
HAL Id: hal-01120347
https://hal.science/hal-01120347

Preprint submitted on 26 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyclic multiplicative-additive proof nets of linear logic
with an application to language parsing

Vito Michele Vito Abrusci, Roberto Maieli

To cite this version:
Vito Michele Vito Abrusci, Roberto Maieli. Cyclic multiplicative-additive proof nets of linear logic
with an application to language parsing. 2015. �hal-01120347�

https://hal.science/hal-01120347
https://hal.archives-ouvertes.fr

Cyclic multiplicative-additive proof nets of linear logic with

an application to language parsing

Vito Michele Abrusci and Roberto Maieli
Department of Mathematics and Physics, Roma Tre University

Largo San Leonardo Murialdo 1 – 00146 Rome, Italy
{abrusci,maieli}@uniroma3.it

February 25, 2015

Abstract

This paper concerns a logical approach to natural language parsing based on proof nets
(PNs), i.e. de-sequentialized proofs, of linear logic (LL). In particular, it presents a syntax
for PNs of the cyclic multiplicative and additive fragment of linear logic (CyMALL). Any
proof structure (PS), in Girards style, is weighted by boolean monomial weights, moreover,
its conclusions Γ (a sequence of formulas occurrences) are endowed with a cyclic order σ, i.e.,
σ(Γ). Naively, a CyMALL PS π with conclusions σ(Γ) is correct if, for any slice ϕ(π) (obtained
by a boolean valuation ϕ of π) there exists an additive resolution (i.e. a multiplicative
refinement of ϕ(π)) that is a CyMLL PN with conclusions σ(Γr), where Γr is an additive
resolution of Γ (i.e. a choice of an additive subformula for each formula of Γ). In its turn, the
correctness criterion for CyMLL PNs can be considered as the non-commutative counterpart
of the famous Danos-Regnier (DR) criterion for PNs of the pure multiplicative fragment
(MLL) of LL. The main intuition relies on the fact that any DR-switching (i.e. any correction
or test graph for a given PN) can be naturally viewed as a seaweed, i.e. a rootless planar
tree inducing a cyclic order on the conclusions of the given PN. Dislike the most part of
current syntaxes for non-commutative PNs our syntax allows a sequentialization for the full
class of CyMLL PNs, without requiring these latter must be cut-free. Moreover, we give a
characterization of CyMALL PNs for the extended (MALL) Lambek Calculus and thus a
geometrical (non inductive) way to parse phrases or sentences. In particular additive Lambek
PNs allow to parse phrases containing words with syntactical ambiguity (i.e. words with
polymorphic type).

1

Contents

1 Introduction 3
1.1 Cyclic MALL . 4

2 Cyclic MLL proof structures 4
2.1 Correctness . 5
2.2 Cut reduction . 6
2.3 Sequentialization . 8

3 Cyclic MALL proof structures 11
3.1 Correctness . 12
3.2 Cut reduction . 13

3.2.1 Ready cut reduction . 13
3.2.2 Commutative cut reduction . 13
3.2.3 Stability of correctness under cut reduction 15
3.2.4 Strong cut-elimination . 17

3.3 Sequentialization . 17

4 Embedding Lambek Calculus into CyMALL PNs 18

5 Language parsing with Lambek CyMALL PNs 21

6 Conclusions and further works 23
6.1 Stability of sequentialization under cut reduction 23
6.2 Proof-structures with explicit n-ary links . 23
6.3 Fully local cut reduction and parsing contraction 23

7 Complexity 24

2

1 Introduction

Proof nets (PNs) are one of the most innovative inventions of linear logic (LL, [Gir1987]): they are
used to represent demonstrations in a geometric (i.e., non inductive) way, abstracting away from
the technical bureaucracy of sequential proofs. Proof nets quotient classes of derivations that are
equivalent up to some irrelevant permutations of inference rules instances.

Following this spirit, we present a syntax for PNs of the cyclic multiplicative and additive frag-
ment of linear logic (CyMALL, Sections 1.1). This syntax, like the original Girard’s one [Gir1996],
is based on weighted (by boolean monomials) proof structures with explicit binary contraction
links (Section 3). The conclusions Γ (a sequence of formulas occurrences) of a PS π are endowed
with a cyclic order σ on Γ. Naively, a CyMALL PS π with conclusions σ(Γ) is correct if, for any
slice ϕ(π) (obtained by a boolean valuation ϕ of π) there exists an additive resolution (a slight
deformation of ϕ(π)) that is a CyMLL PN with conclusion σ(Γr), where Γr is an additive resolu-
tion of Γ (i.e. a choice of an additive sub-formula for each formula of Γ). In its turn, correctness
criterion for CyMLL PNs can be considered as the non-commutative counterpart of the famous
Danos-Regnier criterion for proof nets of linear logic (see [DR1989] and [Dan1990]). The main
intuition relies on the fact that any DR-switching for a PS (i.e. any correction or test graph, ob-
tained by mutilating one premise of each disjunction O-link) can be naturally viewed as a rootless
planar tree, called seaweed, inducing a cyclic ternary relation on the conclusions of the given proof
structure (Section 2.1).

Dislike some previous syntaxes for non-commutative logic, like e.g., [AR2000] and [Mai2003],
this new syntax admits a sequentialization (i.e., a correspondence with sequential proofs) for the
full class of CyMLL PNs including those ones with cuts (see Sections 2.2 and 2.3). Actually,
unlike what happens in the standard (commutative) MLL case, the presence of cut links is ”rather
tricky” in the non-commutative case, since cut links are not equivalent, from a topological point
of view, to tensor links; these latter make appear new conclusions that may disrupt the original
(i.e., in presence of cut links) order of conclusions.

Moreover, CyMALL PNs satisfy both a simple convergent cut-elimination procedure in Laurent-
Maieli’s style [LM2008] (Section 3.2) and a sequentialization, in Girard’s style (Section 3.3), stable
under cut-reduction.

CyMALL can be considered as a conservative classical extension of Lambek Calculus (LC,
see [Lam1958], [Abr2002] and [MR2012]) one of the ancestors of LL. The LC represents the first
attempt of the so called parsing as deduction, i.e., parsing of natural language by means of a
logical system. Following [AP1991], in LC parsing is interpreted as type checking in the form of
theorem proving of Gentzen sequents. Types (i.e. propositional formulas) are associated to words
in the lexicon; when a string w1...wn is tested for grammaticality, the types t1, ..., tn associated
with the words are retrieved from the lexicon and then parsing reduces to proving the derivability
of a one-sided sequent of the form ` t⊥n , ..., t⊥1 , s, where s is the type associated with sentences.
Moreover, forcing constraints on the Exchange rule, by e.g. allowing only cyclic permutations over
sequents of formulas, gives the required computational control needed to view theorem proving
as parsing in Lambek Categorial Grammar style. Anyway, LC parsing presents some syntactical
ambiguity problems; actually, there may be:

1. (non canonical proofs) more than one cut-free proof for the same sequent;

2. (lexical polymorphism) more than one type associated with a single word.

Proof nets are commonly considered an elegant solution to the first problem of representing canon-
ical proofs; in this sense, in Section 4, we give an embedding of extened MALL Lambek Calculus
into Cyclic MALL PNs.

In Section 5 we propose a parsing approach based on CyMALL PNs that could be considered
a step towards a proof-theoretical solution to the problem of lexical polymorphism; technically
speaking, CyMALL proof nets allow to manage formulas (types) superposition (polymorphism)
by means of the additive links & and ⊕. Following [Moo2002], we propose a parsing, by means of
Lambek CyMALL PNs, of some sentences which make use of polymorphic words; naively, when a

3

word has two possible formulas A and B assigned then we can combine (or super-pose) these into
a single additive formula A&B.

