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A distribution network design problem in the automotive industry: MIP

formulation and heuristics

Abstract

We consider a multi-product distribution network design problem arising from a case-study in the automotive

industry. Based on realistic assumptions, we introduce minimum volume, maximum covering distance and single

sourcing constraints, making the problem difficult to solve for large-size instances. We thus develop several heuristic

procedures using various relaxations of the original MIP formulation of the problem. In our numerical experiments,

we analyze the structure of the obtained network as well as the impact of varying the problem parameters on

computation times. We also show that the implemented heuristic methods provide good quality solutions within

short computation times on instances for which a state-of-the-art MIP solver does not produce any feasible solution.

Keywords: Supply chain network design, Location-routing, Minimum volume constraints, Linear relaxation

1. Introduction1

A considerable part of a company costs is devoted to the supply chain management, in particular logistics2

operations such as transport and storage. For instance, according to the CSCMP (Council Of Supply Chain3

Management Professionals) annual reports [9], the logistics costs as a percentage of the GDP in the USA varied4

between 7.9% and 9.9% in the last decade. This is why more attention and consideration has to be given to5

optimizing the supply chain planning. One key question at the strategic planning level is designing the supply chain6

network and more precisely locating the major facilities of the company, namely plants and distribution centres.7

In the present work, we deal with a multi-product distribution network design problem arising from a case-study8

in the automotive industry. The planning horizon that we consider is not very long (one year in our case-study).9

The overall network structure consists of three levels: assembly plants in the first level, distribution centres (DCs)10

in the second one and customers (car dealers) in the third one. We assume that the number and location of the11

plants as well as the number and location of the customers are fixed. Given a deterministic demand of customers12

for each product and a list of potential DCs, our main concern is to locate DCs and to assign customers to them13

in such a way as to minimize the total distribution costs. In order to evaluate transport routes from DCs to14

customers, we construct groups of customers (clusters) using a clustering-based location-routing approach which15

allows dealing with large-size real-life instances. Moreover, we consider realistic hypotheses that have not been16

simultaneously taken into account in the literature. Namely, we introduce single sourcing restrictions and minimum17

volume constraints for both transport flows and facility throughputs. We also use maximum covering distance18

constraints, i.e. the length of the route between a DC and any cluster that it serves (computed as the length of the19

shortest route starting from the DC, visiting all the customers of the cluster then coming back to the DC) must20

not exceed a given distance. The combination of these operational features involves seeking a trade-off between21

conflicting objectives, thus the problem becomes difficult to solve for large-size instances (for some instances it is even22
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difficult to find feasible solutions). This is why we develop efficient heuristic methods based on various relaxations23

of the original mixed integer programming (MIP) formulation of the problem. To the best of our knowledge, it is24

the first time that this kind of approach is applied to determine both location and assignment variables in a supply25

chain network design problem subject to minimum volume and distance constraints.26

The paper is organized as follows. In the next section, we propose an overview of the related literature. Section27

3 is devoted to the explanation of the modeling considerations and to the description of the mathematical formu-28

lation of the problem. Then, efficient heuristic procedures are investigated in section 4 and computational results29

concerning our case-study are presented in section 5. Finally, some conclusions are provided in section 6.30

2. Position in the literature31

Our research is related to two main literature streams, the first one being facility location and the second one32

supply chain network design. This is why we first propose an overview on these expanding fields. We then discuss33

the integration of minimum volume and distance constraints in supply chain network design problems.34

2.1. Facility location and supply chain network design35

In a classical facility location problem, the objective is to locate new facilities and to determine the related36

product flows on a given network, where the locations of demand points are known. In the present work, we focus37

on a discrete location problem, i.e. facility locations have to be chosen among a list of eligible sites. A survey on38

discrete location science can be found, among other, in [25].39

A typical approach in supply chain network design problems is the use of integrated models, i.e. simultaneously40

modeling and solving the strategic location problem and other operational issues. This body of works includes41

production-distribution problems [32], location-inventory problems [3] and location-routing ones (LRP) [24]. In the42

context of our study, we were particularly interested in the latter problem; see e.g. [22] for an overview on the43

classification of LRP. From the related literature, we can mainly identify three different approaches when dealing44

with vehicle routing within supply chain network design problems. The first one can be called the explicit method45

as routes are explicitly modeled as decisions in the optimization problem (see e.g. [33]) but this may result in the46

formulation of large-size MIP, most of which are hard to solve. The second method consists in using the continuous47

approximation, i.e. expressing continuous functions to characterize the customer demand distribution and their48

locations (for instance in [29] continuous approximation is used to approximate the optimal routing costs). The49

major disadvantage in this case is the need to resort to strong assumptions such as a uniform demand distribution50

or a uniform customer density. Finally, it is also possible to use a sequential clustering-based method, as proposed51

by Barreto et al. in [5]. We chose to apply this method in order to have a good approximation of the routing costs52

while keeping a manageable size for the optimization problem. This allows dealing with real-life instances involving53

many customers.54

2.2. Integration of minimum volume constraints and maximum distance constraints55

One of the constraints involved in our model is the maximum covering distance constraint. A customer is said56

”covered” if there exists an opened facility situated within a pre-specified distance of it. In order to formulate this57
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kind of distance constraints, we can either use covering objectives (mainly when locating public sites such as schools,58

police stations, hospitals, parks, etc.) or impose covering distance constraints with any type of objective, usually59

cost or distance minimization. The literature dealing with covering objectives is abundant (see [10] for a recent60

literature review) whereas only a few papers, among which are [20], [27], [1] and [21], consider covering distance61

constraints.62

In our network design model, a major feature is imposing a minimum volume on each transport link and on63

each opened DC. This is an approach used in facility location and supply chain network design to introduce flow64

consolidation. The literature devoted to this stream appears to be relatively scarce. Table. 1 provides a summary65

of the main characteristics of the seventeen papers that we found in this field. From a modeling point of view, we66

can first notice that only four works consider minimum volume constraints for transport quantity on each link of67

the network. Most of the papers deal with this kind of constraint for the throughput of facilities and none of them68

propose a model using minimum volume constraints for both facility throughput and transport quantities. Multi-69

product or single sourcing are restrictions that could make the problem more difficult to solve as the former increases70

the variable number and the latter adds 0-1 constraints. Only two of the listed works ([11] and [26]) simultaneously71

consider the multi-product and single sourcing features. From a solution method perspective, the computational72

results provided in [26] concern only small instances (27 binary variables) and use a commercial solver. Other papers73

implement heuristic solution procedures, mainly constant approximation [12, 13, 15, 19, 30] and linear relaxation74

based heuristics [6, 16, 18, 31]. In the latter papers, the heuristic strategy is based on rounding fractional solutions75

