Vito Michele Abrusci 
email: abrusci@uniroma3.it
  
Roberto Maieli 
email: maieli@uniroma3.it
  
Cyclic multiplicative-additive proof nets of linear logic with an application to language parsing

This paper concerns a logical approach to natural language parsing based on proof nets (PNs), i.e. de-sequentialized proofs, of linear logic (LL). In particular, it presents a syntax for PNs of the cyclic multiplicative and additive fragment of linear logic (CyMALL). Any proof structure (PS), in Girards style, is weighted by boolean monomial weights, moreover, its conclusions Γ (a sequence of formulas occurrences) are endowed with a cyclic order σ, i.e., σ(Γ). Naively, a CyMALL PS π with conclusions σ(Γ) is correct if, for any slice ϕ(π) (obtained by a boolean valuation ϕ of π) there exists an additive resolution (i.e. a multiplicative refinement of ϕ(π)) that is a CyMLL PN with conclusions σ(Γr), where Γr is an additive resolution of Γ (i.e. a choice of an additive subformula for each formula of Γ). In its turn, the correctness criterion for CyMLL PNs can be considered as the non-commutative counterpart of the famous Danos-Regnier (DR) criterion for PNs of the pure multiplicative fragment (MLL) of LL. The main intuition relies on the fact that any DR-switching (i.e. any correction or test graph for a given PN) can be naturally viewed as a seaweed, i.e. a rootless planar tree inducing a cyclic order on the conclusions of the given PN. Dislike the most part of current syntaxes for non-commutative PNs our syntax allows a sequentialization for the full class of CyMLL PNs, without requiring these latter must be cut-free. Moreover, we give a characterization of CyMALL PNs for the extended (MALL) Lambek Calculus and thus a geometrical (non inductive) way to parse phrases or sentences. In particular additive Lambek PNs allow to parse phrases containing words with syntactical ambiguity (i.e. words with polymorphic type).

Introduction

Proof nets (PNs) are one of the most innovative inventions of linear logic (LL, [Gir1987]): they are used to represent demonstrations in a geometric (i.e., non inductive) way, abstracting away from the technical bureaucracy of sequential proofs. Proof nets quotient classes of derivations that are equivalent up to some irrelevant permutations of inference rules instances.

Following this spirit, we present a syntax for PNs of the cyclic multiplicative and additive fragment of linear logic (CyMALL, Sections 1.1). This syntax, like the original Girard's one [Gir1996], is based on weighted (by boolean monomials) proof structures with explicit binary contraction links (Section 3). The conclusions Γ (a sequence of formulas occurrences) of a PS π are endowed with a cyclic order σ on Γ. Naively, a CyMALL PS π with conclusions σ(Γ) is correct if, for any slice ϕ(π) (obtained by a boolean valuation ϕ of π) there exists an additive resolution (a slight deformation of ϕ(π)) that is a CyMLL PN with conclusion σ(Γ r ), where Γ r is an additive resolution of Γ (i.e. a choice of an additive sub-formula for each formula of Γ). In its turn, correctness criterion for CyMLL PNs can be considered as the non-commutative counterpart of the famous Danos-Regnier criterion for proof nets of linear logic (see [DR1989] and [Dan1990]). The main intuition relies on the fact that any DR-switching for a PS (i.e. any correction or test graph, obtained by mutilating one premise of each disjunction -link) can be naturally viewed as a rootless planar tree, called seaweed, inducing a cyclic ternary relation on the conclusions of the given proof structure (Section 2.1).

Dislike some previous syntaxes for non-commutative logic, like e.g., [AR2000] and [Mai2003], this new syntax admits a sequentialization (i.e., a correspondence with sequential proofs) for the full class of CyMLL PNs including those ones with cuts (see Sections 2.2 and 2.3). Actually, unlike what happens in the standard (commutative) MLL case, the presence of cut links is "rather tricky" in the non-commutative case, since cut links are not equivalent, from a topological point of view, to tensor links; these latter make appear new conclusions that may disrupt the original (i.e., in presence of cut links) order of conclusions.

Moreover, CyMALL PNs satisfy both a simple convergent cut-elimination procedure in Laurent-Maieli's style [LM2008] (Section 3.2) and a sequentialization, in Girard's style (Section 3.3), stable under cut-reduction.

CyMALL can be considered as a conservative classical extension of Lambek Calculus (LC, see [Lam1958], [Abr2002] and [MR2012]) one of the ancestors of LL. The LC represents the first attempt of the so called parsing as deduction, i.e., parsing of natural language by means of a logical system. Following [AP1991], in LC parsing is interpreted as type checking in the form of theorem proving of Gentzen sequents. Types (i.e. propositional formulas) are associated to words in the lexicon; when a string w 1 ...w n is tested for grammaticality, the types t 1 , ..., t n associated with the words are retrieved from the lexicon and then parsing reduces to proving the derivability of a one-sided sequent of the form t ⊥ n , ..., t ⊥ 1 , s, where s is the type associated with sentences. Moreover, forcing constraints on the Exchange rule, by e.g. allowing only cyclic permutations over sequents of formulas, gives the required computational control needed to view theorem proving as parsing in Lambek Categorial Grammar style. Anyway, LC parsing presents some syntactical ambiguity problems; actually, there may be:

1. (non canonical proofs) more than one cut-free proof for the same sequent; 2. (lexical polymorphism) more than one type associated with a single word.

Proof nets are commonly considered an elegant solution to the first problem of representing canonical proofs; in this sense, in Section 4, we give an embedding of extened MALL Lambek Calculus into Cyclic MALL PNs.

In Section 5 we propose a parsing approach based on CyMALL PNs that could be considered a step towards a proof-theoretical solution to the problem of lexical polymorphism; technically speaking, CyMALL proof nets allow to manage formulas (types) superposition (polymorphism) by means of the additive links & and ⊕. Following [Moo2002], we propose a parsing, by means of Lambek CyMALL PNs, of some sentences which make use of polymorphic words; naively, when a word has two possible formulas A and B assigned then we can combine (or super-pose) these into a single additive formula A&B.

Cyclic MALL

We briefly recall the necessary background of the Cyclic MALL fragment of LL, denoted CyMALL, without units (see [Abr2002]). We arbitrarily assume literals a, a ⊥ , b, b ⊥ , ... with a polarity: positive (+) for atoms, a, b, ... and negative (-) a ⊥ , b ⊥ ... for their duals. A formula is built from literals by means of the two groups of connectives: negative, ("par") and & ("with") and positive, ("tensor") and ⊕ ("plus"). For these connectives we have the following De Morgan laws:

(A B) ⊥ = B ⊥ A ⊥ , (A B) ⊥ = B ⊥ A ⊥ , (A&B) ⊥ = B ⊥ ⊕ A ⊥ , (A ⊕ B) ⊥ = B ⊥ &A ⊥ . A CyMALL (resp.
, CyMLL) proof is any derivation tree built by the following (resp., only multiplicative) inference rules where sequents Γ, ∆ are sequences of formulas occurrences endowed with a total cyclic order (lists with cyclic permutation) (see Definition 1):

identity: id A, A ⊥ Γ, A A ⊥ ∆ cut Γ, ∆ multiplicatives: Γ, A B, ∆ Γ, A B, ∆ Γ, A, B Γ, A B additives: Γ, A Γ, B Γ, A B Γ, A i ⊕ i=1,2 Γ, A 1 ⊕ i A 2
Naively, a total cyclic order can be thought as follows; consider a set of points of an oriented circle; the orientation induces a total order on these points as follows: if a, b and c are three distinct points, then b is either between a and c (a < b < c) or between c and a (c < b < a). Moreover, a < b < c is equivalent to b < c < a or c < a < b.