1.1 Cyclic MALL

We briefly recall the necessary background of the Cyclic MALL fragment of LL, denoted CyMALL,
without units (see [Abr2002]). We arbitrarily assume literals a, a⊥, b, b⊥, ... with a polarity: positive
(+) for atoms, a, b, ... and negative (−) a⊥, b⊥... for their duals. A formula is built from literals
by means of the two groups of connectives: negative, O (”par”) and & (”with”) and positive, 4
(”tensor”) and ⊕ (”plus”). For these connectives we have the following De Morgan laws: (A 4
B)⊥ = B⊥OA⊥, (AOB)⊥ = B⊥ 4 A⊥, (A&B)⊥ = B⊥ ⊕ A⊥, (A⊕B)⊥ = B⊥&A⊥. A CyMALL
(resp., CyMLL) proof is any derivation tree built by the following (resp., only multiplicative)
inference rules where sequents Γ,∆ are sequences of formulas occurrences endowed with a total
cyclic order (lists with cyclic permutation) (see Definition 1):

identity: id
` A,A⊥

` Γ, A A⊥∆
cut` Γ,∆

multiplicatives:
` Γ, A ` B,∆

4` Γ, A4B,∆

` Γ, A,B
O` Γ, AOB

additives:
` Γ, A ` Γ, B

N` Γ, ANB
` Γ, Ai ` ⊕i=1,2` Γ, A1 ⊕i A2

Naively, a total cyclic order can be thought as follows; consider a set of points of an oriented
circle; the orientation induces a total order on these points as follows: if a, b and c are three distinct
points, then b is either between a and c (a < b < c) or between c and a (c < b < a). Moreover,
a < b < c is equivalent to b < c < a or c < a < b.

Definition 1 (total cyclic order) A total cyclic order is a pair (X,σ) where X is a set and σ
is a ternary relation over X satisfying the following properties:

1. ∀a, b, c ∈ X,σ(a, b, c)→ σ(b, c, a) (cyclic);
2. ∀a, b ∈ X,¬σ(a, a, b) (anti-reflexive);
3. ∀a, b, c, d ∈ X,σ(a, b, c) ∧ σ(c, d, a)→ σ(b, c, d) (transitive);
4. ∀a, b, c ∈ X,σ(a, b, c) ∨ σ(c, b, a) (total).

Negative (or asynchronous) connectives correspond to true determinism in the way we apply
bottom-up their corresponding inference rules. In particular, observe that Γ must appear as
the same context (with same order) in both the premises the &-rule. Vice-versa, positive (or
synchronous) connectives correspond to true non-determinism in the way we apply bottom-up
their corresponding rules; in particular, there is not deterministic the way to split the context into
Γ,∆ in the 4 rule, as well there not exist a deterministic choice in the way we apply bottom up
⊕1 or ⊕2 rules.

2 Cyclic MLL proof structures

Definition 2 (CyMLL proof structure) A CyMLL proof structure (PS) is an oriented graph
π, in which edges are labeled by formulas and nodes are labeled by connectives of CyMLL, built by
juxtaposing the following special graphs, called links, in which incident (resp., emergent) edges are
called premises (resp., conclusions):

ax

A A⊥

A

cut

A B

4

A4B

A B

O

AOB

A⊥

4

In a PS π each premise (resp., conclusion) of a link must be conclusion (resp., premise) of exactly
(resp., at most) one link of π. We call conclusion of π any emergent edge that is not premises of
any link.

2.1 Correctness

We characterize those proof structures that are images of proofs. Actually, there exist several
syntaxes for CyMLL proof nets, like those ones of [AR2000] and [Mai2003]; for sequentialization
reasons we prefer the latter one.

Definition 3 (switchings and seaweeds) Assume π is a CyMLL PS with conclusions Γ.

• A Danos-Regnier switching S for π, denoted S(π), is the non oriented graph built on nodes
and edges of π with the modification that for each O-node we take only one premise, that is
called left or right O-switch.

• Let S(π) be an acyclic an connected switching for π; S(π) is the rootless planar tree whose
nodes are labeled by 4-nodes, and whose leaves X1, ..., Xn are the terminal (pending) edges
of S(π); S(π) is a ternary relation, called seaweed, with support X1, ..., Xn; an ordered triple
(Xi, Xj , Xk) belongs to the seaweed S(π) iff:

– the intersection of the three paths XiXj, XjXk and XkXi is the node 4l;

– the three paths Xi4l, Xj4l and Xk4l are in this cyclic order while moving anti-clockwise
around the 4-node as below

Xk

XjXi

4l

If A is an edge of the seaweed S(π), then Si(π) ↓A is the restriction of the seaweed S(π),
that is, the sub-graph of S(π) obtained as follows:

1. disconnect the graph below (w.r.t. the orientation of π) the edge A;

2. delete the graph not containing A.

Fact 1 (seaweeds as cyclic orders) Any seaweed S(π) can be viewed as a cyclic total order
(Definition 1) on its support X1, ..., Xn; in other words, if a triple (Xi, Xj , Xk) ∈ S(π), then
Xi < Xj < Xk are in cyclic order.

Intuitively, we may contract a seaweed (by associating the 4-nodes) until it collapses into single
n-ary 4-node with n pending edges (its support), as follows:

4

c

d

4

4

a

b

e 7→

c

d

a

4

4

b

e 7→

c

b

ea

d

4

Definition 4 (CyMLL proof net) A CyMLL PS π is correct, i.e. it is a CyMLL proof net
(PN), iff:

1. π is a standard MLL PN, that is, any switching S(π) is a connected and acyclic graph
(therefore, a seaweed);

5

2. for any O-link A B
AOB the triple (A,B,C) must occur in this cyclic order in any seaweed S(π)

restricted to A,B, i.e., (A,B,C) ∈ S(π) ↓(A,B), where C is any pending leave (if it exists)
in the support of the restricted seaweed.

Example 1 We give an instance of CyMLL proof net π1 with, in particular, the two restricted

seaweeds, S1(π1) ↓(B1,B
⊥
2) and S2(π1) ↓(B1,B

⊥
2), both satisfying condition 2 of Definition 4.

4
B1

ax

ax

cut

ax

O O
B⊥2 B2

B2 4B⊥1

π1

B1OB⊥2 B3OB⊥3

B⊥3B3B⊥1 B1

ax

ax

cut

O
B2

ax

B⊥3

B3OB⊥3

B3B⊥1B⊥2

S1(π1) ↓(B1,B⊥
2)

B2 4B⊥1

4
B1

ax

ax

cut

O
B2

ax

B3B⊥1B⊥2 B⊥3

S2(π1) ↓(B1,B⊥
2)

B2 4B⊥1

4

B3OB⊥3

Vice-versa, the following instance of proof structures π2 is not correct (it is not a proof net), since

condition 2 of Definition 4 is violated: there exists a O-link
B1 B⊥

2

B1OB⊥
2

and a seaweed S1(π2) s.t.

¬∀C pending, (B1, B
⊥
2 , C) ∈ S1(π2) ↓(B1,B

⊥
2); actually, if we take C = B⊥3 then (B1, C,B

⊥
2) ∈

S1(π2) ↓(B1,B
⊥
2) as follows

4
B1

cut

ax

O O

ax
ax

B2B⊥2 B⊥1

B⊥1 4B2B1OB⊥2

π2

B3B⊥3

B⊥3 OB3

B1

cut

O

ax
ax

B2B⊥2 B⊥1

B⊥1 �B2

ax

B3B⊥3

B⊥3 OB3

S1(π2) ↓(B1,B⊥
2)

4

2.2 Cut reduction

Definition 5 (multiplicative cut reduction) Let L be a cut link in a proof net π whose premises
A and A⊥ are, resp., conclusions of links L′, L′′. Then we define the result π′ (called reductum)
of reducing this cut in π (called redex), as follows:

Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by removing in π both formulas
A,A⊥ (as well as L) and giving as new conclusion to L′′ (resp., L′) the other conclusion of
L′ (resp., L′′).

cut

ax

A wA L′
A

L′′L′′

(4/O)-cut: if L′ is a 4-link with premises B and C and L′′ is a O-link with premises C⊥ and B⊥,
then π′ is obtained by removing in π the formulas A and A⊥ as well as cut link L with L′

and L′′ and by adding two new cut links with, resp., premises B, B⊥ and C,C⊥, as follows:

cut

cutπ π′

B C B C

cut

C⊥B⊥

w

w

w

C⊥ B⊥

4 O

6

Theorem 1 (stability of PNs under cut reduction) If π is a CyMLL PN that reduces to π′

in one step of cut reduction, π π′, then π′ is a CyMLL PN.