to 0 or 1, depending on their values. In [16], the idea consists in rounding to 1 the carrier selection variable having76

the greatest fractional value. In the other works, the rounding of a location variable depends on the comparison of77

its fractional value to an upper bound close to 1 and a lower bound close to 0. None of the four papers focuses on78

rounding assignment variables either because they are not problematic in the solution procedure or because they79

are continuous variables.80

The present work features four main contributions as compared to the above-mentioned works. First, to fit real-81

life requirements, we consider maximum distance and single sourcing restrictions simultaneously with minimum82

volume constraints when modeling the assignment variables for multiple products. Second, in our study, we assign83

minimum volume constraints to facility throughputs as well as to transport flows, which makes the problem more84

realistic but increases the difficulty of solving it. Third, we propose MIP-based heuristic procedures using various85

types of linear relaxations to determine location and assignment variables (both sets of variables being required to86

be binary). Finally, we carry out numerical experiments using a case-study with large-size instances (16 assembly87

plants, 51 potential DCs and 448 car dealers).88

3. Problem modeling89

3.1. Problem description90

We study a three-level distribution network consisting of assembly plants, distribution centres (DCs) and cus-91

tomers (see. Fig. 1). Cars are produced at assembly plants and are then transported by truck to intermediate92

distribution centres (via ”primary” transport links) before being sent by truck to the car dealers (via ”secondary”93
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Krumke and Thielen (2011) [15] X NM NM X X

Lim et al. (2006) [16] X 10890 0 X X X

Seedig (2011) [28] X 50 50 X

Zhu et al. (2011) [34] X 119643 119643 X

Alumur et al. (2012) [2] X X X 1200 58000 X

Barros et al. (1998) [6] X X X NM NM X

Correia et al. (2013) [8] X X X 1728 83705 X X

Geoffrion and Graves (1974) [11] X X X X 727 23513 X

Guha et al. (2000) [12] X X X NM NM X

Karger and Minkoff (2000) [13] X X X NM NM X

Melo et al. (2005) [17] X X X 270 732810 X

Melo et al. (2011) [18] X X X 560 107057 X X

Meyerson (2001) [19] X X X NM NM X

Ndiaye and Alfares (2008) [23] X X X 370 1810 X

Sabri and Beamon (2000) [26] X X X X 27 214 X

Svitkina (2010) [30] X X X NM NM X

Thanh et al. (2010) [31] X X X 2185 30870 X X

Present work X X X X X 62832 1632 X X

Table 1: Literature review on facility location and network problems featuring minimum volume constraints (NM=Not Mentioned).

or ”last-mile” transport links). Products to be distributed may wait on manufacturing sites or on DCs until they94

are shipped but a maximum waiting time at each facility is imposed in order to reduce the total delivery time.95

In the present work, this maximum waiting time is considered as given for each plant and each DC; it typically96

amounts to a few days.97

The company chose an organization using DCs to benefit from economies of scale for long-distance transport from98

manufacturing sites to DCs. In fact, starting from a given plant, shipments to various customers are consolidated99

and sent to a given DC that serves these customers. This allows achieving full truckload transport from plants to100

DCs and leads to meeting the targeted shipping frequencies. On the contrary, if direct transport from plants to101

customers were used, serving ”small” customers would be problematic: either less-than-truckload transport would102

be used or waiting times would increase, which means raising transport costs or deteriorating customer service.103

Around 35 distinct car types, without considering colors and options, have to be distributed through the network.104

A given plant can manufacture different car types and a given car type can be manufactured in several sites.105

Nevertheless, we assume that the demand of each car dealer for the different car types have already been assigned106

to assembly plants. This is indeed a strategic decision made by high management and not at the distribution107

level. Demands are thus expressed as quantities to be distributed from a given source (assembly plant) to a given108
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Figure 1: Car distribution network

destination (car dealer).109

Distribution costs involve the costs of primary transport, secondary transport and the transit through DCs.110

These costs are obtained by multiplying unit costs by quantities. No inventory costs are included as only make-111

to-order products are considered in the study. Moreover, as the management of the distribution centres and the112

related activities are outsourced to logistics suppliers, there are no fixed opening costs to be charged to the car113

maker. There is only a unit transit cost (considered as given in our study) to be paid to the logistics supplier each114

time a car goes through a DC. The unit transport cost on each transport link is computed by dividing the cost of115

a truck by its load. The cost of a truck depends on the traveled distance, which consists for primary transport in116

the length of a direct trip from a plant to a DC. For secondary transport, it is equal to the length of the shortest117

route starting from a DC, visiting a cluster of customers then coming back to the DC.118

To make the model as close to reality as possible, these are the operational constraints that we also consider:119

• Maximum covering distance constraints: as mentioned in §1, a DC cannot be situated farther than a given120

distance from a cluster that it serves. In fact, deliveries are usually made by drivers that have to come back to121

the distribution centre at the end of the working day. The traveled distance per delivery trip thus should not122

be greater than a given limit, allowing the driver to comply with the legal daily driving time. In the reference123

dataset used in §5.1, the value of the maximum covering distance parameter is computed as the driving time124

multiplied by a constant average speed.125

• Minimum volume constraints on transport links: maximizing the loading of trucks is one of the priorities126

in car distribution as cars are voluminous products transported by specific trucks with limited capacities,127

typically, a truck can carry up to 8-10 small cars. Thus, if it is not fully loaded, the unit cost per transported128

car could significantly increase. Products to be distributed to the same destination have to wait on the plant129

or the distribution centre until a full truckload is consolidated. If the total flow rate on a given transport link130

is low, the waiting time could be considerable and lead to excessive lead times. In this case, the best solution131

is to consolidate many flows on a same transport link. This is expressed in our model using minimum volume132

constraints that condition the use of primary and secondary transport links. The lower bound assigned to133
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each link has to be greater than the volume ensuring on average a full truckload within a fixed maximum134

waiting time allowed at the sourcing point. Using this lower bound, we can assume that the transport of135

products is made through full truckloads and thus the unit transport cost on the link is computed as the cost136

of a truck divided by the truck capacity. Exact definitions of the parameters involved in the minimum volume137

constraints can be found in §3.4.1.138

• Minimum volume and maximum capacity constraints on DCs: The unit transit cost above mentioned results139

from a commercial negotiation between the car maker and the logistics supplier managing the DC. It only140

applies if the total throughput of the DC is between a minimum volume and a maximum capacity.141

