ xj, i,j = 1, 2, 3, where Ej are infinitesimal (cf. also [START_REF] Robinson | Non-Standard Analysis[END_REF], p. 79). By virtue of Eq. (1.2), for a class of S-regular motions of D satisfying Eq. (6.5), we obtain (6.6) f PQ (x r (P), x t (Q))-f PQ (p(0 P , t),p(Q Q , t))ea(f PQ (x t {P),x t {Q))), for every P, Qe D,P^ Q,t e*I. I t means that, roughly speaking, the interactions in a motion determined by Eqs. (6.4), (6.5) are "nearly the same" as the interactions in a motion characterized by Eq. (6.4) with w,(P) = 0 for every P e D, t e *7. Motions of D satisfying Eq. (6.5) (for every pair of interacting points P, Q and every t e */ ) will be called strictly 5*-regular. For motions of D which are strictly ^-regular it can be shown that the S-density of interactions is uniquely determined by the deformation function. N amely from Eq. ( 6 
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3 .

 3 Massdistribution in certain nonstandard Newtonian masspoint systems Let x R e C S (D) be fixed reference configuration of a pointsystem D(D = D" for some infinite n, ne*N\N)

(3. 1 )

 1 D R (A):={P\PEDAX R (P)€A}.

  [START_REF] Robinson | Non-Standard Analysis[END_REF], p. 93. function defined on Q (mind, that Q <= mt s *Q, where Q is a set of all standard points in int s *,Q). The existence of a function Q R ( • ) depends only on mass distribution (m P ) PeD and on the choice of the reference configuration x R of D, x R e C S {D). The standard function Q R :*Q -+ *R +

4 .

 4 D istributions of external and internal forces in certain non-standard N ewtonian mass-point systems. N ow let •/€ t + x t e C S (D) be an arbitrary Sregular motion of the nonstandard point system and let us construct the sequences tl3 > We confine ourselves to masspoint systems with ^regular massdistribution in a reference •configuration »«.

5 .

 5 Passage to standard laws of motion.

( 5 . 2 )

 52 (1.1) it follows that 22 ^CiO. «. (©) -o. volB(0,r m) QeD\ { P) where *7g t ->• x t e C{D) is a motion of the point system D. Let Eqs. (5.1) be satisfied by a certain S-regular motion. It means that hold for every PeD, te*I, where u,(P),u,(P),ii,(P) are certain infinitesimal vectors in *R 3 . Substituting the RHS of Eq. (5.2) into Eq, (5.1) and putting m = V, where v < A, 1 = max(A 0 , ^i, ^2) and v € *N\N, cf. Eqs. (3.5), (4.3), we shall arrive at the relation (53) e R (&)p(&, t) = b R (0, t) + d R {0, t), which has to hold for every 0 eQ, t el. Passing from Eqs. (5.1), (5.2) 3 to Eqs. (5.3) we have taken into account formulas (3.5), (4.3) and a relation (5.4) PeD R (B(e,r v ))

6 .

 6 Passage to standard constitutive relations. Now let us substitute the RHS of Eqs. (5.2) li2 into Eqs. (4.3)^ Setting

  Streszczenie O N ESTAN D ARD OWEJ AN ALIZIE I ZWIĄ ZKU MIĘ D ZY MECH AN IKĄ PU N KTÓW MATERIALN YCH A MECH AN IKĄ KON TIN UUMW pracy wykazano, że korzystają c z metod niestandardowej analizy moż n a wyprowadzić podstawowe równania mechaniki kontinuum bez stosowania aproksymacji i przejść granicznych bezpoś redni o z równań mechaniki N ewtona ukł adów punktów materialnych.
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	.6)
	it follows that
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(6 -7) [cOnt] \volBCe,r,)

. r Q'ib\{P)

for every 0 e Q, v e *N\N and v < X.

Introducing the functionals 1 (6.8) volJ? i defined for every 0 eQ on the space of all deformation functions p:QxIa (0, t)> > p{0, t) e R 3 (and hence on the space of all standard deformation functions p:*Q x *IB 9 (0, 0 > />(0, 0 e *# 3 ) aQ d taking into account Eqs. (4.3) 2 and (6.7), we arrive at the relation

Eqs. (6.9), (6.8) characterize the interrelation between the "continuous" ^density dn( •, 0 of interactions and the "discrete" distribution of interactions in the regular New tonian masspoint system. This interrelation holds in any strictly Sregular motion of the point system D under consideration <14) . Formulas (6.3), (6.9) can be interpreted as the constitutive relations of a certain non local elastic "material continuum", motion of which is described by an arbitrary defor mation function p:QxIa (6>, t) >p(0, t) eR 3 . The properties of this "material con tinuum" are uniquely determined by the properties of a regular Newtonian masspoint system, provided that we confine ourselves to the strictly Sregular motions of its point system.

Conclusions.

Summarizing the obtained results we shall formulate the following assertions:, 1. Every S'regular motion of an arbitrary regular Newtonian masspoint system as> (if it exists) has to satisfy Eq. (5.3) together with Eqs. (3.5), (4.3) and with p(0, t) = = °xt (P), 0 e °xR (P), for every P e D, re/.

2. If there exists strictly ^regular motion of a certain regular Newtonian mass point system then the deformation function for this motion has to satisfy Eqs. (5.3), (6.3), (6.9) with denotations (3.4), (6.2), (6.8).

3. Every regular Newtonian masspoint system uniquely determines certain nonlocal elastic "material continuum" with governing relations (5.3), (6.3), (6.9). The continuous fields in these governing relations are expressed in terms of Newtonian masspoint mecha nics by Eqs. (3.4), 6.2), (6.8) for every strictly ^regular motion of the Newtonian mass point system under consideration (if it exists). <14> This interrelation also holds in any Sregular motion satisfying Eq. (6.7) " 3) A motion of the Newtonian masspoint system was defined in Sec. 1 as the motion of its point system satisfying Newton's equations (1.1), (1.2).

It must be remembered that every regular N ewtonian mass-point system is, by definition, a nonstandard N ewtonian mass-point system. The number of points in this system is equal to a certain fixed infinite natural number and the masses of points are infinitesimal. For the class of motions under consideration (for S-regular motions) also the values of • external forces acting on the points as well as the values of interactions between the points are infinitesimal. The assertions listed above, which interrelate certain nonstandard "discrete" functions (i.e., defined on. x R (D) c *R 3 ) with standard continuous fields (defined on °xR {D) cz R 3 ) can be expressed exclusively in terms of the nonstandard analysis. On the other hand, resulting relations (5.3), (6.3), (6.9), which can be interpreted as describing certain "material continuum", are standard. Thus the method of the nonstandard analysis applied to N ewtonian mass-point mechanics makes it possible to define the class • of nonstandard mass-point systems (which were called regular N ewtonian mass-point systems) having properties of material continua (for more general approaches cf. [START_REF] Cz | Non-Standard Analysis and Material Systems in Mechanics[END_REF]). In this paper, starting from N ewtonian mechanics, we have derived governing relations of a nonlocal continuum mechanics; passage from N ewtonian mechanics to the relations of the elasticity theory will be described in the next paper (cf. also [START_REF] Cz | On the Non-Standard Model of the Theory of Elasticity[END_REF]). H owever, the non-standard methods can be also applied directly to some problems of continuum mechanics, [16,17].
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