Proof — Observe that w.r.t. Definition 4 condition 1 follows as an almost immediate conse-
quences of the next graph theoretical property ([Gir2006], pages 250-251):

Property 1 (Euler-Poicaré invariance) Given a graph G, then (]CC −]Cy) = (]V −]E),
where]CC,]Cy,]V and]E denotes the number of, respectively, connected components, cycles,
vertexes and edges of G.

Condition 2 of Definition 4 follows by calculation. Assume π reduces to π′ after the reduction of
a cut between (X 4 Y) and (Y ⊥OX⊥) and assume, by absurdum, there exist a O-link labeled
by a formula AOB s.t. the triple (A,C,B) occurs in this wrong cyclic order in a seaweed S(π′)
restricted to A,B, S(π′) ↓(A,B), for a pending leave C occurring in this restriction, i.e., (A,C,B) ∈
S(π′) ↓(A,B). Then, two of the three paths A4, B4 and C4 must go through (i.e., they must

contain) the two (sub)cut-links, cut1
X X⊥

and cut2
Y Y ⊥

, resulting from the cut reduction,
otherwise π would already be violating condition 2 of Definition 4; so, assume path B4 goes
through cut1 and path A4 goes through cut2, like in the next left hand side picture

A B

O

X Y Y ⊥ X⊥

C

4cut2

cut1

π′

A B

O cut

O

X Y Y ⊥ X⊥

C

4 4

π

This means there exist a seaweed S′(π), a link Y ⊥OX⊥ and a triple (Y ⊥, C,X⊥) s.t. (Y ⊥, C,X⊥) ∈
S′(π) ↓(Y ⊥,X⊥), violating condition 2 and so contradicting correctness of π (see the right hand
side picture given before; observe that, since any switching of π is acyclic, deleting the subgraph
below Y ⊥OX⊥ does not make disappear C).

The remaining case when path C4 goes through cut1 (resp., through cut2) and either path
A4 or path B4 goes through cut2 (resp., through cut2) is treated similarly and so omitted. �

Example 2 Observe that w.r.t. Example 1, π1 reduces to π′1 and so π′1 to π′′1 below; both π′1 and
π′′1 are correct since condition 2 of Definition 4 is void in both π′1 and π′′1 :

B1

ax

ax

cut

ax

O
B⊥2 B2

B1OB⊥2

B⊥3B3B⊥1

cut

π′1

O

ax

B B⊥

BOB⊥

π′′1

Moreover, w.r.t. Example 1, π2 is a non correct PS that reduces to a correct one, π′2, after a cut
reduction step (see the left hand side picture below); this is an already well known phenomenon in
the standard MLL case where we can easily find non correct MLL PSs that become correct after
cut reduction, like that one on the right hand side below:

B1

cut

ax

O

ax
ax

B2B⊥2 B⊥1

B1OB⊥2

B3B⊥3

π′2

cut

ax

⊗
cut

O
A⊥AA⊥AA⊥ A

ax
ax

ax

A A⊥

7

We use indexed formulas B1, B2, B3 to distinguish different occurrences of B.

Cut reduction if trivially convergent (i.e., terminating and confluent).

2.3 Sequentialization

We show a correspondence (sequentialization) between PNs and sequential proofs.

Lemma 1 (splitting) Let π be a CyMLL PN with at least a 4-link or cut-link and with conclu-
sions Γ not containing any terminal O-link (so, we say π is in splitting condition); then, there

must exist a 4-link A B
A4B (resp., a cut-link A A⊥

) that splits π in two CyMLL PNs, πA and πB
(resp., πA and πA⊥).

Proof — Assume π is a CyMLL PN in splitting condition, then by the Splitting Lemma for
standard commutative MLL PNs ([Gir1987]) π must split either at a 4-link or a cut-link. We
reason according these two cases.

1. Assume π splits at A B
A4B in two components πA and πB ; we know that both components

satisfy condition 1 (they eare MLL PNs); assume by absurdum πA is not a CyMLL PN,
i.e., πA violates condition 2 of Definition 4. This means there exists a X Y

XOY and a restricted

seaweed S(πA) ↓(X,Y) containing the triple X,A, Y in the wrong order, i.e., (X,A, Y) ∈
S(πA) ↓(X,Y) like in Case 1 of next figure. But then there exists a restricted seaweed
S(π) ↓(X,Y) containing X, Y and C (where C = A 4 B) in the wrong cyclic order, i.e.,
(X,C, Y) ∈ S(π) ↓(X,Y), contradicting the correctness of π.

2. Assume π splits at the cut link A A⊥
in two components πA and πA⊥ ; assume by absurdum

πA is not a CyMLL PN, hence πA must be violating condition 2 of Definition 4. Moreover,
assume π is such a minimal PN in cut-splitting condition whose subproof πA is not a CyMLL
PN. This means, as before, there exists a X Y

XOY and a restricted seaweed S(πA) ↓(X,Y)

containing the triple X,A, Y in the wrong order, i.e., (X,A, Y) ∈ S(πA) ↓(X,Y) like in
Case 2 of next figure. Then, by correctness π, πA⊥ must have A⊥ as unique conclusion,
otherwise we can find a restricted seaweed for π, S(π) ↓(X,Y), containing a triple X,C, Y
with wrong order for a conclusion C 6= A⊥; moreover, πA⊥ cannot contain any cut, otherwise,
by Theorem 1, we could replace in π the redex πA⊥ by its reductum π′A⊥ , contradicting the
minimality of π. Now, observe the equality]O −]4 = 1, relating the number of 4-nodes
with the number of O-nodes, holds for any cut free proof net with an unique conclusion.
Therefore, πA⊥ must contains at least a O-link, let us say Z T

ZOT . But then we can easily find

a restricted seaweed for π, S(π) ↓(X,Y), and a triple (X,Z, Y) occurring in S(π) ↓(X,Y) with
the wrong cyclic order, contradicting the correctness of π, like like in Case 2 of the picture
below:

O

YX

C

A BπA
πB

π

Case 1

4

4

O

YX

AπA

cutCase 2

π

A⊥

Z T

πA⊥

O
4

�

Lemma 2 (PN cyclic order conclusions) Let π be a CyMLL PN with conclusions Γ, then all
seaweeds Si(π) ↓Γ, restricted to Γ, induce the same cyclic order σ on Γ, denoted σ(Γ) and called
the (cyclic) order of the conclusions of π.

8

Proof — By induction on the size of π, i.e. 〈]edges,]vertexes〉1.

1. If π is reduced to an axiom link, then obvious.

2. π contains at least a conclusion AOB, then Γ = Γ′, AOB; by hypothesis of induction the
sub-proof net π′ with conclusion Γ′, A,B has cyclic order σ(Γ′, A,B), and so, by condition 2
of Definition 4 applied to π, we know that each restricted seaweed Si(π) ↓(Γ′,A,B) induces
the same cyclic order σ(Γ′, A,B); finally, by substituting [A/AOB] (resp., [B/AOB]) in the
restriction Si(π) ↓(Γ′,A) (resp., Si(π) ↓(Γ′,B)), we get that each seaweed Si(π) ↓(Γ′,AOB)

induces the same cyclic order σ(Γ′, AOB).

3. Otherwise π must contain a terminal splitting 4 or cut link. Assume π contains a splitting
4-link, A B

A4B , and assume by absurdum that π is such a minimal (w.r.t. the size) PN with at
least two seaweeds Si(π) and Sj(π) s.t. (X,Y, Z) ∈ Si(π) and (X,Y, Z) 6∈ Sj(π). We reason
according the following two sub-cases.

(a) It cannot be the case X = B, Y = A and Z = C otherwise, by definition of seaweeds,
Si(π) and Sj(π) will be as follows:

Si(π) ↓(Γ1,A4B,Γ2)= Si(πA) ↓(Γ1,A) 4Si(πB) ↓(B,Γ2)

Sj(π) ↓(Γ1,A4B,Γ2)= Sj(πA) ↓(Γ1,A) 4Sj(πB) ↓(B,Γ2)

Γ1 Γ2

Si(πA) Sj(πB)

A = Y B = X

(A4B) = Z

4

Now, by hypothesis of induction, all seaweeds on πA (resp., all seaweeds on πB) induce
the same order on Γ1, A (resp., Γ2, B), then in particular,

Si(πA) ↓(Γ1,A)= Sj(πA) ↓(Γ1,A) and Si(πB) ↓(B,Γ2)= Sj(πB) ↓(B,Γ2)

but this implies Si(π) ↓(Γ1,A4B,Γ2)= Sj(π) ↓(Γ1,A4B,Γ2).