• Single sourcing restrictions: for a given cluster, all the products manufactured in a same plant should go142

through a single DC. This is an operational feature that facilitates day-to-day operations. Thus, it is mean-143

ingful to use an aggregate representation of the product types based on their sourcing plants. In the sequel,144

we consider the different types produced in a same plant as a single product, which reduces the number of145

products from 35 to 16. The model keeps however its multi-product feature as assignments of clusters to DCs146

can differ according to the sourcing plant.147

Aggregation of products per plant and the use of mixed product loads on primary (plant-DC) transport links148

lead to considering average capacities for trucks from plants to DCs. We propose to use an average truck149

capacity (Wi) specific to each plant (i) and to compute it as the weighted average load factor over the whole150

demand of the various product types manufactured in the given plant with the demand of each product type151

as weight. Notice that the load factor of a car type is the number of cars of this type that can be loaded on152

a truck. It can differ according to the car size.153

On secondary transport links, trucks of mixed product types are also shipped from DCs to clusters of cus-154

tomers. As we do not know in advance what kind of product will be transported, we propose to use a common155

weighted average capacity W over all the car types.156

The simultaneous introduction of minimum volume, maximum covering distance and single sourcing constraints157

makes the problem closer to real-life requirements but leads to several computational difficulties. Before providing158

the detailed mathematical formulation of the network design problem and presenting a heuristic solution method159

to solve it, we first explain the proposed clustering-based location-routing approach. Then, we analyze the main160

trade-offs to be achieved regarding the distribution network structure.161

3.2. The clustering-based location-routing approach162

By introducing a minimum volume constraint for each transport link, we implicitly assume that the total demand163

of the destination point (DC or customer) exceeds the transport minimum volume. For primary transport, this is164

not problematic as a given DC is supposed to deal with the demand of many customers for many product types. For165

secondary transport, this is not obvious. The demand of some car dealers could be below the threshold corresponding166

to reaching a full truckload within the maximum waiting time allowed at a DC. This is why the company resorts167

to grouping deliveries: a given truck starting from a distribution centre may have to visit several customers before168

coming back to the distribution centre. We have then to answer the following question: which customers to serve169
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together in the same route? This leads to a Vehicle Routing Problem (VRP). In the present work, we propose to use170

a clustering-based location-routing approach to obtain a good approximation of secondary transport routes without171

increasing the problem size. In fact, using an integrated location-routing approach (LRP) would be expensive172

in terms of computational effort, in particular for real-life instances. To the best of our knowledge, no instances173

of uncapacitated LRP that are significantly larger than those in [4] (with 199 customers and 14 DCs) have been174

exactly solved in the literature, whereas for capacitated LRP, the largest instances involve only 100 customers and175

10 DCs (see the same work). Given that we deal in our case-study with about 500 customers, 15 products and176

50 capacitated DCs, considering an exact location-routing approach would be computationally intractable. This is177

why we develop a sequential procedure.178

3.2.1. Main idea179

The idea of the clustering-based method is to form groups of customers, which will be allocated to the same180

truck routes. Fig. 2 illustrates the clustering-based method that we can summarize in four steps:181

1. Construct clusters of customers lying close to one another, while complying with a minimum volume limit182

and some other constraints.183

2. Solve a Traveling Salesman Problem (TSP) for each distribution route from DCs to clusters.184

3. Compute the unit cost per transported product for each route.185

4. Solve a distribution network design problem using clusters as customers instead of the original car dealers.186

Figure 2: The clustering based approach

In step 1, we consider as input of the clustering algorithm the total demand of each customer, including all187

product types. This is due to the possible combination of different car types in a same secondary transport188

truckload. In step 2, we use a simple enumeration procedure to determine the shortest route starting from a DC,189

visiting all the customers of a cluster then coming back to the DC. In fact, a particular feature of car distribution is190

that a route consists of a small number of customers (usually between one and three). This makes solving the TSP191

problem through complete enumeration possible. In step 3, we use a classical formula with fixed and kilometric192

components to compute the cost of a truck for a given route. Then, we divide the truck cost by the average truck193

capacity to deduce the unit transport cost.194

When using this sequential approach, we have to ensure consistency between the clustering step and the opti-195

mization step. We have then to make sure that the minimum volume required for each cluster is greater than the196

minimum volume required for secondary transport.197
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3.2.2. Algorithm198

The proposed algorithm is a heuristic approach which consists in grouping the close customers into clusters (an199

assessment of the quality of the solutions produced by the heuristic clustering is provided in §5.3.2).200

The maximum number of customers per cluster is imposed by the decision maker and has to be strictly met by201

the algorithm. The total demand of a cluster has to be greater than a given lower bound. For instance, we can202

consider as a lower bound, the volume ensuring on average one or two full truckloads every week (if the maximum203

waiting time allowed at DCs is one week). The clustering produced by the algorithm has also to meet, as far as204

possible, two other constraints: a maximum total demand per cluster and a maximum distance between any two205

customers of a cluster. The first constraint is added in the first phase of the clustering to balance the total demand206

over the clusters. This could prevent for instance from grouping two customers already having a demand greater207

than the minimum required quantity. The second constraint is used in the first phase of the clustering to impose a208

proximity between the customers of a same cluster. However, these two constraints are not mandatory and may be209

relaxed in order to find feasible solutions.210

Input distances between customers are calculated using a Geographic Information System (GIS) to form a211

point-to-point distance matrix. Algorithm 1 illustrates the pseudo-code of the first phase of the implemented212

algorithm. At the beginning of the procedure, the cluster list is initialized to single-element clusters (i.e. each213

customer corresponds to a cluster). We chose the following distance definition between two clusters p and q:214

Distance(p, q) = Min {Distance(i, j), i ∈ Cp, j ∈ Cq}. Cp is the set of customers of the cluster p. This proximity215

measure is called the ”single linkage” measure; see [5] for a discussion of other possible measures.216

Once the first phase of the clustering algorithm has been completed, a second phase has to be applied in order217

to consider the clusters discarded in the first phase due to the different constraints. In the second phase, only the218

minimum volume and the maximum number of customers constraints are imposed. We check that each cluster219

has a total demand greater than the minimum demand required. If it is not the case for some cluster q then we220

attach each of its customers to the nearest cluster having fewer customers than the maximum allowed number of221

customers.222

3.3. Main trade-off analysis223

Before detailing the mathematical formulation of the optimization problem under study, we first analyze the224

main trade-offs to be achieved. These trade-offs which are mainly driven by minimum volume and maximum225

distance constraints not only influence the number of opened DCs but also the existence of a feasible solution.226

In classical facility location problems, one of the main purposes of optimization is to decide about the number227

of DCs to open so as to achieve the best possible trade-off between fixed-charge opening costs and transport costs.228

