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MACRO-DYNAMICS OF ELASTIC AND VISCOELASTIC
MICRO-PERIODIC COMPOSITES!

CzESLAW WOZNIAK

Institute of Fundamental Technological Research, Warsaw

In this contribution we propose a new non-asymptotic method of macro-
modelling of periodic materials and structures. The obtained models can be
applied to the analysis of vibration and wave propagation problems with the
wavelength of an order of a periodicity cell dimension. The consideration
are restricted to the linear elastic and viscoelastic materials and the small
deformation gradient theory.

1. Statement of the problem

Asymptotic methods of macro-modelling for micro-periodic structures lead to
macro-homogeneous media with the constant (averaged) mass density (cf Bakhva-
lov and Panasenko, 1984; Bensoussan et al.,, 1980). Hence, asymptotic equa-
tions are not able to describe dispersion effects due to the micro-heterogeneity of
composites and can be applied solely to problems in which the time-dependent
excitations of the structure produce wavelength much larger then the maximum
length dimension of a periodicity cell (a long-wave approximation). The aim of
this contribution is to propose a new non-asymptotic method of macro-modelling
for micro-heterogeneous composite structures. The obtained equations of micro-
macro dynamics can be applied to vibration and wave propagation problems with
the wavelength of an order of a cell length dimension (a short-wave approximation).

2. Basic assumptions

The subject of the analysis is a linear elastic or viscoelastic micro-periodic
composite body, which in its initial natural state occupies a region {2 in a 3—space
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parametrized by cartesian orthogonal coordinates z; with a orthonormal basis e;
(i,7,k,0 run over 1,2,3; summation convention holds). The properties of these
bodies are determined by a mass density p(-) and the tensor of elastic modulae
Aijri(+) (for elastic materials) or by the constitutive function depending on a strain
tensor and strain-rate tensor (for viscoelastic materials), which are V-periodic
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is a certain representative volume element (r.v.e.). Periods I}, l3, I3 are sufficiently
small related to the smallest characteristic length dimension of f2.

In order to formulate basic hypotheses leading to macro-models of the micro-
periodic body, we shall introduce two auxiliary concepts. The first of them is
that of a V-macro function. It is a continuous function F(-) defined on 2
which for every 2,z € 2 and 2z — z € V, satisfies condition F(z) & F(z).
Generally speaking V-macro functions describe the macroscopic behaviour of the
body. The phenomena related to a heterogeneous micro-periodic material struc-
ture, from the qualitative point of view, will be described by means of independent
functions hq(+), @ = 1,...,n, which are continuous in {2 and satisfy conditions:
ho(2) = ho(z + Le;), <hy,>= 0and <ph,> = 0forevery z, z + l;e; € 12,
i = 1,2,3 (no summation over ¢), where <-> is the known averaging operator
defined by

functions, where

<I> ()= 7 [ 1+ 9y
|4

dv(y) = dyidy2dys

for an arbitrary integrable function f(:). Functions h,(-) will be called micro-
oscillatory shape functions. The choice of shape functions has to be postulated a
priori in every special problem and depends on the character of micro oscillations
which we are going to analyse.

The proposed method of macro-modelling is based on the assumption that
displacement fields u;(-,7) at an arbitrary time instant 7 can be expected in the
form (indices @, b run over 1,...,n, summation convention holds)

wi(z,7) = Ui(z,7) + ho(2)QF (2, 7) z € f? (2.1)

where Ui(-,T), Q%(-,7) are arbitrary V-macro functions together with their first
and second order material and time derivatives. The V-macro fields U(-,7)
are called macro-displacements and h,Q%(-, 7) are oscillations due to the micro-
periodic structure of the body. The V-macro functions @Q%(-,7) constitute the
quantitive characteristics of micro-oscillations and will be called corrector fields.
The second assumption of tlie proposed method of macro-modelling takes into

account the micro-oscillatory character of shape functions h,(-); we shall assume



that in formulas for material derivatives of h,Q%(-,7) terms involving h4(-) can
be neglected as small compared to terms involving derivatives Vh,(-). Hence, the
approximation

Uiy (2, 7) = Uyy; (2,7) + ha,y; (2)Q%H 2, T) (2.2)

will be used in the subsequent analysis.