Definition 1 (total cyclic order) A total cyclic order is a pair (X, σ) where X is a set and σ is a ternary relation over X satisfying the following properties:

1. ∀a, b, c ∈ X, σ(a, b, c) → σ(b, c, a) (cyclic); 2. ∀a, b ∈ X, ¬σ(a, a, b) (anti-reflexive); 3. ∀a, b, c, d ∈ X, σ(a, b, c) ∧ σ(c, d, a) → σ(b, c, d) (transitive); 4. ∀a, b, c ∈ X, σ(a, b, c) ∨ σ(c, b, a) (total).
Negative (or asynchronous) connectives correspond to true determinism in the way we apply bottom-up their corresponding inference rules. In particular, observe that Γ must appear as the same context (with same order) in both the premises the &-rule. Vice-versa, positive (or synchronous) connectives correspond to true non-determinism in the way we apply bottom-up their corresponding rules; in particular, there is not deterministic the way to split the context into Γ, ∆ in the rule, as well there not exist a deterministic choice in the way we apply bottom up ⊕ 1 or ⊕ 2 rules.

Cyclic MLL proof structures

Definition 2 (CyMLL proof structure) A CyMLL proof structure (PS) is an oriented graph π, in which edges are labeled by formulas and nodes are labeled by connectives of CyMLL, built by juxtaposing the following special graphs, called links, in which incident (resp., emergent) edges are called premises (resp., conclusions):

ax A A ⊥ A cut A B A B A B A B A ⊥
In a PS π each premise (resp., conclusion) of a link must be conclusion (resp., premise) of exactly (resp., at most) one link of π. We call conclusion of π any emergent edge that is not premises of any link.

Correctness

We characterize those proof structures that are images of proofs. Actually, there exist several syntaxes for CyMLL proof nets, like those ones of [AR2000] and [Mai2003]; for sequentialization reasons we prefer the latter one.

Definition 3 (switchings and seaweeds) Assume π is a CyMLL PS with conclusions Γ.

• A Danos-Regnier switching S for π, denoted S(π), is the non oriented graph built on nodes and edges of π with the modification that for each -node we take only one premise, that is called left or right -switch.

• Let S(π) be an acyclic an connected switching for π; S(π) is the rootless planar tree whose nodes are labeled by -nodes, and whose leaves X 1 , ..., X n are the terminal (pending) edges of S(π); S(π) is a ternary relation, called seaweed, with support X 1 , ..., X n ; an ordered triple (X i , X j , X k ) belongs to the seaweed S(π) iff:

the intersection of the three paths X i X j , X j X k and X k X i is the node l ;

the three paths X i l , X j l and X k l are in this cyclic order while moving anti-clockwise around the -node as below

X k X j X i l
If A is an edge of the seaweed S(π), then S i (π) ↓ A is the restriction of the seaweed S(π), that is, the sub-graph of S(π) obtained as follows:

1. disconnect the graph below (w.r.t. the orientation of π) the edge A; 2. delete the graph not containing A.

Fact 1 (seaweeds as cyclic orders) Any seaweed S(π) can be viewed as a cyclic total order (Definition 1) on its support X 1 , ..., X n ; in other words, if a triple (X i , X j , X k ) ∈ S(π), then X i < X j < X k are in cyclic order.

Intuitively, we may contract a seaweed (by associating the -nodes) until it collapses into single n-ary -node with n pending edges (its support), as follows: 1. π is a standard MLL PN, that is, any switching S(π) is a connected and acyclic graph (therefore, a seaweed);

for any -link A B

A B the triple (A, B, C) must occur in this cyclic order in any seaweed S(π) restricted to A, B, i.e., (A, B, C) ∈ S(π) ↓ (A,B) , where C is any pending leave (if it exists) in the support of the restricted seaweed.

Example 1 We give an instance of CyMLL proof net π 1 with, in particular, the two restricted seaweeds, S 1 (π 1 ) ↓ (B1,B ⊥ 2 ) and S 2 (π 1 ) ↓ (B1,B ⊥ 2 ) , both satisfying condition 2 of Definition 4.

B 1 ax ax cut ax B ⊥ 2 B 2 B 2 B ⊥ 1 π 1 B 1 B ⊥ 2 B 3 B ⊥ 3 B ⊥ 3 B 3 B ⊥ 1 B 1 ax ax cut B 2 ax B ⊥ 3 B 3 B ⊥ 3 B 3 B ⊥ 1 B ⊥ 2 S 1 (π 1 ) ↓ (B1,B ⊥ 2 ) B 2 B ⊥ 1 B 1 ax ax cut B 2 ax B 3 B ⊥ 1 B ⊥ 2 B ⊥ 3 S 2 (π 1 ) ↓ (B1,B ⊥ 2 ) B 2 B ⊥ 1 B 3 B ⊥ 3
Vice-versa, the following instance of proof structures π 2 is not correct (it is not a proof net), since condition 2 of Definition 4 is violated: there exists a -link

B1 B ⊥ 2 B1 B ⊥ 2 and a seaweed S 1 (π 2 ) s.t. ¬∀C pending, (B 1 , B ⊥ 2 , C) ∈ S 1 (π 2 ) ↓ (B1,B ⊥ 2 ) ; actually, if we take C = B ⊥ 3 then (B 1 , C, B ⊥ 2 ) ∈ S 1 (π 2 ) ↓ (B1,B ⊥ 2 ) as follows B 1 cut ax ax ax B 2 B ⊥ 2 B ⊥ 1 B ⊥ 1 B 2 B 1 B ⊥ 2 π 2 B 3 B ⊥ 3 B ⊥ 3 B 3 B 1 cut ax ax B 2 B ⊥ 2 B ⊥ 1 B ⊥ 1 B 2 ax B 3 B ⊥ 3 B ⊥ 3 B 3 S 1 (π 2 ) ↓ (B1,B ⊥ 2 )

Cut reduction

Definition 5 (multiplicative cut reduction) Let L be a cut link in a proof net π whose premises A and A ⊥ are, resp., conclusions of links L , L . Then we define the result π (called reductum) of reducing this cut in π (called redex), as follows:

Ax-cut: if L (resp., L ) is an axiom link then π is obtained by removing in π both formulas A, A ⊥ (as well as L) and giving as new conclusion to L (resp., L ) the other conclusion of L (resp., L ). ( / )-cut: if L is a -link with premises B and C and L is a -link with premises C ⊥ and B ⊥ , then π is obtained by removing in π the formulas A and A ⊥ as well as cut link L with L and L and by adding two new cut links with, resp., premises B, B ⊥ and C, C ⊥ , as follows: , resulting from the cut reduction, otherwise π would already be violating condition 2 of Definition 4; so, assume path B goes through cut 1 and path A goes through cut 2 , like in the next left hand side picture

cut cut π π B C B C cut C ⊥ B ⊥ w w w C ⊥ B ⊥
A B X Y Y ⊥ X ⊥ C cut 2 cut 1 π A B cut X Y Y ⊥ X ⊥ C π
This means there exist a seaweed S (π), a link Y ⊥ X ⊥ and a triple (Y

⊥ , C, X ⊥ ) s.t. (Y ⊥ , C, X ⊥ ) ∈ S (π) ↓ (Y ⊥ ,X ⊥ )
, violating condition 2 and so contradicting correctness of π (see the right hand side picture given before; observe that, since any switching of π is acyclic, deleting the subgraph below Y ⊥ X ⊥ does not make disappear C).

The remaining case when path C goes through cut 1 (resp., through cut 2 ) and either path A or path B goes through cut 2 (resp., through cut 2 ) is treated similarly and so omitted.

Example 2 Observe that w.r.t. Example 1, π 1 reduces to π 1 and so π 1 to π 1 below; both π 1 and π 1 are correct since condition 2 of Definition 4 is void in both π 1 and π 1 :

B 1 ax ax cut ax B ⊥ 2 B 2 B 1 B ⊥ 2 B ⊥ 3 B 3 B ⊥ 1 cut π 1 ax B B ⊥ B B ⊥ π 1
Moreover, w.r.t. Example 1, π 2 is a non correct PS that reduces to a correct one, π 2 , after a cut reduction step (see the left hand side picture below); this is an already well known phenomenon in the standard MLL case where we can easily find non correct MLL PSs that become correct after cut reduction, like that one on the right hand side below:

B 1 cut ax ax ax B 2 B ⊥ 2 B ⊥ 1 B 1 B ⊥ 2 B 3 B ⊥ 3 π 2 cut ax ⊗ cut A ⊥ A A ⊥ A A ⊥ A ax ax ax A A ⊥ We use indexed formulas B 1 , B 2 , B 3 to distinguish different occurrences of B.
Cut reduction if trivially convergent (i.e., terminating and confluent).

Sequentialization

We show a correspondence (sequentialization) between PNs and sequential proofs.

Lemma 1 (splitting) Let π be a CyMLL PN with at least a -link or cut-link and with conclusions Γ not containing any terminal -link (so, we say π is in splitting condition); then, there must exist a -link A B A B (resp., a cut-link A A ⊥ ) that splits π in two CyMLL PNs, π A and π B (resp., π A and π A ⊥ ).

Proof -Assume π is a CyMLL PN in splitting condition, then by the Splitting Lemma for standard commutative MLL PNs ([Gir1987]) π must split either at a -link or a cut-link. We reason according these two cases.

Assume π splits at A B

A B in two components π A and π B ; we know that both components satisfy condition 1 (they eare MLL PNs); assume by absurdum π A is not a CyMLL PN, i.e., π A violates condition 2 of Definition 4. This means there exists a X Y X Y and a restricted seaweed S(π A ) ↓ (X,Y ) containing the triple X, A, Y in the wrong order, i.e., (X, A, Y ) ∈ S(π A ) ↓ (X,Y ) like in Case 1 of next figure. But then there exists a restricted seaweed S(π) ↓ (X,Y ) containing X, Y and C (where C = A B) in the wrong cyclic order, i.e., (X, C, Y ) ∈ S(π) ↓ (X,Y ) , contradicting the correctness of π.

Assume π splits at the cut link

A A ⊥
in two components π A and π A ⊥ ; assume by absurdum π A is not a CyMLL PN, hence π A must be violating condition 2 of Definition 4. Moreover, assume π is such a minimal PN in cut-splitting condition whose subproof π A is not a CyMLL PN. This means, as before, there exists a X Y X Y and a restricted seaweed S(π A ) ↓ (X,Y ) containing the triple X, A, Y in the wrong order, i.e., (X, A, Y ) ∈ S(π A ) ↓ (X,Y ) like in Case 2 of next figure. Then, by correctness π, π A ⊥ must have A ⊥ as unique conclusion, otherwise we can find a restricted seaweed for π, S(π) ↓ (X,Y ) , containing a triple X, C, Y with wrong order for a conclusion C = A ⊥ ; moreover, π A ⊥ cannot contain any cut, otherwise, by Theorem 1, we could replace in π the redex π A ⊥ by its reductum π A ⊥ , contradicting the minimality of π. Now, observe the equality -= 1, relating the number of -nodes with the number of -nodes, holds for any cut free proof net with an unique conclusion. Therefore, π A ⊥ must contains at least a -link, let us say Z T Z T . But then we can easily find a restricted seaweed for π, S(π) ↓ (X,Y ) , and a triple (X, Z, Y ) occurring in S(π) ↓ (X,Y ) with the wrong cyclic order, contradicting the correctness of π, like like in Case 2 of the picture below:

Y X C A B π A π B π Case 1 Y X A π A cut Case 2 π A ⊥ Z T π A ⊥
Lemma 2 (PN cyclic order conclusions) Let π be a CyMLL PN with conclusions Γ, then all seaweeds S i (π) ↓ Γ , restricted to Γ, induce the same cyclic order σ on Γ, denoted σ(Γ) and called the (cyclic) order of the conclusions of π.

Proof -By induction on the size of π, i.e. edges, vertexes 1 .

1. If π is reduced to an axiom link, then obvious.

2. π contains at least a conclusion A B, then Γ = Γ , A B; by hypothesis of induction the sub-proof net π with conclusion Γ , A, B has cyclic order σ(Γ , A, B), and so, by condition 2 of Definition 4 applied to π, we know that each restricted seaweed S i (π) ↓ (Γ ,A,B) induces the same cyclic order σ(Γ , A, B); finally, by substituting

[A/A B] (resp., [B/A B]) in the restriction S i (π) ↓ (Γ ,A) (resp., S i (π) ↓ (Γ ,B
) ), we get that each seaweed S i (π) ↓ (Γ ,A B) induces the same cyclic order σ(Γ , A B).

3. Otherwise π must contain a terminal splitting or cut link. Assume π contains a splitting -link, A B A B , and assume by absurdum that π is such a minimal (w.r.t. the size) PN with at least two seaweeds S i (π) and S j (π) s.t. (X, Y, Z) ∈ S i (π) and (X, Y, Z) ∈ S j (π). We reason according the following two sub-cases.