In our problem, in addition to minimizing transport costs, we have also to cope with maximum covering distance229

constraints. This could lead to opening many DCs in order to be close to customers. As previously mentioned, no230

fixed-charge opening costs are included in the proposed model but minimum quantities are required. Thus, opening231

a DC at each potential location may not be feasible. It would result in splitting the global volume to be distributed232

from the plants in many DCs so that both the constraints of minimum throughputs and the constraints of minimum233

volume on primary transport links are likely to be violated in the corresponding solution. One of the purposes of the234
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proposed optimization model is thus to build a network so as to meet the maximum covering distance constraints235

and to minimize the total transport costs while ensuring that minimum volume constraints are satisfied.236

Furthermore, experiences with typical parameters and data of our case-study show that it is not always possible237

to comply with minimum volume constraints for primary transport links in the presence of maximum covering238

distance constraints. This means that shipping fully loaded trucks from plants to distribution centres within tight239

waiting times is not always feasible. Therefore, in the model, we have considered the possibility of violating the240

strict minimum volume constraints on primary transport links but keeping total constraint violation as low as241

possible via penalties (see §5.3.1 for details about the choice of the penalty coefficients).242

Algorithm 1: The pseudo-code of the first phase of the clustering procedure
Data:

n: Total number of customers;

m: Number of clusters remaining in the clustering procedure;

V : Minimum volume per cluster;

V ′: Maximum volume per cluster;

Dp: Total demand of cluster p;

maxDistance: Maximum distance between two customers of a same cluster;

maxNumber: Maximum number of customers per cluster;

| Cp | : Number of customers in cluster p;

Algorithm:

Initialize the n customers to n individual clusters;

Initialize m=n;

while m > 1 do

Find the pair of authorized clusters (p,q) such as distance(p,q) is the minimum of the distance matrix;

if distance(p,q) ≤ maxDistance then

if | Cp | +| Cq | ≤ maxNumber then

if Dp+Dq ≤ V ′ then

Merge clusters p and q;

m=m-1;

if Dp+Dq ≥ V then

Remove p and q from the clustering procedure;

m=m-1;

else

In the distance matrix, update the distances between the cluster (p,q) and the other remaining clusters;

end

else

Forbid merging p and q;

end

else

Forbid merging p and q;

end

else

Break;

end

end

243

9



3.4. Mathematical formulation244

3.4.1. Model parameters245

I Set of plant indices (i = 1, ..., I)246

J Set of DC indices (j = 1, ..., J)247

Q Set of customer cluster indices (q = 1, ..., Q)248

G = (V,A) A graph where V is the set of nodes and A is the set of arcs. V = VPL ∪ VDC ∪ VCL where VPL is the249

set of plant nodes, VDC is the set of DC nodes and VCL is the set of cluster nodes. A = APR ∪ASE250

where APR = {(i, j) ∈ A | i ∈ VPL, j ∈ VDC} and ASE = {(j, q) ∈ A | j ∈ VDC , q ∈ VCL}251

Dqi Total demand of cluster q for the product manufactured in plant i during the whole planning horizon.252

totProdi Total volume of cars produced by plant i.253

minV olj Minimum volume of cars that has to go through DC j if it is chosen.254

maxV olj Maximum volume of cars that can go through DC j if it is chosen.255

PTCij Cost of a truck going from plant i to DC j (Primary Transport Cost).256

STCjq Cost of a truck starting its route at DC j and visiting all the customers of cluster q before going257

back to j (Secondary Transport Cost).258

TCj Unit transit cost for a car going through DC j.259

Wi Average truck capacity for the cars manufactured in plant i.260

W Average truck capacity for the whole volume of cars.261

M Big value, M = min (maxV olj , totProdi)262

NWD Number of working days in the planning horizon.263

Tmax(i) Maximum waiting time allowed at plant i before shipping to distribution centres.264

T Maximum waiting time allowed at a distribution centre before shipping to car dealers.265

CD Maximum covering distance parameter (i.e. the maximum length of a route starting at a DC, visiting266

the customers of a given cluster then coming back to the DC).267

PIij Low volume penalty amount for primary transport from plant i to DC j.268

R(j, q) Length of the optimal route starting at DC j and visiting the customers of cluster q before coming269

back to j.270

Vmin(i) Minimum volume of cars that has to go through any opened primary transport link starting at271

plant i. It has to be equal at least to the minimum volume ensuring on average a full truckload within272

Tmax(i) from plant i to a given DC hence Vmin(i) ≥
Wi

Tmax(i)
NWD273

Vmin Minimum volume of cars that has to go through any opened secondary transport link. It has to be274

equal at least to the minimum volume ensuring on average a full truckload within T from a DC to275

any cluster of customers hence Vmin ≥
W
T
NWD.276

3.4.2. Decision variables277

• Location variables y: yj = 1 if DC j is selected, yj = 0 otherwise278

• Assignment variables x: xijq = 1 if cluster q is assigned to DC j for the products of plant i, xijq = 0 otherwise279
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xijq is defined only if R(j, q) ≤ CD.280

• Variables z: zij = 1 if the route from plant i to DC j is selected, zij = 0 otherwise281

• Variables a: ajq = 1 if cluster q is assigned to DC j for at least one product, ajq = 0 otherwise282

ajq is defined only if R(j, q) ≤ CD.283

• v′ij ,v
′′

ij : Continuous variables used to write the minimum volume constraints for primary transport links. v′ij is284

a positive variable that has to be greater than Vmin(i). v
′′

ij is a positive variable used to compute the amount285

of violation of the minimum transport quantity on a given primary transport link (i, j) ∈ APR. It has to be286

less than Vmin(i) and will be minimized, set to zero if possible, as it is penalized in the objective function.287

3.4.3. MIP formulation of the optimization problem288

The multi-product distribution network design problem:289

290

Minimize:

Total distribution cost =
∑

i∈I

∑

j∈J

PTCij

Wi

∑

q∈Q

R(j,q)≤CD

Dqixijq (Primary transport cost = unit cost × volume)

+
∑

j∈J

∑

q∈Q

R(j,q)≤CD

STCjq

W

∑

i∈I

Dqixijq (Secondary transport cost = unit cost × volume)

+
∑

j∈J

TCj

∑

i∈I

∑

q∈Q

R(j,q)≤CD

Dqixijq (Transit cost = unit cost × volume)

+
∑

i∈I

∑

j∈J

PIijv
′′

ij (Low volume penalties for primary transport)
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Subject to:

∑

j∈J

R(j,q)≤CD

xijq = 1 ∀i ∈ I, q ∈ Q;Dqi ≥ 0 (1)

∑

q∈Q

Dqixijq = v′ij − v′′ij ∀i ∈ I, j ∈ J (2)

v′ij ≥ Vmin(i)zij ∀i ∈ I, j ∈ J (3)

v′ij ≤Mzij ∀i ∈ I, j ∈ J (4)

v′′ij ≤ Vmin(i)zij ∀i ∈ I, j ∈ J (5)
∑

i∈I

∑

q∈Q

R(j,q)≤CD

Dqixijq ≥ minV oljyj ∀j ∈ J (6)