3. Macro-modelling of elastic composites

The governing equations of the proposed micro-macro elastodynamics will be
derived by applying assumptions of Section 2 to the well known action functional
1 .. 1
A = /[é—p(z)uiui - §A,-jkl(a:)ui,j Uk, +p(z)biui] dv(z)
e
(3.1)
dv(z) = dz1dzqdzs

where b; are constant body forces. Substituting Eqs (2.1), (2.2) into (3.1), bea-
ring in mind V-macro property of macro-displacements U;(-, 7), micro-correctors
Q%(-,7) and of their derivatives, and using condition < ph, > = 0, after some
manipulations we obtain the approximation A 2 Ao, where

Ay = /[5 <p>UU; + 5 <phahb> Q?Qi’ — 5 <Aijkl> Ui,j Uy —
! (3.2)

1
— <Aijkthey;> Uka QF — 3 < Aijrthay; hya> QFQ4+ <p> biUi] dv(z)

Due to V-periodicity of p(:), Aijxi(-), ha(+) all averages in Eq (3.2) are con-
stants which characterize the material and inertial properties of a dynamic system
determined by action functional A4p. This dynamic system will represent the
macro-model of micro-heterogeneous periodic body. Lagrange equations for Ag
read

< Aijp > Ukoji + < Agjrthoa> Qb+ <p> by =< p> U; (3.3)
<phohy > Q¥+ < Aijrthar; hyu> Q0 = — < Aijkthar;> Ukl

Eqs (3.3) constitute the governing equations of linear macro-elastodynamics for
micro-heterogeneous periodic bodies. The above equations have to be considered
together with the boundary and initial conditions for U;(-) and initial conditions
for Q%(-) in the form consistent with Eqgs (2.1) and (2.2). It has to be emphasized



that the inertial properties of the obtained macro-model are described not only by
an averaged mass density < p> but also by modulae < phyhy> which depend on
the length dimensions of the r.v.e. Due to this fact the scale and dispersion effects
related to micro-heterogeneous material structure of the body can be investigated.
Averages < phyhy > will be called micro-inertial modulae. Let us observe that for
homogeneous materials

< Aijkthay;>= Aijrt <hayj>=0
and hence, under initial conditions
Q:(2,0) = Q¥(z,0) = 0 z €l

the second from Eqs (3.3) has only a trivial solution Q2% = 0, and the first from
Egs (3.3) reduces to the well known equations of the linear elastodynamics. Thus
we conclude that the correctors Q¢ describe the effect of micro-heterogeneity on
macro behaviour of the composite.

It has to be remembered that solutions to Eqs (3.3) have a physical sense only
if Ui(-,7), Q¢(:,7) are V-macro functions for every 7.

In the asymptotic case term < phohy > Q! drops out from Eqs (3.3) and we
arrive at the macro-model proposed by Wozniak (1987).

4. Macro-modelling of viscoelastic composites

Let us observe that Eqs (3.3) can be also written down in the form
Siji+ <p>bi=<p>U;
(4.1)
<phohy> Q% + Hai =0
where

Si; =< Aijr > U(k,z) + <Aijk1haa(k> Q?)

Hy =< Aijklha.7j> U(k,I) + <Aijk1ha7j hb»(1> lec)

At the same time, setting 20 = {z € 2 : V(z) C 2}, and denoting by o;;
components of a stress tensor, by means of o;; = A;jki(Ukst +hask Q%), we obtain

Sij(z,7)=<0i;> (z,T) (4.2)

H,i(z,7) =<0ijhe,;> (2,7) z € {2



The form of Eqs (4.1) + (4.2) is independent of material (elastic) properties of a
micro-periodic body under consideration.

Now assume that a composite is made of viscoelastic materials and its proper-
ties are described by the stress relation

oi; = gij(z,e,€)

where e is a strain tensor with components ey = U,y +has(x Q;’) and g¢i;(-,e,é)
are the known V-periodic functions. Hence, after denotations E = (U.y),
Q = (@%), we also obtain

oi; = fij(2,E,E,Q,Q) (4.3)
where fi;(:, E, E,Q,Q) are also V-periodic functions. Substituting the right-hand
sides of Eqs (4.3) into Egs (4.2) and bearing in mind that Uj;,;), QF are V-macro
functions we obtain

Sij(z, 1) =< fi; > (E(z,7),E(2,7),Q(2,7),Q(z, 7))
(4.4)

Hai(x’ T) =< fijh’a’j> (E(x’ T)’ E(x’ T)v Q(.’L‘, T)a Q(-'L'a T))

It has to be emphasized that due to the V-periodicity of functions fj; , h,,; (as
functions of an argument z), equations (4.4) are determined for every z € 2 (not
only for z € {2 !). Hence, Eqs (4.4) can be interpreted as macro-constitutive
relations of a micro-periodic viscoelastic body. These equations together with
Eqgs (4.1) represent the system of governing equations of macro-dynamics for micro-
periodic viscoelastic composite bodies.