(a) It cannot be the case X = B, Y = A and Z = C otherwise, by definition of seaweeds, S i (π) and S j (π) will be as follows:

S i (π) ↓ (Γ 1 ,A B,Γ 2 ) = S i (π A ) ↓ (Γ 1 ,A) S i (π B ) ↓ (B,Γ 2 ) S j (π) ↓ (Γ 1 ,A B,Γ 2 ) = S j (π A ) ↓ (Γ 1 ,A) S j (π B ) ↓ (B,Γ 2 ) Γ1 Γ2 Si(πA) Sj(πB) A = Y B = X (A B) = Z
Now, by hypothesis of induction, all seaweeds on π A (resp., all seaweeds on π B ) induce the same order on Γ 1 , A (resp., Γ 2 , B), then in particular,

S i (π A ) ↓ (Γ1,A) = S j (π A ) ↓ (Γ1,A) and S i (π B ) ↓ (B,Γ2) = S j (π B ) ↓ (B,Γ2) but this implies S i (π) ↓ (Γ1,A B,Γ2) = S j (π) ↓ (Γ1,A B,Γ2) .
(b) So, assume both X and Y belong to π A (resp., π B ) and Z belongs to π B (resp., π A ); moreover, assume for some i, j, (X, Y, Z) ∈ S i (π) ↓ (Γ1,Z,Γ2) and (X, Y, Z) ∈ S j (π) ↓ (Γ1,Z,Γ2) ; by Splitting Lemma 1, each seaweed for π must appear as follows, in particular S i (π) and S j (π):

Y X A B Z S i (π A ) ↓ Γ1,A S i (π B ) ↓ B,Γ2 A B Γ 1 Γ 2 (X, Y, Z) ∈ S i (π) ↓ Γ1,A B,Γ2 Y X A B Z A B S j (π B ) ↓ B,Γ2 (X, Y, Z) ∈ S j (π) ↓ Γ1,A B,Γ2) S j (π A ) ↓ Γ1,A Γ 2 Γ 1
then, by restriction on seaweeds, (X, Y, A) ∈ S i (π A ) ↓ Γ1,A and (X, Y, A) ∈ S j (π A ) ↓ Γ1,A , contradicting the assumption (by minimality) that π A is a correct PN with a cyclic order on its conclusions Γ 1 , X, Y, A = Γ 1 , A.

The remaining case, π contains a splitting cut, is similar and so omitted.

Next Corollary states that Lemma 2 is preserved by cut reduction.

Corollary 1 (stability of PN order conclusions under cut reduction) If π, with conclusions σ(Γ), reduces in one step of cut reduction to π , then also π has conclusions σ(Γ).

1 Number of edges and number of vertexes.

Theorem 2 (adequacy of CyMLL PNs) Any CyMLL proof of a sequent σ(Γ) de-sequentializes into a CyMLL PN with same conclusions σ(Γ).

Proof -By induction on the hight of the given sequent proof of σ(Γ).

Theorem 3 (sequentialization of CyMLL PNs) Any CyMLL PN with conclusions σ(Γ) sequentializes into a CyMLL sequent proof with same cyclic conclusions σ(Γ).

Proof -by induction on the size of the given proof net π via Lemmas 1 and 2.

Example 3 (Mellies's proof structure) Observe that, dislike what happens in the commutative MLL case, the presence of cut links is "quite tricky" in the non-commutative case, since cut links are not equivalent, from a topological point of view, to tensor links: these latter make appear new conclusions that may disrupt the original (i.e., in presence of cut links) order of conclusions. By the way, unlike the most part of correctness criteria for non-commutative proof nets, our syntax enjoys a sequentialization for the full class of CyMLL PNs without assuming these must be cut-free. In particular the following Mellies's proof structure2 , given a page 224 of [MR2012], Observe, Mellies's PS becomes correct (and so sequentializable) after cut reduction. Our criterion satisfies, indeed, all four requirements that, according to page 223 of [MR2012], any "satisfactory" criterion should enjoy.

Cyclic MALL proof structures

Definition 6 (CyMALL proof structure) A CyMALL proof structure (PS) is an oriented graph π, in which edges are labeled by formulas while nodes are labeled by connectives of MALL, built by juxtaposing the following special graphs, called link, in which incident (resp., emergent) edges are called premises (resp., conclusions):

& C A&B A A B A A B B A B A A A A ⊥ cut ax A A ⊥ ⊕ 1 ⊕ 2 A ⊕ B A ⊕ B A B A B
In a PS π each premise (resp., conclusion) of a link must be conclusion (resp., premise) of exactly (resp., at most) one link of π. Finally, we call conclusion of π any emergent edge that is not premises of any link.

Definition 7 (Girard CyMALL proof structure) A Girard proof structure (GPS) is a PS with weights associated as follows (weights assignment):

1. first we associate a boolean variable, called eigen weight p, to each &-node (eigen weights are supposed to be different);

2. then we associate a weight, a product of (negation of ) boolean variables (p, p, q, q...) to each node, with the constraint that two nodes have the same weight if they have a common edge, except when the edge is the premise of a & or C-node, in these cases we do like below:

if p does not occur in w w w.p w.p with w 1 .w 2 = 0

w 1 w 2 w = w 1 + w 2 C v 2 v 1 v 2 v 1 & p

a conclusion node has weight 1;

4. if w is the weight of a &-node, with eigen weight p, and w is a weight depending on p and appearing in the proof structure then w ≤ w (we say that a weight w depends on p when p or p occurs in w).

Finally we say that:

• a node L with weight w depends on the eigen weight p if w depends on p or L is a C-node and one of the weights just above it depends on p;

• the signature of a weight w is the set of variables occurring in w; e.g., the following weights have the same signature {p, q}: pq, pq, pq and pq.

Remark 1 Observe that:

1. -since the weights associated to a PS are products (monomials) of the Boolean algebra generated by the eigen weights associated to a proof structure, then, for each weight w associated to a binary contraction node, there exists a unique eigen weight p that splits w into w 1 = wp and w 2 = wp. We sometimes index a C-link with its splitting variable p, like in the left hand side picture below;

2. -the graph π 1 is not a GPS since it violates condition 4 of Definition 7; actually, if w = q is the weight of the & p -link and w = p is a weight depending on p and appearing in the proof-structure then p ≤ q. 

Correctness

Definition 8 (slices, switchings, resolutions) Let π be a CyMALL GPS.

• A valuation ϕ of π is a function from the set of all weights of π into {0, 1}.

• Fixed a valuation ϕ for π, the slice ϕ(π) is the graph obtained from π by keeping only those nodes with weight 1 together with its incident edges.

• Fixed a slice ϕ(π) an additive switching is a multiplicative switching of the slice ϕ(π), denoted S ϕ (π), in which for each & p -node we erase the (unique) premise in ϕ(π) and we add an oriented edge, called jump, from the & p -node to an L-node whose weight depends on the eigen weight p of the & p -node.