(b) So, assume both X and Y belong to πA (resp., πB) and Z belongs to πB (resp.,
πA); moreover, assume for some i, j, (X,Y, Z) ∈ Si(π) ↓(Γ1,Z,Γ2) and (X,Y, Z) 6∈
Sj(π) ↓(Γ1,Z,Γ2); by Splitting Lemma 1, each seaweed for π must appear as follows,
in particular Si(π) and Sj(π):

YX
A B

Z

Si(πA) ↓Γ1,A Si(πB) ↓B,Γ2

A4B

4Γ′1 Γ′2

(X, Y, Z) ∈ Si(π) ↓Γ1,A4B,Γ2

YX
A B

Z

A4B

Sj(πB) ↓B,Γ2

4

(X, Y, Z) 6∈ Sj(π) ↓Γ1,A4B,Γ2)

Sj(πA) ↓Γ1,A

Γ′2Γ′1

then, by restriction on seaweeds, (X,Y,A) ∈ Si(πA) ↓Γ1,A and (X,Y,A) 6∈ Sj(πA) ↓Γ1,A,
contradicting the assumption (by minimality) that πA is a correct PN with a cyclic order
on its conclusions Γ1, X, Y,A = Γ1, A.

The remaining case, π contains a splitting cut, is similar and so omitted.

�
Next Corollary states that Lemma 2 is preserved by cut reduction.

Corollary 1 (stability of PN order conclusions under cut reduction) If π, with conclu-
sions σ(Γ), reduces in one step of cut reduction to π′, then also π′ has conclusions σ(Γ).

1Number of edges and number of vertexes.

9

Theorem 2 (adequacy of CyMLL PNs) Any CyMLL proof of a sequent σ(Γ) de-sequentializes
into a CyMLL PN with same conclusions σ(Γ).

Proof — By induction on the hight of the given sequent proof of σ(Γ). �

Theorem 3 (sequentialization of CyMLL PNs) Any CyMLL PN with conclusions σ(Γ) se-
quentializes into a CyMLL sequent proof with same cyclic conclusions σ(Γ).

Proof — by induction on the size of the given proof net π via Lemmas 1 and 2. �

Example 3 (Mellies’s proof structure) Observe that, dislike what happens in the commuta-
tive MLL case, the presence of cut links is ”quite tricky” in the non-commutative case, since cut
links are not equivalent, from a topological point of view, to tensor links: these latter make appear
new conclusions that may disrupt the original (i.e., in presence of cut links) order of conclusions.
By the way, unlike the most part of correctness criteria for non-commutative proof nets, our syn-
tax enjoys a sequentialization for the full class of CyMLL PNs without assuming these must be
cut-free. In particular the following Mellies’s proof structure2, given a page 224 of [MR2012],

4 4

cut

ax ax

O

ax

ax

ax
ax

OO

C

A B
O 4

4

O

is not correct according to our correctness criterion (thus it is not sequentializable) since there
exists a A B

AOB link and a switching S(π) s.t. ¬∀C, (A,B,C) ∈ S(π) ↓(A,B), contradicting condi-
tion 2 of Definition 4: following the crossing red dotted lines of next figure you can easily verify
∃C, (A,C,B) ∈ S(π) ↓(A,B).

4 4

cut

ax ax

O

ax

ax

ax
ax

O

O

O

C

B
O 4

4

A

¬∀C, (A,B,C) ∈ S(π) ↓A.B
∃C, (A,C,B,) ∈ S(π) ↓A.B

Observe, Mellies’s PS becomes correct (and so sequentializable) after cut reduction. Our criterion
satisfies, indeed, all four requirements that, according to page 223 of [MR2012], any ”satisfactory”
criterion should enjoy.

2In the related literature, this example is commonly considered a ”measure of the satisfiability degree” of
correctness criteria of non commutative proof nets. Let us say, a ”good” correctness criterion for non-commutative
logic should not recognize this structure as a correct proof net.

10

3 Cyclic MALL proof structures

Definition 6 (CyMALL proof structure) A CyMALL proof structure (PS) is an oriented
graph π, in which edges are labeled by formulas while nodes are labeled by connectives of MALL,
built by juxtaposing the following special graphs, called link, in which incident (resp., emergent)
edges are called premises (resp., conclusions):

& C

A&B A

A B A A BB A B A AA A⊥

cutax

A A⊥

O4 ⊕1 ⊕2

A⊕B A⊕BAOBA4B

In a PS π each premise (resp., conclusion) of a link must be conclusion (resp., premise) of exactly
(resp., at most) one link of π. Finally, we call conclusion of π any emergent edge that is not
premises of any link.

Definition 7 (Girard CyMALL proof structure) A Girard proof structure (GPS) is a PS
with weights associated as follows (weights assignment):

1. first we associate a boolean variable, called eigen weight p, to each &-node (eigen weights
are supposed to be different);

2. then we associate a weight, a product of (negation of) boolean variables (p, p, q, q...) to each
node, with the constraint that two nodes have the same weight if they have a common edge,
except when the edge is the premise of a & or C-node, in these cases we do like below:

if p does not occur in w

w

w.pw.p

with w1.w2 = 0

w1 w2

w = w1 + w2C

v2 v1 v2v1

&p

3. a conclusion node has weight 1;

4. if w is the weight of a &-node, with eigen weight p, and w′ is a weight depending on p and
appearing in the proof structure then w′ ≤ w (we say that a weight w depends on p when p
or p occurs in w).

Finally we say that:

• a node L with weight w depends on the eigen weight p if w depends on p or L is a C-node
and one of the weights just above it depends on p;

• the signature of a weight w is the set of variables occurring in w; e.g., the following weights
have the same signature {p, q}: pq, p̄q, pq̄ and p̄q̄.

Remark 1 Observe that:
1. – since the weights associated to a PS are products (monomials) of the Boolean algebra

generated by the eigen weights associated to a proof structure, then, for each weight w associated
to a binary contraction node, there exists a unique eigen weight p that splits w into w1 = wp and
w2 = wp. We sometimes index a C-link with its splitting variable p, like in the left hand side
picture below;

2. – the graph π1 is not a GPS since it violates condition 4 of Definition 7; actually, if w = q is
the weight of the &p-link and w′ = p is a weight depending on p and appearing in the proof-structure
then p 6≤ q.

11

v1 v2

wp wp

Cp
w

w = wp+ wp̄

C

C

ax

ax

ax

ax

ax

C

qp

q

qp

&p

&q C

p

w′ = p

w = q

cut

π1

3.1 Correctness

Definition 8 (slices, switchings, resolutions) Let π be a CyMALL GPS.

• A valuation ϕ of π is a function from the set of all weights of π into {0, 1}.

• Fixed a valuation ϕ for π, the slice ϕ(π) is the graph obtained from π by keeping only those
nodes with weight 1 together with its incident edges.

• Fixed a slice ϕ(π) an additive switching is a multiplicative switching of the slice ϕ(π), denoted
Sϕ(π), in which for each &p-node we erase the (unique) premise in ϕ(π) and we add an
oriented edge, called jump, from the &p-node to an L-node whose weight depends on the
eigen weight p of the &p-node.

• An additive resolution ϕr(π) for a slice ϕ(π) is the graph obtained by replacing in ϕ(π) each
unary link L (a link that after the valuation has a single premise) by a single edge labeled
by the formula labeling the unique premise of L. In particular, each conclusion of ϕr(π) is
labeled by a multiplicative formula.

We call additive resolution of a CyMALL sequent Γ what remains of Γ after erasing one sub-
formula in each additive formula occurrence of Γ..