∑

i∈I

∑

q∈Q

R(j,q)≤CD

Dqixijq ≤ maxV oljyj ∀j ∈ J (7)

∑

i∈I

Dqixijq ≥ Vminajq ∀j ∈ J, q ∈ Q;R(j, q) ≤ CD (8)

∑

i∈I

xijq ≤ Iajq ∀j ∈ J, q ∈ Q;R(j, q) ≤ CD (9)

zij ≤ yj ∀i ∈ I, j ∈ J (10)

yj , xijq, ajq, zij ∈ {0, 1} ∀i ∈ I, j ∈ J, q ∈ Q;R(j, q) ≤ CD (11)

v′ij , v
′′

ij ≥ 0 ∀i ∈ I, j ∈ J (12)

The objective function consists in the total distribution cost, i.e. primary transport cost, secondary transport cost,291

transit cost and penalties for violating the minimum volume constraints on primary transport links. Each of the292

transport and transit cost components are computed as the unit cost per car multiplied by the volume of cars on293

each link/DC. Notice that binary variables y, z and a are not used in the objective function as they are created294

only to express minimum volume constraints for DCs and transport links. Constraints (1) state that the demand295

of cluster q for each product of plant i is satisfied and is routed through a single DC (as x are binary variables).296

Constraints (2)-(5) enable us to compute the violation of minimum volume constraints and to penalize it in the297

objective function. Constraints (6) state that if DC j is selected (yj = 1), then the flows going through j have to298

be greater than the corresponding minimum volume limit. Constraints (7) stipulate that:299

• If DC j is selected (yj = 1) then the flows going through j must not exceed its maximum capacity.300

• If DC j is not selected (yj = 0) then there is no flow transiting by it (all xijq have to be set equal to 0).301

Constraints (8) ensure that if the link between j and q is selected (ajq = 1) then the corresponding total volume302

has to be greater than the minimum volume Vmin . Constraints (9) stipulate that if the link between j and q is303

not selected (ajq = 0) then all of the variables xijq have to be set equal to 0. Constraints (10) stipulate that if DC304

j is not opened (yj = 0) then all of the variables zij have to be set equal to 0. Constraints (11) and (12) are the305

integrality and non negativity constraints.306

12



Notice that maximum covering distance constraints are implicitly modeled when defining assignment variables xijq.307

In fact, assignment of cluster q to DC j for the products of plant i is not allowed if the route distance between j308

and q exceeds the maximum covering distance CD.309

4. Heuristic solution approach310

In this section, we propose a heuristic solution approach for the MIP problem presented in the previous modeling311

section. For small-size instances of the problem, we can use a MIP commercial solver such as CPLEX to obtain312

an optimal solution. However, computation times become prohibitively high for large-size real-life instances not313

only for getting optimal solutions but even for getting the first feasible solutions. Therefore, we had to consider the314

development of a specific and possibly more efficient heuristic solution method.315

4.1. The main idea of the heuristic approach316

The main idea of the proposed heuristic method is to exploit as much as possible the information provided by317

the optimal solution of the linear relaxation of the problem. An argument supporting this approach is the tightness318

of the lower bounds provided by the linear relaxation solution of the earlier defined formulation (typical deviations319

are less than 1.3%).320

In the problem under study, we have two main types of binary variables: location variables and assignment321

variables. We propose a two-stage heuristic method: the first stage (S1) focuses on location decisions whereas322

the second one (S2) deals with assignment decisions. The location variables are fixed in the first stage and the323

corresponding values are used in the second stage. Three different heuristic methods are implemented for the second324

stage.325

4.2. First stage (S1): location decisions326

In the first stage, we focus on deciding which DCs should be opened, i.e. we aim at determining the value of327

each location variable y in such a way as to be as close as possible to the optimal solution. To this end, we propose328

to solve a partial linear relaxation of the original MIP where the integrality constraints on variables x, z and a have329

been removed whereas they have been kept for y variables. Different tests showed that this is an efficient way to330

quickly identify the relevant main structure of the distribution network, i.e. to determine the DCs to open.331

4.3. Second stage (S2): assignment decisions332

In the second stage, we focus on deciding which DCs should serve which clusters, i.e. we aim at determining333

the value of each assignment variable x in such a way as to meet the minimum volume constraints for secondary334

transport. After fixing the location variables in the first stage of the heuristic approach, the resulting assignment335

problem is easier to solve than the original MIP. A rather large fraction (on average 44%) of the variables x are336

indeed set to 0 due to the fact that the corresponding DCs are not opened. However, this second-stage problem337

is not a standard assignment problem: since it includes knapsack constraints (due to capacity restrictions when338

assigning customers to DCs), it can be shown to be NP-Hard (NP-Hardness of the whole distribution network339

design problem was already settled in [14]).340

In order to solve the second-stage assignment problem, three distinct methods were studied.341

13



4.3.1. Reintroduction of all the integrality constraints (S2M1)342

The method S2M1 reintroduces the integrality constraints for all the free assignment variables x just after the343

location stage then solves the resulting MIP using a commercial solver. This is much quicker than directly solving344

the original MIP as the number of binary variables is reduced after fixing the location variables.345

4.3.2. Gradual reintroduction of the integrality constraints (S2M2)346

The method S2M2 consists in gradually reintroducing the relaxed integrality constraints. As previously men-347

tioned, in the first stage, we fix the location variables y. Then, we add the integrality constraints to all the secondary348

transport related variables, namely, x and a. We solve the resulting MIP using a commercial solver and we fix x and349

a at their values in the obtained solution. Finally, we add the integrality constraints to all the primary transport350

related variables (i.e. z) and we solve the resulting problem. Here, it is worth pointing out that the last step does351

not change any assignment decision as the x and a variables are fixed in the previous step. It only re-evaluates352

the objective function taking into account the penalty resulting from violating the minimum volume constraints on353

primary transport links.354

4.3.3. Fixing strategy (S2M3)355

We now discuss a fixing strategy exploiting the information provided by the solution of the first stage of the356

heuristic. The idea is to try to fix as many assignment variables as possible before reintroducing the integrality357

constraints for the currently free variables and solving the resulting MIP with a commercial solver. The fixing358

strategy should enable us to decrease the number of binary variables before solving the final MIP and thus to359

reduce computation times in the second stage of the heuristic procedure. However, a key issue is to ensure that the360

fixing decisions thus made do not lead to infeasibility.361

In order to implement the fixing strategy, we started at the optimal solution of the first location stage that362

we examined to identify the main issues. We noticed two problems: firstly, fractional values are obtained for only363

a small proportion of the assignment variables (of about 2%); secondly, there are of about 50% of the secondary364

transport links where the minimum volume constraint is violated. These figures clearly show that the violation365

of the minimum volume constraints for secondary transport links is the main issue in the optimal solution of the366

location stage. This is why the fixing strategy detailed in Algorithm 2 aims at setting to 0 any secondary transport367

flow (j, q) violating the minimum volume constraint, provided that the problem remains feasible. Thus, we make368

sure that after closing (j, q), the throughput of DC j will be kept above its minimum volume minV olj and that there369

is another DC k able to deliver the demand of q without exceeding its maximum volume of throughput maxV olk.370