• An additive resolution ϕ r (π) for a slice ϕ(π) is the graph obtained by replacing in ϕ(π) each unary link L (a link that after the valuation has a single premise) by a single edge labeled by the formula labeling the unique premise of L. In particular, each conclusion of ϕ r (π) is labeled by a multiplicative formula.

We call additive resolution of a CyMALL sequent Γ what remains of Γ after erasing one subformula in each additive formula occurrence of Γ.. Definition 9 (CyMALL proof net) We call correct (or proof net (GPN)) any CyMALL GPS π whose conclusions Γ are endowed with a cyclic order σ(Γ) and s.t. for any valuation ϕ of π:

1. each additive switching S ϕ (π) is an acyclic and connected graph (ACC); 2. there exists an additive resolution ϕ r (π) for ϕ(π) that is a CyMLL PN with cyclic order conclusions σ(Γ r ), where Γ r is an additive resolution of Γ.

Example 4 Observe, the proof structure π on the left hand side below is not correct: actually, fixed a valuation ϕ s.t. ϕ(p) = 1, there exists an additive switching S ϕ (π) (with a jump) that is not ACC (see the middle side figure). Nevertheless, any slice ϕ(π) is ACC; indeed, for each slice ϕ(π) there exists an additive resolution ϕ r (π) that is a CyMLL PN like that one, on the rightmost hand side, with conclusion C A, A ⊥ C ⊥ that is an additive resolution of the sequent 

(B&C) A, (A ⊥ C ⊥ ) ⊕ (A ⊥ B ⊥ ).
(A ⊥ C ⊥ ) ⊕ (A ⊥ B ⊥ ) 1 1 (B&C) A C C ⊕ &p ax ax p p 1 1 p (A ⊥ C ⊥ ) ⊕ (A ⊥ B ⊥ ) 1 (B&C) A p Sϕ(π) ax ax A ⊥ C ⊥ C A ax ax ϕr(π)

Cut reduction

Ready cut reduction

Definition 10 (additive ready cut reduction) Let L be a cut in a proof net π whose premises A and A ⊥ are the respective conclusions of links L , L both different from the contraction C. Then we define the result π (reductum) of reducing this additive ready cut in π (redex), as follows:

(&/⊕)-cut: if L is a & p -link with premises B and C and L is a ⊕ 1 -link (resp., a ⊕ 2 -link) with premise B ⊥ (resp., C ⊥ ), then π is obtained in three steps: first remove in π both formulas A, A ⊥ as well as the cut link L with L and L , then replace the eigen weight p by 1 (resp., bt 0) and keep only those links (vertexes and edges) that still have nonzero weight; finally we add a cut between B and B ⊥ (resp., between C and C ⊥ ).

cut & p cut B C B B ⊥ w wp wp w π π [p/1] B ⊥ ⊕ 2
Theorem 4 (stability of GPN under ready cut reduction) Assume π is GPN that reduces to π in one step of multiplicative (Definition 5) or additive (Definition 10) ready cut reduction, then π is GPN too.

Proof -Stability of multiplicative ready cut reduction (Definition 5) follows by Theorem 1. Stability of additive ready cut reduction (Definition 10) is immediate. Trivially, conditions 1 and 2 of Definition 9 are preserved by additive ready cut reduction steps.

Commutative cut reduction

(The confluence problem). In general, reducing a cut involving a contraction link as (at least) one of its premises from a proof structure π may lead to several solutions, depending on which subgraph of π we decide to duplicate. For instance, as illustrated in the following picture, reducing the commutative cut of π of may lead to solution π 1 as well solution π 2 , depending on which additive box (& q or & p ) we decide to duplicate. Of course these two resulting proof nets are different and there is no a-priori way to make them equal. Girard does not give in [Gir1996] a solution to this problem which has been proposed later by Laurent and Maieli in [LM2008]. In the following we present a commutative cut reduction that simplify this latter. • dependency graph of p w.r.t. π, denoted E p , is the (possibly disconnected) subgraph of π made by all links depending on p.

• the spreading of w over π, denoted by w.

[π], is the product of w for π, i.e., π where we replaced each weight v with the product of weights vw.

Lemma 3 (dependency graph) If a & p -node belongs to the dependency graph E q , then E(p) ⊆ E(q).

Proof -If the & p -node belongs to E q then the weight w of the & p -node depends on q (i.e., w = w q or w = w q) then trivially, by the dependency condition 4 of Definition 7, each node v whose weight depends on p will also depends on q.

Definition 12 (commutative cut reduction) Let L be cut link in a proof net π whose premises A and A ⊥ are the respective conclusions of links L and L s. t. at least one of them is a contraction link C. Then we define the result π (reductum) of reducing this commutative cut L in π (redex), as follows: 

(C/ )-cut: if L is a C-link
C ⊥ B ⊥ B C B C
(C/C)-cut: if both L and L are both C-links, then there are two cases:

1. either the weight w of both L and L splits on a same p variable, then π reduces in one (C p /C p ) step to π as follows 

cut cut π π cut A A A ⊥ A ⊥ A A A ⊥ A ⊥
C ⊥ B ⊥ B ⊕ C cut B ⊕ C & p & p wq C ⊥ B ⊥ C ⊥ B ⊥ cut q.[E p ] q.[E p ] C C ... ... ... A 1 A n χ w n w 1 q w n q w n q w 1
w 1 q wq with the assumptions that graphs q.[E p ] and q.[E p ] are obtained as follows:

1. we take two copies, E p and E p , of the dependency graph of p, E p ;

2. we replace in E p (resp., in E p ) the variable p with a new p (resp., p ); 3. we spread q (resp., q) over E p (resp., over E p ).

Stability of correctness under cut reduction

Theorem 5 (stability under commutative cut reduction: I part) If π is a proof net s.t. it reduces to π in one step of commutative cut reduction that is different from the C/&-case, then π is still a proof net.

Proof -(sketch) All cases are more or less immediate consequences of the Euler-Poicaré Property 1. Trivially, conditions 1 and 2 of Definition 9 are preserved by these commutative cut reduction steps.

Lemma 4 (conservative/extensive switching) Assume π is a proof net that reduces to π in one step of commutative cut reduction C q /& p . We say that a switching S for π is extensive (resp., conservative) w.r.t. q if there exists (resp., there do not exist) in S at least a jump going from the & q -node to a node that was not depending on q in π. Then, for any extensive (resp., conservative) switching for π that is not ACC we can find a corresponding switching for π that is not ACC too.

Proof -(sketch) Assume π reduce to π after a commutative cut reduction C q /& p and assume there exists a cycle in an extensive switching S (π ) like the left hand side picture below This cycle goes through a node ν that depends on both variables p and q, where p is a fresh variable copying p of π, according to the definition C q /& p cut reduction step. Then we can easily find a switching for S(π) with a cycle like the blue-black one of the following picture: replace in π, the fresh variable p of π with the original one p. Similarly, if we assume that S (π ) is not connected.