Definition 9 (CyMALL proof net) We call correct (or proof net (GPN)) any CyMALL GPS
π whose conclusions Γ are endowed with a cyclic order σ(Γ) and s.t. for any valuation ϕ of π:

1. each additive switching Sϕ(π) is an acyclic and connected graph (ACC);

2. there exists an additive resolution ϕr(π) for ϕ(π) that is a CyMLL PN with cyclic order
conclusions σ(Γr), where Γr is an additive resolution of Γ.

Example 4 Observe, the proof structure π on the left hand side below is not correct: actually,
fixed a valuation ϕ s.t. ϕ(p) = 1, there exists an additive switching Sϕ(π) (with a jump) that
is not ACC (see the middle side figure). Nevertheless, any slice ϕ(π) is ACC; indeed, for each
slice ϕ(π) there exists an additive resolution ϕr(π) that is a CyMLL PN like that one, on the
rightmost hand side, with conclusion C 4A,A⊥OC⊥ that is an additive resolution of the sequent
(B&C)4A, (A⊥OC⊥)⊕ (A⊥OB⊥).

C

C

⊕ ⊕&p

ax

ax

ax

ax

p

p p

p

1 1

p

p

p

p

π4

O O

(A⊥OC⊥)⊕ (A⊥OB⊥)

11

(B&C) 4 A

C

C

⊕&p

ax

ax

p

p

1 1

p

4

O

(A⊥OC⊥)⊕ (A⊥OB⊥)

1

(B&C) 4 A

p

Sϕ(π)

ax

ax

4

O

A⊥OC⊥

C 4 A

ax

ax

ϕr(π)

12

3.2 Cut reduction

3.2.1 Ready cut reduction

Definition 10 (additive ready cut reduction) Let L be a cut in a proof net π whose premises
A and A⊥ are the respective conclusions of links L′, L′′ both different from the contraction C. Then
we define the result π′ (reductum) of reducing this additive ready cut in π (redex), as follows:

(&/⊕)-cut: if L′ is a &p-link with premises B and C and L′′ is a ⊕1-link (resp., a ⊕2-link) with
premise B⊥ (resp., C⊥), then π′ is obtained in three steps: first remove in π both formulas
A, A⊥ as well as the cut link L with L′ and L′′, then replace the eigen weight p by 1 (resp.,
bt 0) and keep only those links (vertexes and edges) that still have nonzero weight; finally we
add a cut between B and B⊥ (resp., between C and C⊥).

cut

&p cut

B C B B⊥

w

wpwp w

π π′[p/1]

B⊥

⊕2

Theorem 4 (stability of GPN under ready cut reduction) Assume π is GPN that reduces
to π′ in one step of multiplicative (Definition 5) or additive (Definition 10) ready cut reduction,
then π′ is GPN too.

Proof — Stability of multiplicative ready cut reduction (Definition 5) follows by Theorem 1.
Stability of additive ready cut reduction (Definition 10) is immediate. Trivially, conditions 1 and 2
of Definition 9 are preserved by additive ready cut reduction steps. �

3.2.2 Commutative cut reduction

(The confluence problem). In general, reducing a cut involving a contraction link as (at least) one
of its premises from a proof structure π may lead to several solutions, depending on which sub-
graph of π we decide to duplicate. For instance, as illustrated in the following picture, reducing the
commutative cut of π of may lead to solution π1 as well solution π2, depending on which additive
box (&q or &p) we decide to duplicate. Of course these two resulting proof nets are different and
there is no a-priori way to make them equal. Girard does not give in [Gir1996] a solution to this
problem which has been proposed later by Laurent and Maieli in [LM2008]. In the following we
present a commutative cut reduction that simplify this latter.

C

ax

ax

ax

ax

C
π

&p &q

cut

ax

ax

ax

ax

C&p &′q

C

ax

ax

&′′q

Cp

π1

cut

cut

C

ax

ax

ax

ax

&q

ax

ax

C

Cq

π2

&p′

&p′′

cut

cut

13

Definition 11 (empire and spreading) Assume a proof structure π, an eigen weight p and a
weight w, then:

• dependency graph of p w.r.t. π, denoted Ep, is the (possibly disconnected) subgraph of π
made by all links depending on p.

• the spreading of w over π, denoted by w.[π], is the product of w for π, i.e., π where we
replaced each weight v with the product of weights vw.

Lemma 3 (dependency graph) If a &p-node belongs to the dependency graph Eq, then E(p) ⊆
E(q).

Proof — If the &p-node belongs to Eq then the weight w of the &p-node depends on q (i.e.,
w = w′q or w = w′q) then trivially, by the dependency condition 4 of Definition 7, each node v
whose weight depends on p will also depends on q. �

Definition 12 (commutative cut reduction) Let L be cut link in a proof net π whose premises
A and A⊥ are the respective conclusions of links L′ and L′′ s. t. at least one of them is a contraction
link C. Then we define the result π′ (reductum) of reducing this commutative cut L in π (redex),
as follows:

(C/4)-cut: if L′ is a C-link and L′′ is a 4-link, then π reduces in one (C/4) step to π′ (the
(C/O) step is analogous) as follows:

cut

C

w

w wwpwp

π:

L

4

B⊥C⊥BOCBOC

C C

cut

cut

cut

cut

ax

ax

ax

ax

wp w

wp w

π′:

4 4

C⊥ B⊥BOC BOC

(C/C)-cut: if both L′ and L′′ are both C-links, then there are two cases:

1. either the weight w of both L′ and L′′ splits on a same p variable, then π reduces in
one (Cp/Cp) step to π′ as follows

cut

cutπ π′

cut

A A A⊥ A⊥ AA A⊥ A⊥

wp

w wp

wp
wp

wpwp

Cp Cp

2. or the weight w of L′, resp., L′′, is split by two different variables, p and q, then π
reduces in one (Cp/Cq) step to π′, like follows

cut

w

wp wp wqwq

A A⊥ A⊥A

π:

Cp Cq

C C

cut

cut

cut

cut

ax

ax

ax

ax

C C

AA A⊥ A⊥

wpq

wpq

wpq

wpq

wp

wp

wq

wq

π′:

14

(C/⊕i)-cut: if L′ is a C-link and L′′ a ⊕i=1,2-link, then π reduces in one (C/⊕) step to π′, as
follows

cut

π π′

w

wpwp

C

cut

ax

cut

⊕i
⊕i ⊕i

ax

C

cut

w

wp wp
B&C B&C

B&C B&C

B⊥

B⊥ B⊥

B B

B⊥

(C/&)-cut: if L′ is a C-link and L′′ a &p-link, then π reduces in one (C/&) step to π′, like follows

cut

&p

B ⊕ C B ⊕ C

χ

wp wpwq

w

wq

A A⊥

Cq

π :

C⊥ B⊥

B ⊕ C

cut

B ⊕ C

&p′′ &p′
wq̄

C⊥ B⊥ C⊥ B⊥

cut

q̄.[E ′p′] q.[E ′′p′′]

CC

... ...

...

A1 An

χ′ wn

w1q̄ wnqwnq̄

w1

w1q

wq

with the assumptions that graphs q̄.[E ′p′] and q.[E ′′p′′] are obtained as follows:

1. we take two copies, E ′p and E ′′p , of the dependency graph of p, Ep;

2. we replace in E ′p (resp., in E ′′p) the variable p with a new p′ (resp., p′′);

3. we spread q̄ (resp., q) over E ′p′ (resp., over E ′′p′′).

3.2.3 Stability of correctness under cut reduction

Theorem 5 (stability under commutative cut reduction: I part) If π is a proof net s.t.
it reduces to π′ in one step of commutative cut reduction that is different from the C/&-case, then
π′ is still a proof net.

Proof — (sketch) All cases are more or less immediate consequences of the Euler-Poicaré Prop-
erty 1. Trivially, conditions 1 and 2 of Definition 9 are preserved by these commutative cut
reduction steps. �

Lemma 4 (conservative/extensive switching) Assume π is a proof net that reduces to π′ in
one step of commutative cut reduction Cq/&p. We say that a switching S′ for π′ is extensive
(resp., conservative) w.r.t. q if there exists (resp., there do not exist) in S′ at least a jump going
from the &q-node to a node that was not depending on q in π. Then, for any extensive (resp.,
conservative) switching for π′ that is not ACC we can find a corresponding switching for π that is
not ACC too.