We repeat this procedure for all the secondary transport links then we solve the resulting linear problem. In371

case the problem becomes infeasible, we remove the lately added fixing constraints and stop the loop. Otherwise,372

we iterate the procedure until there are no further flows that can be fixed at 0 or the problem becomes infeasible.373

The second step of the fixing strategy is to reintroduce the 0-1 constraints for all the free assignment variables and374

to solve the resulting MIP with a commercial solver.375

As detailed in the literature review, we found only four papers dealing with linear relaxation based heuristics for376

facility location or network problems with minimum volume constraints. The management of feasibility is among377

the main differences between our fixing algorithm and the solution methods implemented in these papers. In the378
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present work, through the tests introduced before setting flows to 0, we try to keep feasibility while fixing assignment379

variables. In [31], an infeasible solution is corrected after running the fixing algorithm using a feasibility pump.380

Melo et al. used in [18] a search in the neighborhood of the infeasible solution. In [6] and [16], the authors do not381

address the feasibility issues at the end of the heuristic procedure.382

Algorithm 2: Fixing strategy cancelling inconsistent flows (S2M3)

Data:

Vjq : Volume going through the secondary transport link (j, q) ∈ ASE during the planning horizon;

∀j ∈ J ∀q ∈ Q such as R(j, q) ≤ CD Vjq =
∑

i∈I
Dqixijq ;

Vj : Volume going through the DC j during the planning horizon;

∀j ∈ J Vj =
∑

q∈Q
R(j,q)≤CD

∑
i∈I

Dqixijq ;

nbF lows0: The number of flows that can be set to 0 according to volume tests (Initialization: nbF lows0 = 1);

Algorithm:

Step 1

while nbF lows0 > 0 do

nbF lows0 = 0;

for each opened transport link (j, q) from DC j to cluster q do

if Vjq < Vmin then

if Vj − Vjq ≥ minV olj then

if ∃ DC k within the covering distance CD of q such as (Vk + Vjq) ≤ maxV olk then

Add the constraint Vjq = 0 (i.e. xijq = 0 ∀i);

nbF lows0 = nbF lows0 + 1;

end

end

end

end

Solve the resulting linear problem;

if infeasible problem then
Cancel the lately added fixing constraints, break while

end

end

Step 2

Reintroduce the integrality constraints for all the free variables then solve the resulting MIP;

383

5. Numerical results384

In this section, we aim at discussing the numerical experiments of our model based on real-life data from our385

case-study. We employed the C++ language to implement the MIP model and the commercial solver ILOG CPLEX386

version 12.1 to solve it. We carried out all the tests on a Pentium Core 2 Duo (2.53 GHz) with 1.92Go of RAM,387

running under Windows XP. After describing the case-study, we analyze the optimal solution given by CPLEX in388

terms of network configuration (location decisions and different trade-offs) and of computation times. Then, we389

study the computational performance of the two-stage heuristic approach as compared to applying CPLEX to the390

original MIP.391
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5.1. Case-study description392

The case-study that motivated this research deals with a car distribution network in France. The network393

consists of 16 assembly plants (or ports), 51 potential distribution centres and 448 car dealers. We employed a free394

online tool [7] to obtain the geospatial coordinates of the different sites and the Geographic Information System395

(GIS) Microsoft MapPoint to evaluate the route distances.396

Based on the preferences of the decision maker, we defined a reference dataset where the planning horizon is397

fixed at one year, the maximum covering distance is set to 460 kilometres. The minimum and maximum volumes per398

DC are set according to some hypothesis on the flexibility of each DC. The minimum volume per primary transport399

link is fixed at 1 full truckload within a maximal waiting time of 1 week. The minimum volume per secondary400

transport link is also fixed at 1 full truckload within a maximal waiting time of 1 week. The clustering parameters401

are the following: maximum number of customers per cluster = 3, maximum volume per cluster = 3 full truckloads402

within 1 week, maximum distance between any two customers in a cluster = 50 kilometers and minimum volume403

per cluster = 2 full truckloads within 1 week. Here, it is worth pointing out that a difference of 1 truckload between404

the minimum quantity per cluster and the minimum quantity per secondary transport link gives more flexibility to405

the optimization algorithm with respect to the possibility of assigning a cluster to several DCs.406

5.2. Test instances407

In order to test the performance of exact and heuristic solutions, we constructed 60 test instances by varying408

the main parameters of the problem in the reference dataset.409

• Instances A.1 to A.12: we vary the value of the maximum covering distance from 460 kilometres to 680410

kilometres while fixing the other parameters of the reference dataset. This leads to increasing the number of411

binary variables (see fig. 4).412

• Instances B.1 to B.20: we vary the demand of customers. In each instance, we assign to each customer a413

different pseudo-random coefficient lying between 0.5 and 1.5. The new customer demand is computed as the414

reference demand (used in the reference dataset) multiplied by the pseudo-random coefficient.415

• Instances C.1 to C.8: we vary the minimum volume parameters for primary transport, secondary transport416

and DC throughputs as well as the maximum capacities for DCs (see Table. 2). In two instances (C.5 and417

C.6), we also change the maximum covering distance value because tight minimum volume constraints lead418

to an infeasible problem.419

• Instances D.1 to D.20: each of these instances contains 46 potential DCs instead of 51 as we randomly select420

5 DCs to remove from the list of potential DCs.421

5.3. Optimal solution using a commercial solver422

In the present subsection, we study the solution given by the commercial solver CPLEX for the proposed MIP423

problem. Different tests showed that proving the optimality, in some cases, is very time-consuming. Consequently,424

we limited the optimality gap of CPLEX to 0.2% in order to reduce the computational effort (the optimality gap is425
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Test instance Min volume for pri-

mary transport (nb

truckload/week)

Min volume for sec-

ondary transport (nb

truckload/week)

Min through-

put per DC

Max through-

put per DC

Max covering distance

(km)