Lemma 5 (separation) Assume π is a proof net containing two nodes, & p and & p , with weights, resp., w q and w q, for some eigen weight q of π. Then, there cannot exist in π a node whose weight depends both on p and on p .

Proof -By absurdum, assume a node v whose weight w depends both on p and p ; let's say, for instance, w = w 1 .p .p . Now fix an evaluation ϕ for π s.t. ϕ(w) = 1, then by the dependency condition 4 of Definition 7, we have both w 1 .p .p ≤ w q and w 1 .p .p ≤ w q; this is only possible when ϕ(w) = 0, contradicting ϕ(w) = 1.

Theorem 6 (stability under commutative cut reduction: II part) If π is a proof net that reduces to π in one step of cut reduction C/&, then π is a proof net too.

Proof -(sketch) First observe that each cut reduction step C q /& p preserves the property of being a proof structure. This follows by construction of π . In particular Lemmas 3 and 5, ensure that we can safely rename the sets of eigen weights in E and E and get still a proof structure.

Moreover, by Lemma 4 it is enough to only verify that all the extensive switchings, w.r.t. q, for π are ACC. In the rest of proof, whenever it is not explicitly declared, each switching for π is meant to be extensive w.r.t. q.

Connectedness -Assume by absurdum there exists a switching S (π ) that is disconnected. Then there exists at least a node v j occurring in a connected component γ 1 that is separated from the component γ 2 that contains the & q -node together with the jump ν directed to a node v i , like in the next left hand side picture where γ 1 and γ 2 are separated by dotted lines (in S (π ) there is no path from v j to v i ).

γ 2 w j v i v j ν w S (π ) γ 1 & q w i q γ 2 w j v j w γ 1 v h ν v i S (π ) & q w i q w h q
Now let S (π ) be an other switching that is a copy of S (π ) except for the jump ν from the & q -node to a v h node that was already depending on q in π (in other words, S is a conservative switching, w.r.t. q, which differs from S only for the jump ν, like in the previous right hand picture). Clearly in S (π ) there is no connection path between v i and v j , otherwise this path would go through the ν-jump (and so through the & q -node) contradicting the assumption that the & q -node and v j were disconnected in S (π ). But this contradicts, by Lemma 4, the hypothesis that π was correct.

Acyclicity -Assume there exists a cycle in S (π ) going through a jump ν from the & q -node to a node v i whose weight w i depends on q as follows

w v i ν S (π ) γ & q w i p q
where γ is the path in S (π ) from the conclusion of the & q -node to v i . Now, the new variable p or its negation (resp., p or its negation) occurs by definition of C q /& p -cut reduction step in the weight w i : let us say w i = w i p q. So, by condition 4 of Definition 7 and by connectedness of S (π ) showed before, the & p -node (resp., the & p -node) and the node v i must be connected in S (π ) in two possible ways:

1. either by a path going through the & q -node without crossing γ, like path γ 1 of the next left hand side picture;

2. or by a path γ 2 not going through the & q -node (and possibly crossing γ as γ 2 ) like in the left hand side picture below:

v i w p & q & p w i p q w ν S (π ) γ γ 1 γ 2 γ 2 v i & q & p v j w γ 1 γ γ 2 γ 2 w i p q w p ν A ⊥ A cut S (π ) 
In both cases we can set a conservative switching S (π ) that is identical to S (π ) except for the jump ν going from the & q -node to the node v j whose conclusion A ⊥ is the premise of the cut link of π obtained after reducing the cut C q /& p in π (see the right hand side picture above). Then we get a cycle, contradicting, by Lemma 4, the hypothesis that π is correct.

Strong cut-elimination

Technical details of proofs of next Theorems 7 and 8 can be found in [Mai2008].

Theorem 7 (termination) We can always reduces a proof net π in to a proof net π that is cut-free, by iterating the reduction steps of Definition 5 and 12.

Theorem 8 (confluence) Assume π is proof net s.t. it reduces in one step α to π (π α π ) and it reduces in an other step β to π (π β π ); then, there exists a proof net σ such that π reduces, in a certain number of steps, to σ (π * σ) and π reduces, in a certain number of steps, to σ (π * σ).

Sequentialization

Theorem 9 (sequentialization) A CyMALL GPN of Γ can be sequentialized into a CyMALL sequent proof with same cyclic conclusions σ(Γ) and vice-versa (de-sequentialization).

Proof -Sequentialization-part: any CyMALL proof net π can be sequentialized into a proof Π, by induction on the number of slices (or, equivalently, by the number of & links). The base of induction corresponds to the sequentialization of the CyMLL proof nets (Theorem 3). The induction step follows from the sequentialization of standard MALL PNs (see [Gir1996]). The only novelty is to show that whenever a PN π contains a terminal &-link L, then π ca be toggled3 at L in two sub-proof nets preserving conditions 1 and 2 of Definition 9.

De-sequentialization-part: any CyMALL proof Π of σ(Γ) can be de-sequentialized into a PN π of σ(Γ), by induction of the height of Π derivation.

Example 5 In general, there may exist different GPNs to denote the same sequential proof. Although π 2 and π 3 below are both correct proof structures with same conclusions, π 3 quotients "more" sequential proofs than π 2 . Vice-versa, π 4 and π 5 are both correct proof structures (with same conclusions) that sequentialize into the same proof, although π 4 is not the de-sequentialization of any proof. 1. A is a pure Lambek formula (PLF) if it is a CyMLL formula recursively built according to the following grammar

A := + atoms | A A | A ⊥ A | A A ⊥ .

2.

A is an additive Lambek formula (ALF or simply LF) if it is a CyMALL formula recursively built according to the following grammar

A := a PLF | A&A | A ⊕ A. 3. S is a Lambek sequent of CyMALL iff S = (Γ) ⊥ , A
where A is a non void LF and (Γ) ⊥ is a possibly empty finite sequence of negations of LFs (i.e., Γ is a possibly empty sequence of LFs and (Γ) ⊥ is obtained by taking the negation of each formula in Γ). Proof -Consequence of Theorems 4, 5 and 6. Trivially, each reduction step preserves the property that each edge of the reductum is labeled by a Lambek formula or the negation of a Lambek formula.

A

Theorem 10 (de-sequentialization of Lambek CyMALL proofs) Any proof of a CyMALL Lambek sequent σ(Γ ⊥ , A) can be de-sequentialized in to a Lambek CyMALL PN with conclusions σ(Γ ⊥ , A).

Proof -By induction on the hight of the given sequent proof (similarly to the de-sequentialization part of Theorem 9).

Theorem 11 (sequentialization of pure Lambek CyMALL PNs) Any Lambek CyMALL PN of σ(Γ ⊥ , A) sequentializes into a Lambek CyMALL proof of the sequent σ(Γ ⊥ , A).