Proof — (sketch) Assume π reduce to π′ after a commutative cut reduction Cq/&p and assume
there exists a cycle in an extensive switching S′(π′) like the left hand side picture below

15

&q

ν

S ′(π′)

&p′

w(p’q)

&q

ν

S ′(π′)

S(π)&p′

w(p’q)

This cycle goes through a node ν that depends on both variables p′ and q, where p′ is a fresh
variable copying p of π, according to the definition Cq/&p cut reduction step. Then we can easily
find a switching for S(π) with a cycle like the blue-black one of the following picture: replace in
π, the fresh variable p′ of π′ with the original one p. Similarly, if we assume that S′(π′) is not
connected. �

Lemma 5 (separation) Assume π is a proof net containing two nodes, &p′ and &p′′ , with
weights, resp., w′q and w′′q, for some eigen weight q of π. Then, there cannot exist in π a
node whose weight depends both on p′ and on p′′.

Proof — By absurdum, assume a node v whose weight w depends both on p′ and p′′; let’s say,
for instance, w = w1.p

′.p′′. Now fix an evaluation ϕ for π s.t. ϕ(w) = 1, then by the dependency
condition 4 of Definition 7, we have both w1.p

′.p′′ ≤ w′q and w1.p
′.p′′ ≤ w′′q; this is only possible

when ϕ(w) = 0, contradicting ϕ(w) = 1. �

Theorem 6 (stability under commutative cut reduction: II part) If π is a proof net that
reduces to π′ in one step of cut reduction C/&, then π′ is a proof net too.

Proof — (sketch) First observe that each cut reduction step Cq/&p preserves the property of
being a proof structure. This follows by construction of π′. In particular Lemmas 3 and 5, ensure
that we can safely rename the sets of eigen weights in E ′ and E ′′ and get still a proof structure.

Moreover, by Lemma 4 it is enough to only verify that all the extensive switchings, w.r.t. q,
for π′ are ACC. In the rest of proof, whenever it is not explicitly declared, each switching for π′

is meant to be extensive w.r.t. q.
Connectedness - Assume by absurdum there exists a switching S′(π′) that is disconnected.

Then there exists at least a node vj occurring in a connected component γ1 that is separated from
the component γ2 that contains the &q-node together with the jump ν directed to a node vi, like
in the next left hand side picture where γ1 and γ2 are separated by dotted lines (in S′(π′) there
is no path from vj to vi).

γ2

wj

vi

vj

ν

w
S ′(π′)

γ1

&q

w′iq

γ2

wj

vj

w

γ1

vh
ν

vi
S ′′(π′)

&q

w′iq

w′hq

Now let S′′(π′) be an other switching that is a copy of S′(π′) except for the jump ν from the
&q-node to a vh node that was already depending on q in π (in other words, S′′ is a conservative
switching, w.r.t. q, which differs from S′ only for the jump ν, like in the previous right hand
picture). Clearly in S′′(π′) there is no connection path between vi and vj , otherwise this path
would go through the ν-jump (and so through the &q-node) contradicting the assumption that the
&q-node and vj were disconnected in S′(π′). But this contradicts, by Lemma 4, the hypothesis
that π was correct.

Acyclicity - Assume there exists a cycle in S′(π′) going through a jump ν from the &q-node to
a node vi whose weight wi depends on q as follows

16

w

viν

S ′(π′)

γ
&q

w′ip
′q

where γ is the path in S′(π′) from the conclusion of the &q-node to vi. Now, the new variable
p′ or its negation (resp., p′′ or its negation) occurs by definition of Cq/&p-cut reduction step in
the weight wi: let us say wi = w′ip

′q. So, by condition 4 of Definition 7 and by connectedness of
S′(π′) showed before, the &p′ -node (resp., the &p′′ -node) and the node vi must be connected in
S′(π′) in two possible ways:

1. either by a path going through the &q-node without crossing γ, like path γ1 of the next left
hand side picture;

2. or by a path γ′2 not going through the &q-node (and possibly crossing γ as γ′′2) like in the
left hand side picture below:

vi

w′p

&q

&p′

w′ip
′q

w

ν

S ′(π′)

γ

γ1

γ′′2

γ′2

vi

&q

&p′ vj

w

γ1

γ
γ′2

γ′′2

w′ip
′q w′p

ν

A⊥A
cut

S ′′(π′)

In both cases we can set a conservative switching S′′(π′) that is identical to S′(π′) except for the
jump ν going from the &q-node to the node vj whose conclusion A⊥ is the premise of the cut link
of π′ obtained after reducing the cut Cq/&p in π (see the right hand side picture above). Then
we get a cycle, contradicting, by Lemma 4, the hypothesis that π is correct. �

3.2.4 Strong cut-elimination

Technical details of proofs of next Theorems 7 and 8 can be found in [Mai2008].

Theorem 7 (termination) We can always reduces a proof net π in to a proof net π′ that is
cut-free, by iterating the reduction steps of Definition 5 and 12.

Theorem 8 (confluence) Assume π is proof net s.t. it reduces in one step α to π′ (π α π
′)

and it reduces in an other step β to π′′ (π β π
′′); then, there exists a proof net σ such that π′

reduces, in a certain number of steps, to σ (π′ ∗ σ) and π′′ reduces, in a certain number of steps,
to σ (π′′ ∗ σ).

3.3 Sequentialization

Theorem 9 (sequentialization) A CyMALL GPN of Γ can be sequentialized into a CyMALL
sequent proof with same cyclic conclusions σ(Γ) and vice-versa (de-sequentialization).

Proof — Sequentialization-part: any CyMALL proof net π can be sequentialized into a proof
Π, by induction on the number of slices (or, equivalently, by the number of & links). The base
of induction corresponds to the sequentialization of the CyMLL proof nets (Theorem 3). The

17

induction step follows from the sequentialization of standard MALL PNs (see [Gir1996]). The
only novelty is to show that whenever a PN π contains a terminal &-link L, then π ca be toggled3

at L in two sub-proof nets preserving conditions 1 and 2 of Definition 9.
De-sequentialization-part: any CyMALL proof Π of σ(Γ) can be de-sequentialized into a PN π

of σ(Γ), by induction of the height of Π derivation. �

Example 5 In general, there may exist different GPNs to denote the same sequential proof. Al-
though π2 and π3 below are both correct proof structures with same conclusions, π3 quotients
“more” sequential proofs than π2.

C

C

ax

ax

ax

ax

ax

C

qp

q

qp

&p

&q C

w = q

cut

π2

w′ = q

q
C

ax

ax

ax

ax

qp

q

qp

&p

&q C

w = q

cut

π3

Vice-versa, π4 and π5 are both correct proof structures (with same conclusions) that sequentialize
into the same proof, although π4 is not the de-sequentialization of any proof.

C

ax

ax

&p

OO

cut

ax

ax

C

p

p

p̄

p̄

π4

1
1

&p

OO

1

ax

ax

cut

p

p

1

π5

ax

ax

cut

p̄

p̄

1

Finally, π6 is not a correct proof structure: you can easily get an additive switching with a cycle
like that one in dashed line.

C C&p &q

cut

a

ax

ax

ax

⊗

C C

ax

ax

p̄

pp

p̄ q̄

q

⊗

CC

ax

ax

q̄

q

4 Embedding Lambek Calculus into CyMALL PNs

Definition 13 (Lambek formulas and sequents of CyMALL) Assume A and S are, respec-
tively, a formula and a sequent of CyMALL.

1. A is a pure Lambek formula (PLF) if it is a CyMLL formula recursively built according to
the following grammar

A := + atoms | A4A | A⊥OA | AOA⊥.
3We say that a conclusion link &p of a GPN π is toggling whenever the restriction of π w.r.t. p and the restriction

of π w.r.t. p̄ are both correct GPSs. We call restriction of π w.r.t. p (resp., p̄) denoted π �p (resp., π �p̄), what
remains of π when we replace p with 1 (resp., p with 1) and keep only those vertexes and edges whose weights are
still non zero (see details in [Gir1996]).

18

2. A is an additive Lambek formula (ALF or simply LF) if it is a CyMALL formula recursively
built according to the following grammar

A := a PLF | A&A | A⊕A.