C.1 1 1 RefData RefData 460

C.2 2 1 RefData RefData 460

C.3 1 2 RefData RefData 460

C.4 2 2 RefData RefData 460

C.5 1 1 1.5×RefData RefData 620

C.6 1 1 2×RefData RefData 660

C.7 1 1 RefData 0.8×RefData 460

C.8 1 1 RefData 2×RefData 460

Table 2: Test instances C: varying the minimum and maximum volume parameters. RefData denotes the data of the reference dataset.

defined as the relative difference between the solution obtained and the best lower bound found by the Branch &426

Bound procedure).427

We first explain the setting of the penalty parameter related to primary transport links. Then, we analyze the428

configuration of the distribution network obtained in the final solution given by CPLEX. Finally, we study the429

impact of varying the main parameters of the problem on computation times.430

5.3.1. Setting the penalty parameter431

As already suggested in the modeling section, we handle the minimum volume constraints on primary transport432

links using penalties. We penalize each unit below the targeted minimum volume by a given amount in the objective433

function. In our context, we can study two alternatives to evaluate this amount. The first one is to set the penalty434

to a huge value (109 for example), which means that the constraint will be violated only when there is no other435

solution to reach feasibility. The second alternative consists in using a suitable penalty that makes violating the436

constraint possible only if there is some opportunity to save costs. This is indeed the case if we choose to set the437

penalty to the unit transport cost. Fig. 3 illustrates the total cost as a function of the transported volume in this438

case. This situation means that if the volume on a given primary transport link (i, j) ∈ APR is greater than the

Figure 3: Primary transport cost as a function of the volume

439
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minimum required volume then all the products can be shipped in full truckloads. We pay a unit transport cost440

equal to
PTCij

Wi
, PTCij is the cost of a truck going from plant i to DC j and Wi is the average truck capacity for441

the trips starting at plant i. On the contrary, if the volume on the link is less than the minimum required volume,442

then regardless to the quantity, we pay a total cost equal to PTCij ·
NWD
Tmax(i)

. Observe that this amounts to keep443

shipping trucks with the same frequency Tmax(i) even if they are not fully loaded.444

The computational experiments that we carried out using test instances A showed that when the unit penalty445

is fixed at 109, the computation time is prohibitively high regardless of the value of the maximum covering distance446

(for instance, it is about 14 hours when the maximum distance is set to 460 kilometers and 20 hours when it is447

equal to 480 kilometers). When the unit penalty is set to the unit transport cost, we found optimal solutions for448

all the test examples except the one with a maximum distance set to 700 kilometers, that we aborted after 4 days449

of running time without finding any feasible solution. The computation times remain acceptable until a distance450

equal to 560 kilometers, after which the running time exceeds 4 hours (see fig. 4)451

Figure 4: Computation time as a function of the maximum covering distance value for the second penalization alternative

In the subsequent experiments reported in this paper, we fix the penalty value for each primary transport link452

at the unit transport cost on this link.453

5.3.2. Assessment of the heuristic clustering454

We propose to assess the heuristic clustering presented in §3.2.2 by comparing it with an exact clustering based455

on a set-partitioning formulation (detailed description of this method can be found in [14]). To this aim, we456

compute on instances B the relative difference in the total distribution cost between a) the optimal solution to the457

MIP problem (1)-(12) using the heuristic clustering; b) the optimal solution to the MIP problem (1)-(12) using458

the exact clustering. The values obtained for these instances are displayed in Table. 3. The figures show that the459

increase in total cost due to the use of heuristic clustering rather than the exact clustering is only about 0.63% on460

average, which confirms the good quality of the solutions produced by the heuristic.461

We note here that one of the limitations of the exact approach is that the set-partitioning model possibly462

requires the enumeration of a potentially huge number of candidate clusters (there are more than 60000 of these463
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in the instances shown in Table. 3, where no more than 3 customers per cluster are allowed). This may lead464

to numerically intractable problems when the number of customers or the maximum number of customers per465

cluster increase. By contrast, an advantage of the heuristic clustering is that it is far less dependent on these two466

parameters.467

Test instance B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14 B.15 B.16 B.17 B.18 B.19 B.20 Avg

Heuristic cost

increase (%)

0.82 0.64 0.50 0.42 0.62 0.52 0.53 0.85 0.49 0.83 0.64 0.19 0.66 0.44 0.66 0.66 0.92 0.98 0.46 0.81 0.63

Table 3: Distribution cost increase when using a heuristic clustering rather than an exact one on instances (B) varying customer demand.

5.3.3. Distribution network468

The first step of our location-routing procedure is the application of the heuristic clustering algorithm over the469

448 customers of the country. This results in 302 clusters meeting the various grouping constraints. Then, we run470

the network optimization on the reference dataset in order to obtain the best locations for DCs and the assignment471

of clusters to them. The first conclusion that can be made from the obtained figures is that the number of opened472

DCs is relatively high: 28 among 51 potential sites. This means that secondary transport considerably influences473

the network configuration, first because of the maximum covering distance constraint and second as the cost per474

car per kilometer for secondary transport is higher than the cost for primary transport, due to the difference of475

truck speed (secondary transport usually concerns last-mile deliveries in urban areas where vehicles are slower). As476

customers are scattered all over the country, we try to get close to them by opening many DCs. Fig. 5 shows that477

DCs are specialized by region and that transport flows assigned to them are related to close customers.478

Figure 5: Secondary transport in the optimal solution given by CPLEX. Plant locations are represented using triangles, opened DCs

using squares, and cluster barycentres using dark circles. As the figure is focused on secondary transport, some plants do not appear.
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However, DCs were not opened at each potential location as this may violate minimum throughput constraints479

for DCs. The throughput of many opened DCs is indeed close to the minimum required quantity. This reports on480

the impact of minimum throughput constraints on the network configuration. Furthermore, the number of DCs481

assigned to each cluster varies between 1 and 5. Obviously, clusters are more likely to be served by their closest482

DCs. This is why the number of single assignments is important (34% of clusters are assigned to only one DC).483

Other clusters are assigned to several DCs either because the problem is highly constrained or because sometimes484

it is better to use a farther facility which costs less in terms of primary transport.485

5.3.4. Impact of varying parameters on computation times486

Different tests showed that the following parameters could have a considerable impact on computation times:487

• Clustering parameters: Depending on these parameters, the number of clusters resulting from the algorithm488

could vary and then influences the problem size. The most influential parameter is the minimum volume per489

cluster V . Decreasing V leads to an increased number of clusters and consequently to an increased number490

of assignment variables x.491

• Minimum volume parameters: Increasing the minimum volume required for transport links or for the through-492

put of DCs makes the problem more difficult to solve as it is not easy to find a trade-off between all the con-493

straints. For instance, computation time went from 15 minutes to 35 hours when we doubled the minimum494

volume required per secondary transport link (2 full truckloads instead of 1).495