Proof -Sequentialization follows by induction on the number of &-links of the given PN. The base of induction follows from next Theorem 12.

Theorem 12 (sequentialization of Lambek CyMLL PNs) Any Lambek CyMLL PN of σ(Γ ⊥ , A) sequentializes into a Lambek CyMLL proof of σ(Γ ⊥ , A).

Proof -Assume by absurdum there exists a pure Lambek CyMLL proof net π that does not sequentialize into a Lambek CyMLL proof. We can chose π minimal w.r.t. the size. Clearly, π cannot be reduced to an axiom link; moreover π contains neither a negative conclusion of type A ⊥ B ⊥ nor a positive conclusion of type A ⊥ B (resp., A B ⊥ ), otherwise, we could remove this terminal -link and get a strictly smaller (than π) proof net π that is sequentializable, by minimality of π; this implies that also π is sequentializable (last inference rule of the sequent proof will be an instance of -rule) contradicting the assumption. For same reasons (minimality), the unique positive conclusion (e.g. A B) of π cannot be splitting. Therefore, since π is not an axiom link A ⊥ A , by Lemmas 1 and 2, there must exist either a (negative) splitting -link (Case 1) or a splitting cut-link (Case 2). Case 1. Assume a negative splitting conclusion A ⊥ B (resp., A B ⊥ ). By minimality, π must split like in the next left hand side picture (we use A + , resp. A -, to denote positive, resp., negative, LF and Γ -for sequence of negative LFs):

A ⊥ B π 1 B π 2 Γ - 1 A ⊥ P + Γ - 2 π 2 π 1 A ⊥ B π 1 C D ⊥ Γ - 1 C D ⊥ Γ - 1 A ⊥ Γ - 2 B P + π
Now, let us reason on π 1 (reasoning on π 2 is symmetric): by minimality of π, π 1 cannot be reduced to an axiom link (otherwise Γ - 1 would not be negative); moreover, none of Γ - 1 is a (negative) splitting link, like e..g., C D ⊥ , otherwise we could easily restrict to consider the subproof-net π , obtained by erasing from π the sub-proof-net π 1 (with conclusions Γ - 1 , C) together with the C ⊥ D-link, like the graph enclosed in the dashed line above. Clearly, π would be a non sequentializable Lambek proof net strictly smaller than π. In addition, π 1 must be cut-free, otherwise by minimality, after a cut-step reduction we could easily build a non sequentializable reductum PN π , strictly smaller than π, (π will have same conclusions of π). Therefore, there are only two sub-cases:

1. either A ⊥ = C ⊥ D ⊥ , then we can easily get, from the PN π on the l.h.s. below, the non sequentializable PN π , on the r.h.s.; π is strictly smaller than π, contradicting the minimality assumption:

Γ - 1 C ⊥ π 1 D ⊥ B π 2 Γ - 2 P + C ⊥ D ⊥ π : A ⊥ B Γ - 1 C ⊥ D ⊥ B π 2 Γ - 2 P + π 1 π : D ⊥ B
2. or A ⊥ = C ⊥ D, then this C ⊥ D-link must split by Lemma 1, since π 1 is a cut-free PN in splitting condition without other -splitting conclusion in Γ - 1 ; so from π on the l.h.s., we can easily get the non sequentializable PN π on r.h.s.; π is strictly smaller of π, contradicting the minimality assumption:

B π 2 Γ - 2 P + π : π 1 π 1 Γ - 1 Γ - 1 C ⊥ D A ⊥ B C ⊥ D B π 2 Γ - 2 P + π 1 Γ - 1 C ⊥ π : C ⊥ B
Case 2. Assume π contains a splitting cut link, like the leftmost hand side picture below, then we proceed like in Case 1. We reason on π 1 with two sub-cases:

1. either A ⊥ = C ⊥ D ⊥ , then we can easily get, starting from the PN π on the middle side below, a non sequentializable PN π , like the rightmost hand side picture; π is strictly smaller than π, contradicting the minimality assumption:

π 1 π 2 Γ - 1 P + cut (A ⊥ ) -A + Γ - 2 Γ - 1 C ⊥ π 1 D ⊥ π 2 Γ - 2 P + C ⊥ D ⊥ π : cut A Γ - 1 C ⊥ D ⊥ π 2 Γ - 2 P + π 1 π : A D ⊥ A
2. or A ⊥ = C ⊥ D, then this A ⊥ -link must be splitting by Lemma 1, since π 1 is a cut-free PN in splitting condition without any other -splitting conclusion in Γ - 1 ; so, we can easily get, starting from the PN π on the l.h.s., a non sequentializable PN π that is strictly smaller than π (on the r.h.s.), contradicting the minimality assumption.

π 2 Γ - 2 P + π : π 1 π 1 Γ - 1 Γ - 1 C ⊥ D cut A C ⊥ D π 2 Γ - 2 P + π 1 Γ - 1 C ⊥ π : A C ⊥ A
5 Language parsing with Lambek CyMALL PNs

In this section we reformulate, in our syntax, some examples of linguistic parsing suggested by Richard Moot in his PhD thesis [Moo2002]. We use s, np and n as the types expressing, respectively, a sentence, a noun phrase and a common noun. According to the "parsing as deduction style", when a string w 1 ...w n is tested for grammaticality, the types t 1 , ..., t n associated with the words are retrieved from the lexicon and then parsing reduces to proving the derivability of a two-sided sequent of the form t 1 , ..., t n s. Remind that proving a two sided Lambek derivation t 1 , ..., t n s is equivalent to prove the one-sided sequent t ⊥ n , ...t ⊥ 1 , s where t ⊥ i is the dual (i.e., linear negation) of each type t i . Any phase or sentence should be read like in a mirror (with opposite direction).

Assume the next lexicon, where linear implication -• (resp., •-) is traditionally used for expressing types in two-sided sequent parsing:

1. Vito = np; Sollozzo = np; him = np; 2. trusts = (np-•s)•-np = (np ⊥ s) np ⊥ .
Cases of lexical ambiguity follow to words with several possible formulas A and B assigned it. For example, a verb like "to believe" can express a relation between two persons, np's in our interpretation, or between a person and a statement, interpreted as s, as in the following examples: Sollozzo believes Vito.

(1)

Sollozzo believes Vito trusts him.

(2)

We can express this polymorphism by two lexical assignments as follows: Using that, we can move lexical ambiguity into proof net as follows: we give the Lambek CyMALL PN corresponding to the parsing of the additive superposition of sentences (1) and (2). (5 p)

Observe that for slice ϕ p (π) (resp., ϕ p(π)) there exists an additive resolution that is a CyMLL PN corresponding to parsing of sentence (1), see the blue subgraph, (resp., sentence (2); see the red subgraph); these PNs sequentialize as follows: 

id 1 np ⊥ ,
(2)

(3)

(5) (4)

6 Conclusions and further works

Stability of sequentialization under cut reduction

Problem: try to give a direct sequentialization avoiding Girard's one.