5. Example

We shall apply Eqs (3.3) to the problem of a straight micro-periodic bar treated
as an uniaxial structure. The r.v.e. V is now reduced to the straight-line segment
(=1/2,1/2) of the z-axis, z = z;.

We assume that the Young modulus E(z) and mass density p(z) are equal
to Ei, p1on (—af2,a/2) and E;, p, on (-1/2,1/2)\ (-a/2,a/2), where
0 < a < l. In this case we introduce only one (continuous and periodic) shape
function h(-), h(z) = h(z +1), = € R, which is piecewise linear and takes the
values h(—=1/2) = h(0) = h(l/2) = 0, h(-a/2) = I, h(a/2) = —I. After
neglecting body forces and setting (-) = 9(-)/0z1, Eqs (3.3) in this special case
yield

<E>U"(z,7)+ <EN>Q'(z,7)=<p> U(z,T) 50
5.1
<phh> Q(z,7)+ <ER'R'> Q(2,7) = — <ER'> U'(z,T)



where

[ — ” [ —
<p>= pia+ pl2( a) <E>e Eya + l~;2( a)
<Eh'>=2(E, - E») <EKWA >= 41(& + b )
a l—a
12

< phh>= 3 <p>

Let us define
tpt 152
e
and assume
U(z,7) = Up(z, T) exp(iwT)
Q(z,7) = Qo(z, 7) exp(iwT)
The analysis of free vibrations leads to the conclusion that:

(i) if

w\ 2 Eeff w2
(—) < or (—) >1
n <E>

then there exist sinusoidal vibrations

Uo(z) = Acoskz Qo(z) = Bsinkz
(ii) if

< ()<

then there exist exponential vibrations
Uo(z) = Acoshkz Qo(z) = Bsinhkz
(i) if

fl
(©)Y=1 o (9)=E
7 7 <E>
then we arrive at degenerated or trivial case, respectively. This classification holds
for <ER ># 0;if <ER'> = 0 (i.e. for a homogeneous bar) then only sinusoidal
vibrations are possible.
In the case (i) (for sinusoidal vibrations), Up(+), Qo(-) are V-macro fields only
if Ik <« 1. Treating [k as a small parameter it can be shown that
) Eeﬂ'

w’ = k2[1
<p>

1 2 < ER >2

S 21.2




The second term on the right hand side of Eq (4.2) describe the dispersion
effect due to the micro-heterogeneous structure of the bar.

In the case (ii) (for exponential vibrations), we can prove that

o = S22R(2) - Z5] (2’ 59

Eq (4.3) has a physical sense only for micro-heterogeneous bar because in the case
of homogeneity E*f/ < E> = 1 and there are no exponential vibrations.
The detailed analysis of this problem will be given in a forthcoming paper.

6. Conclusions

The characteristic feature of the proposed approach is that the inertial proper-
ties of the obtained macro-model given by Lqs (3.3) and (4.1) are described not
only by an averaged mass density < p > but also by micro-modulae < phgh; >
depending on length dimensions of r.v.e. 1llence, the equations of micro-macro
dynamics makes it possible to investigate the scale and dispersion effects due to
the micro-heterogeneity of the body. The advantage of the proposed approach is a
relatively simple form of Eqs (3.3) as well as Eqs (4.1), (4.4); {from the illustrative
example given above it follows that the general theory can be successfully applied
to the analysis of engineering problems. The main drawback of the proposed me-
thod of macromodelling lies in an unprecise choice of shape functions which is
often based on the intuition of the researcher.

Nonlinear treatment of micro-macro dynamics and its applications has been
also analyzed and will be presented separately.
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Makrodynamika sprezystych i lepkosprezystych mikroperiodycznych
kompozytéw

Streszczenie

W pracy zaproponowano nows nieasymptotyczna metode makromodelowania sprg-
zystych i lepkosprezystych mikroperiodycznych kompozytéw. Otrzymany model moze by¢
zastosowany do analizy mikrodrgaii i1 propagacji fal o dlugosciach rzedu wymiaréw komdrki
periodycznosci. Rozwazania ograniczono do przypadku malych gradientéw przemieszcze-
nia (teoria geometrycznie liniowa).