3. S is a Lambek sequent of CyMALL iff

S = (Γ)⊥, A

where A is a non void LF and (Γ)⊥ is a possibly empty finite sequence of negations of LFs
(i.e., Γ is a possibly empty sequence of LFs and (Γ)⊥ is obtained by taking the negation of
each formula in Γ).

4. A Lambek proof is any derivation built by means of the CyMALL inference rules whose
premise(s) and conclusions are CyMALL Lambek sequents.

Definition 14 (Lambek CyMALL proof net) We call Lambek CyMALL proof net any Cy-
MALL PN whose edges are labeled by LFs or negation of LFs and whose conclusions are a Lambek
sequent.

Corollary 2 Any Lambek CyMALL proof net π is stable under cut reduction, i.e., if π reduces in
one step to π′, then π′ is a Lambek CyMALL proof net too.

Proof — Consequence of Theorems 4, 5 and 6. Trivially, each reduction step preserves the
property that each edge of the reductum is labeled by a Lambek formula or the negation of a
Lambek formula. �

Theorem 10 (de-sequentialization of Lambek CyMALL proofs) Any proof of a CyMALL
Lambek sequent ` σ(Γ⊥, A) can be de-sequentialized in to a Lambek CyMALL PN with conclusions
σ(Γ⊥, A).

Proof — By induction on the hight of the given sequent proof (similarly to the de-sequentialization
part of Theorem 9). �

Theorem 11 (sequentialization of pure Lambek CyMALL PNs) Any Lambek CyMALL PN
of σ(Γ⊥, A) sequentializes into a Lambek CyMALL proof of the sequent ` σ(Γ⊥, A).

Proof — Sequentialization follows by induction on the number of &-links of the given PN. The
base of induction follows from next Theorem 12. �

Theorem 12 (sequentialization of Lambek CyMLL PNs) Any Lambek CyMLL PN of σ(Γ⊥, A)
sequentializes into a Lambek CyMLL proof of ` σ(Γ⊥, A).

Proof — Assume by absurdum there exists a pure Lambek CyMLL proof net π that does not
sequentialize into a Lambek CyMLL proof. We can chose π minimal w.r.t. the size. Clearly, π
cannot be reduced to an axiom link; moreover π contains neither a negative conclusion of type
A⊥OB⊥ nor a positive conclusion of type A⊥OB (resp., AOB⊥), otherwise, we could remove
this terminal O-link and get a strictly smaller (than π) proof net π′ that is sequentializable, by
minimality of π; this implies that also π is sequentializable (last inference rule of the sequent proof
will be an instance of O-rule) contradicting the assumption. For same reasons (minimality), the
unique positive conclusion (e.g. A 4 B) of π cannot be splitting. Therefore, since π is not an
axiom link

A⊥ A
, by Lemmas 1 and 2, there must exist either a (negative) splitting 4-link (Case

1) or a splitting cut-link (Case 2).
Case 1. Assume a negative splitting conclusion A⊥ 4 B (resp., A 4 B⊥). By minimality, π
must split like in the next left hand side picture (we use A+, resp. A−, to denote positive, resp.,
negative, LF and Γ− for sequence of negative LFs):

19

4

A⊥ 4B

π1

B

π2

Γ−1 A⊥ P+Γ−2

π2π′1

4

A⊥ 4B

4

π′′1

C 4D⊥

Γ
′′−
1 C D⊥ Γ

′−
1 A⊥ Γ−2B P+

π′

Now, let us reason on π1 (reasoning on π2 is symmetric): by minimality of π, π1 cannot be
reduced to an axiom link (otherwise Γ−1 would not be negative); moreover, none of Γ−1 is a
(negative) splitting link, like e..g., C 4D⊥, otherwise we could easily restrict to consider the sub-

proof-net π′, obtained by erasing from π the sub-proof-net π′′1 (with conclusions Γ
′′−
1 , C) together

with the C⊥ 4 D-link, like the graph enclosed in the dashed line above. Clearly, π′ would be a
non sequentializable Lambek proof net strictly smaller than π. In addition, π1 must be cut-free,
otherwise by minimality, after a cut-step reduction we could easily build a non sequentializable
reductum PN π′, strictly smaller than π, (π′ will have same conclusions of π). Therefore, there
are only two sub-cases:

1. either A⊥ = C⊥OD⊥, then we can easily get, from the PN π on the l.h.s. below, the
non sequentializable PN π′, on the r.h.s.; π′ is strictly smaller than π, contradicting the
minimality assumption:

Γ−1 C⊥

π1

D⊥

B

π2

Γ−2 P+

O

C⊥OD⊥π :

4

A⊥ 4B

Γ−1 C⊥ D⊥

B

π2

Γ−2 P+

π′1

π′ :

4

D⊥ 4B

2. or A⊥ = C⊥4D, then this C⊥4D-link must split by Lemma 1, since π1 is a cut-free PN in
splitting condition without other 4-splitting conclusion in Γ−1 ; so from π on the l.h.s., we can
easily get the non sequentializable PN π′ on r.h.s.; π′ is strictly smaller of π, contradicting
the minimality assumption:

B

π2

Γ−2 P+π :

π′1

π′′1

Γ
′−
1

Γ
′′−
1

C⊥ D

4

4

A⊥ 4B

C⊥ 4D B

π2

Γ−2 P+

π′1

Γ
′−
1 C⊥

π′ :

4

C⊥ 4B

Case 2. Assume π contains a splitting cut link, like the leftmost hand side picture below, then
we proceed like in Case 1. We reason on π1 with two sub-cases:

1. either A⊥ = C⊥OD⊥, then we can easily get, starting from the PN π on the middle side
below, a non sequentializable PN π′, like the rightmost hand side picture; π′is strictly smaller
than π, contradicting the minimality assumption:

π1 π2

Γ−1 P+

cut

(A⊥)− A+ Γ−2

Γ−1 C⊥

π1

D⊥

π2

Γ−2 P+

O

C⊥OD⊥π :

cut

A

Γ−1 C⊥ D⊥

π2

Γ−2 P+

π′1

π′ : A

4

D⊥ 4 A

20

2. or A⊥ = C⊥4D, then this A⊥-link must be splitting by Lemma 1, since π1 is a cut-free PN
in splitting condition without any other 4-splitting conclusion in Γ−1 ; so, we can easily get,
starting from the PN π on the l.h.s., a non sequentializable PN π′ that is strictly smaller
than π (on the r.h.s.), contradicting the minimality assumption.

π2

Γ−2 P+π :

π′1

π′′1

Γ
′−
1

Γ
′′−
1

C⊥ D

cut

A

4

C⊥ 4D

π2

Γ−2 P+

π′1

Γ
′−
1 C⊥

π′ : A

4

C⊥ 4 A

�

5 Language parsing with Lambek CyMALL PNs

In this section we reformulate, in our syntax, some examples of linguistic parsing suggested by
Richard Moot in his PhD thesis [Moo2002]. We use s, np and n as the types expressing, respec-
tively, a sentence, a noun phrase and a common noun. According to the “parsing as deduction
style”, when a string w1...wn is tested for grammaticality, the types t1, ..., tn associated with the
words are retrieved from the lexicon and then parsing reduces to proving the derivability of a
two-sided sequent of the form t1, ..., tn ` s. Remind that proving a two sided Lambek derivation
t1, ..., tn ` s is equivalent to prove the one-sided sequent ` t⊥n , ...t⊥1 , s where t⊥i is the dual (i.e.,
linear negation) of each type ti. Any phase or sentence should be read like in a mirror (with
opposite direction).

Assume the next lexicon, where linear implication −◦ (resp., ◦−) is traditionally used for
expressing types in two-sided sequent parsing:

1. Vito = np; Sollozzo = np; him = np;

2. trusts = (np−◦s)◦−np = (np⊥Os)Onp⊥.

Cases of lexical ambiguity follow to words with several possible formulas A and B assigned it.
For example, a verb like ”to believe” can express a relation between two persons, np’s in our
interpretation, or between a person and a statement, interpreted as s, as in the following examples:

Sollozzo believes Vito. (1)

Sollozzo believes Vito trusts him. (2)

We can express this polymorphism by two lexical assignments as follows:

3. believes = (np−◦s)◦−np = (np⊥Os)Onp⊥;

4. believes = (np−◦s)◦−s = (np⊥Os)Os⊥.