Proof-structures with explicit n-ary links

Proof-structures with explicit n-ary (& or Contraction) links differ from those one defined in Definition 7 only for the use of n-ary contractions instead of the binary ones, like the next left hand side picture. Then, the notion of slices and switchings (Definitions 8) and proof-nets (Definitions 9) remain unchanged as well the (De-)Sequentialization Theorem 9. Observe that in general the syntax with n-ary contraction or & links is not equivalent to the former one with binary ones. Actually, the picture on the right hand side below shows an example of proof-net with an n-ary contraction (resp., &) link whose monomial sum, pqr+pr+qr+pq+pqr, cannot be factorized in such a way to reduce this n-ary contraction into a sum of only monomial binary sums (contractions). It is not clear whether this new syntax has effects on LambeK proof nets.

Complexity

We aim at studying the class complexity of the CyMALL correctness criterion. What complicate matters from a computational point of view is the fact that, dislike the multiplicative case, we could have chosen different additive proof nets for capturing the polymorphic lexical behavior described by the proof net above.

d

  Definition 4 (CyMLL proof net) A CyMLL PS π is correct, i.e. it is a CyMLL proof net (PN), iff:

  not correct according to our correctness criterion (thus it is not sequentializable) since there exists a A B A B link and a switching S(π) s.t. ¬∀C, (A, B, C) ∈ S(π) ↓ (A,B) , contradicting condition 2 of Definition 4: following the crossing red dotted lines of next figure you can easily verify ∃C, (A, C, B) ∈ S(π) ↓ (A,B) . A, B, C) ∈ S(π) ↓ A.B ∃C, (A, C, B, ) ∈ S(π) ↓ A.B

  empire and spreading) Assume a proof structure π, an eigen weight p and a weight w, then:

  and L is a -link, then π reduces in one (C/ ) step to π (the (C/ ) step is analogous) as follows:

  the weight w of L , resp., L , is split by two different variables, p and q, then π reduces in one (C p /C q ) step to π , like follows ⊕ i )-cut: if L is a C-link and L a ⊕ i=1,2 -link, then π reduces in one (C/⊕) step to π , as follows &)-cut: if L is a C-link and L a & p -link, then π reduces in one (C/&) step to π , like follows

Finally, π 6

 6 is not a correct proof structure: you can easily get an additive switching with a cycle like that one in dashed line. Calculus into CyMALL PNs Definition 13 (Lambek formulas and sequents of CyMALL) Assume A and S are, respectively, a formula and a sequent of CyMALL.

3

  . believes = (np-•s)•-np = (np ⊥ s) np ⊥ ; 4. believes = (np-•s)•-s = (np ⊥ s) s ⊥ .Typically, additives are used for capturing cases of lexical ambiguity. When a word has two possible formulas A and B assigned it, we can combine these into a single additive formula A&B (resp., A ⊕ B). Thus, we can collapse assignments 3 and 4 into a single additive formula assignment as follow:5. believes = ((np-•s)•-np)&((np-•s)•-s) = ((np ⊥ s) np ⊥ )&((np ⊥ s) s ⊥ ).

wqp

  j (with 1 ≤ i, j ≤ n) w i .w j = 0 Fully local cut reduction and parsing contraction Problem: try to define a retraction system stable under a strongly normalizing cut reduction that implements a commutative cut elimination step & p /C that does not duplicate the empire E p as follows Observe that, dislike the C/& cut reduction step given before, this new C/& cut reduction step breaks the monomial condition GPS. This problem has been formulated and solved in[LM2008].

  Theorem 1 (stability of PNs under cut reduction) If π is a CyMLL PN that reduces to π in one step of cut reduction, π π , then π is a CyMLL PN.

	Proof -Observe that w.r.t. Definition 4 condition 1 follows as an almost immediate conse-
	quences of the next graph theoretical property ([Gir2006], pages 250-251):
	Property 1 (Euler-Poicaré invariance) Given a graph G, then ( CC -Cy) = ( V -E),
	where CC, Cy, V and E denotes the number of, respectively, connected components, cycles,
	vertexes and edges of G.			
	Condition 2 of Definition 4 follows by calculation. Assume π reduces to π after the reduction of
	a cut between (X Y ) and (Y ⊥ X ⊥ ) and assume, by absurdum, there exist a -link labeled
	by a formula A B s.t. the triple (A, C, B) occurs in this wrong cyclic order in a seaweed S(π )
	restricted to A, B, S(π ) ↓ (A,B) , for a pending leave C occurring in this restriction, i.e., (A, C, B) ∈
	S(π ) ↓ (A,B) . Then, two of the three paths A , B and C must go through (i.e., they must
	contain) the two (sub)cut-links, cut 1	X X ⊥	and cut 2	Y Y ⊥

  Lambek proof is any derivation built by means of the CyMALL inference rules whose premise(s) and conclusions are CyMALL Lambek sequents. Definition 14 (Lambek CyMALL proof net) We call Lambek CyMALL proof net any Cy-MALL PN whose edges are labeled by LFs or negation of LFs and whose conclusions are a Lambek sequent. Corollary 2 Any Lambek CyMALL proof net π is stable under cut reduction, i.e., if π reduces in one step to π , then π is a Lambek CyMALL proof net too.

  np id 2 s ⊥ , s id 3 np, np ⊥ s ⊥ np, np ⊥ , s np ⊥ , np (s ⊥ np), np ⊥ , s ⊥ id 3 np, np ⊥ s ⊥ np, np ⊥ , s np ⊥ , np (s ⊥ np), np ⊥ , s id 4 s, s ⊥ id 5 np, np ⊥ s ⊥ np, np ⊥ , s np ⊥ , np (s ⊥ np), np ⊥ , s (s ⊥ np), np ⊥ , s np ⊥ (np (s ⊥ np)), np ⊥ , s (s ⊥ np), np ⊥ , s (np ⊥ (np (s ⊥ np))) np ⊥ , s (s ⊥ np), np ⊥ , s

	np ⊥ , np him id 1 np ⊥	id 2 np him trusts Vito np trusts Vito s, s s ⊥	np ⊥	s	believes s ⊥	np ⊥ Vito np	(1)	s ⊥ believes np (2) Sollozzo np ⊥	np s	np ⊥ Sollozzo (3)	s

In the related literature, this example is commonly considered a "measure of the satisfiability degree" of correctness criteria of non commutative proof nets. Let us say, a "good" correctness criterion for non-commutative logic should not recognize this structure as a correct proof net.

We say that a conclusion link &p of a GPN π is toggling whenever the restriction of π w.r.t. p and the restriction of π w.r.t. p are both correct GPSs. We call restriction of π w.r.t. p (resp., p) denoted π p (resp., π p), what remains of π when we replace p with 1 (resp., p with 1) and keep only those vertexes and edges whose weights are still non zero (see details in[Gir1996]).