Typically, additives are used for capturing cases of lexical ambiguity. When a word has two possible
formulas A and B assigned it, we can combine these into a single additive formula A&B (resp.,
A ⊕ B). Thus, we can collapse assignments 3 and 4 into a single additive formula assignment as
follow:

5. believes = ((np−◦s)◦−np)&((np−◦s)◦−s) = ((np⊥Os)Onp⊥)&((np⊥Os)Os⊥).

Using that, we can move lexical ambiguity into proof net as follows: we give the Lambek CyMALL
PN corresponding to the parsing of the additive superposition of sentences (1) and (2).

21

s⊥

4

4

np

O

np⊥

np

np⊥

trustshim Vito

s

s⊥

4

O

np

4

C

believes

s⊥ np

np

np⊥ np⊥

C

Sollozzo s

s s

C&p

np⊥

(Vito) & (him trusts Vito)

4

(3p)

(2p)

1p

4

⊕2⊕1

(1p̄)

(2p̄)

(3p̄)
(4p̄)

(5p̄)

Observe that for slice ϕp(π) (resp., ϕp̄(π)) there exists an additive resolution that is a CyMLL PN
corresponding to parsing of sentence (1), see the blue subgraph, (resp., sentence (2); see the red
subgraph); these PNs sequentialize as follows:

id1
np⊥, np

id2
s⊥, s

id3
np, np⊥

4
s⊥ 4 np, np⊥, s

4
np⊥, np4 (s⊥ 4 np), np⊥, s

s⊥ np

4

np

np⊥

believesVito

(1)

np⊥

Sollozzo

(3)

s

(2)

4

id1
np⊥, np

id2
s, s⊥

id3
np, np⊥

4
s⊥ 4 np, np⊥, s

4
np⊥, np4 (s⊥ 4 np), np⊥, s

id4
s, s⊥

id5
np, np⊥

4
s⊥ 4 np, np⊥, s

4
np⊥, np4 (s⊥ 4 np), np⊥, s4 (s⊥ 4 np), np⊥, s

O
np⊥O(np4 (s⊥ 4 np)), np⊥, s4 (s⊥ 4 np), np⊥, s

O
(np⊥O(np4 (s⊥ 4 np)))Onp⊥, s4 (s⊥ 4 np), np⊥, s

22

s⊥

4

4

np

O

np⊥

np

np⊥

him trusts Vito

trustshim Vito

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

O

(1)

(2)

(3)

(5)

(4)

6 Conclusions and further works

6.1 Stability of sequentialization under cut reduction

Problem: try to give a direct sequentialization avoiding Girard’s one.

6.2 Proof-structures with explicit n-ary links

Proof-structures with explicit n-ary (& or Contraction) links differ from those one defined in
Definition 7 only for the use of n-ary contractions instead of the binary ones, like the next left hand
side picture. Then, the notion of slices and switchings (Definitions 8) and proof-nets (Definitions 9)
remain unchanged as well the (De-)Sequentialization Theorem 9. Observe that in general the
syntax with n-ary contraction or & links is not equivalent to the former one with binary ones.
Actually, the picture on the right hand side below shows an example of proof-net with an n-ary
contraction (resp., &) link whose monomial sum, pqr+pr+qr+pq+pqr, cannot be factorized in such
a way to reduce this n-ary contraction into a sum of only monomial binary sums (contractions).

v1

C

...

vn...

w

∀i, j (with 1 ≤ i, j ≤ n) wi.wj = 0

wn

A A

A

w1

w =
∑n

i=1wi

C

ax

ax

ax

ax

ax

pqr

p̄q̄r̄

p̄r

qr̄

pq̄

&p,q,r

6.3 Fully local cut reduction and parsing contraction

Problem: try to define a retraction system stable under a strongly normalizing cut reduction that
implements a commutative cut elimination step &p/C that does not duplicate the empire Ep as
follows

23

cut

&p

B⊥ C⊥B ⊕ C B ⊕ C

wp wpwq

w

wq

A A⊥

Cq

π : 7→

C C

cut

cut

cut

cut

ax

ax

ax

ax

wpq

B ⊕ C B ⊕ C B⊥ C⊥

wp

wp

wq

wqπ′:

wqp

wpp

&p &p

wqp

Observe that, dislike the C/& cut reduction step given before, this new C/& cut reduction step
breaks the monomial condition GPS. This problem has been formulated and solved in [LM2008].
It is not clear whether this new syntax has effects on LambeK proof nets.

7 Complexity

We aim at studying the class complexity of the CyMALL correctness criterion. What complicate
matters from a computational point of view is the fact that, dislike the multiplicative case, we
could have chosen different additive proof nets for capturing the polymorphic lexical behavior
described by the proof net above.

References

[Abr2002] Abrusci, V. M.. Classical conservative extensions of Lambek calculus Studia Logica
71 (3):277 - 314 (2002).

[AR2000] Abrusci, V. M. and Ruet, P.. Non-commutative logic I: the multiplicative fragment.
Annals of Pure and Applied Logic 101(1): 29-64, 2000.

[AP1991] Andreoli J.-M. and Pareschi, R.: From Lambek Calculus to word-based pars-
ing. In Proc. of Workshop on Substructural Logic and Categorial Grammar, CIS
Munchen, Germany, 1991.

[DR1989] Danos, V. and Regnier, L. The Structure of Multiplicatives. Archive for Mathe-
matical Logic, 28:181-203, 1989,

[Dan1990] Danos, V. La Logique Linéaire appliquée à l’étude de divers processus de normal-
isation (principalment du λ-calcul). PhD Thesis, Univ. Paris VII, Juin 1990.

[Gir1987] Girard, J-Y. Linear Logic. Theoretical Computer Science, 50:1-102, 1987

[Gir1996] Girard, J-Y.. Proof-nets: the parallel syntax for proof theory. Logic and Algebra.
Marcel Dekker, 1996.

[Gir2006] Girard, J-Y. Le point aveugle. Cours de Logique. Volume I, Vers la Perfection.
Ed. Hermann, 2006, Paris.

[GM2001] Guerrini, S. and Masini, A. Parsing MELL proof nets. Theoretical Computer
Science, 254:317-335, 2001

[HVG2003] Hughes, D. and van Glabbeek, R. Proof Nets for Unit-free Multiplicative-Additive
Linear Logic. In Proc. of IEEE Logic in Computer Science, 2003.

[Laf1995] Lafont, Y. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont and L.
Regnier eds. Advanced in Linear Logic, pp. 225-247. Cambridge Press, 1995.

24

[Lam1958] Lambek, J.. The mathematics of sentence structure. American Mathematical
Montly, 65, 1958.

[Lau1999] Laurent, O.. Polarized Proof Nets: Proof Nets for LC (Extended Abstract). In
J.-Y. Girard, editor, Typed Lambda Calculi and Applications 1999,

[LM2008] Laurent, O. and Maieli, R.. Cut Elimination for Monomial MALL Proof Nets. In
Proc. of IEEE Logic in Computer Science, pp 486-497, 2008. Pittsburgh, USA.

[Mai2003] Maieli, R.. A new correctness criterion for multiplicative non commutative proof-
nets.. Archive for Mathematical Logic, vol.42, 205-220, Springer-Verlag, 2003.

[Mai2007] Maieli, R.. Retractile Proof Nets of the Purely Multiplicative and Additive Frag-
ment of Linear Logic. 14th LPAR 2007. Springer, LNAI 4790, pp. 363-377, 2007.

[Mai2008] Maieli, R.. Cut Elimination for Monomial Proof Nets of the Purely Multiplicative
and Additive Fragment of Linear Logic. IAC-CNR Report n.140 (2/2008); available
at http://logica.uniroma3.it/~maieli/iac140.pdf.

[MR2012] Moot, R. and Retoré Ch.. The logic of categorial grammars: a deductive account
of natural language syntax and semantics. Springer LNCS 6850, 2012.

[Moo2002] Moot, R.. Proof nets for linguistic analysis. PhD thesis. Utrecht University, 2002.

25