• Maximum covering distance parameter: Increasing the value of the maximum distance parameter leads to496

increasing the number of possible assignments, which results in raising the number of the assignment variables497

and of the related constraints. For instance, the size of the problem goes from 35853 binary variables and498

13946 constraints when the maximum covering distance is fixed at 460 kilometers to 62832 binary variables499

and 17120 constraints when the maximum covering distance is set to 680 kilometers. Fig. 4 shows how the500

computation time significantly increases when the distance increases. If the distance is set to 700 kilometers501

then the computation time to find a feasible solution can become prohibitive (more than 24 hours in some502

cases).503

Thus, even if the computation time needed by CPLEXMIP solver to solve the problem on the reference dataset is504

acceptable (15 minutes), the analysis carried out in this paragraph showed that the variation of the main parameters505

of the problem, in particular the maximum covering distance, can result in extensive running times as the number506

of integer variables and constraints significantly increases. Moreover, this study has an interactive character: the507

decision maker wants to run many what-if scenarios and requires to quickly view the impact of certain decisions.508

This is why implementing a heuristic method appeared to be the best way to find a near-optimal solution in a509

reasonable runtime, so that the decision making process is facilitated without deteriorating the solution quality.510

5.4. Experiments with the heuristic approach of section 4511

In the present subsection, we study the performance of the heuristic approach investigated in section 4 as512

compared to the reference solution given by CPLEX for the original MIP. The optimality gap was limited to 0.2%513
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for the reference solution and for all the mixed integer programs solved within the heuristic methods (using CPLEX514

also). The parameter setting was based on the reference dataset defined in §5.1.515

As previous tests with CPLEX (based on default settings) show some difficulties in finding feasible solutions, we516

tried to emphasize feasibility over optimality in the branching procedure using the ”MIPEMPHASIS” parameter517

of CPLEX. Nonetheless, this approach did not lead to significant improvements in computation times. We then518

examined another alternative using the ”setPriorities” function, which drives CPLEX to give priority to location519

variables over assignment variables during branching. Location decisions have indeed a structural role in our network520

design problem. This change in the settings of CPLEX resulted in a noticeable decrease in the computational effort.521

The first part of Table. 4 shows computation times in minutes for CPLEX applied to the original MIP both with522

default settings (6th column) and with priorities assigned to location variables (7th column) on instances A varying523

the value of the maximum covering distance.524

It is seen that CPLEX behaves much better when using priorities, on average CPU is half the initial value. This525

is why in the subsequent tests, we will keep using priorities. The resulting figures are compared with those given526

by heuristic methods (S2M1, S2M2 and S2M3). The second part of Table. 4 shows the solution quality of the three527

heuristic methods and of the solver output for the original MIP within 10 minutes and 60 minutes respectively. In528

fact, this information is useful to analyze the performance of the two-stage heuristic approach as compared to the529

exact one.530

Overall, Table. 4 shows that the gradual reintroduction of the integrality constraints in the second stage (S2M2)531

leads to running times shorter than S2M1 and S2M3 but to higher deviations from the original MIP solutions (up to532

1.71%). In fact, in the second step of S2M2, we ignore the minimum volume constraints for primary transport links533

as the corresponding variables could have fractional values. Consequently, some expensive decisions are made for534

the transport from plants to distribution centres. On the other hand, the computational results clearly show that535

S2M1 yields excellent quality solutions and sometimes outperforms CPLEX applied to the original MIP (negative536

values in the second part of Table. 4). This could be explained by the fact that the MIP optimality gap was limited537

to 0.2%. In return, the computation times obtained with S2M1 could increase up to 133 minutes. Thus, to achieve538

a trade-off between time and value, we should apply the fixing strategy S2M3, which is indeed better than S2M1539

in terms of running time and which solution is less expensive than the one provided by S2M2. According to the540

choice of the decision maker, it is possible to prioritize the solution speed (S2M2), the solution quality (S2M1) or541

a trade-off between these two features (S2M3).542

In summary, using the two-stage heuristic approach appears to be significantly more competitive than running543

the solver on the whole MIP model of section 3.4.3. We can indeed notice according to the last two columns of544

Table. 4 that within 10 minutes CPU, CPLEX cannot find any feasible integer solution. Within 60 minutes CPU,545

it yields a solution better than the heuristic one only in the first two instances. This conclusion was also validated546

through additional extensive numerical tests using test instances B, C and D defined in §5.2. The computational547

results are summarized in Tables. 5, 6 and 7; the obtained figures again show the good performance of the 2-stage548

heuristic procedures.549
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CPU(min) Heuristic solution CPLEX applied to the original MIP

Instance Max covering distance

(km)

S2M1 S2M2 S2M3 Optimality gap set to 0.2 %,

default settings

Optimality gap set to 0.2 %,

higher priorities for location

variables

A.1 460 0.8 0.3 0.5 15.3 8.4

A.2 480 0.6 0.3 0.7 74.4 22.8

A.3 500 2.1 0.4 0.7 127.3 28.8

A.4 520 1.9 0.4 0.4 142.3 76.4

A.5 540 5.0 0.3 0.4 113.8 41.7

A.6 560 6.2 0.5 0.5 279.1 255.2

A.7 580 6.6 0.6 0.7 252.4 202.1

A.8 600 19.8 0.4 0.9 325.5 209.4

A.9 620 20.2 0.4 0.5 392.7 159.2

A.10 640 14.7 0.5 0.6 > 10 h > 10 h

A.11 660 15.9 0.5 0.9 > 10 h > 10 h

A.12 680 91.2 0.6 2.3 > 10 h > 10 h

Solution quality(%) Heuristic solution CPLEX applied to the original MIP

Instance Max covering distance

(km)

S2M1 S2M2 S2M3 Time limit set to 10min Time limit set to 60min

A.1 460 -0.06 1.49 0.73 NFS -0.12

A.2 480 0.07 1.61 0.75 NFS 0.03

A.3 500 0.06 1.54 0.70 NFS NFS

A.4 520 0.06 1.71 0.90 NFS NFS

A.5 540 0.05 1.64 0.97 NFS NFS

A.6 560 -0.01 1.70 0.97 NFS NFS

A.7 580 0.08 1.69 0.99 NFS NFS

A.8 600 -0.04 1.40 0.86 NFS NFS

A.9 620 -0.06 1.36 0.87 NFS NFS

A.10 640 0.02 1.40 0.88 NFS NFS

A.11 660 0.01 1.44 0.89 NFS NFS

A.12 680 0.03 1.42 0.92 NFS NFS

Table 4: CPU (min) and solution quality (%) as a function of the maximum covering distance (instances A). CPU of CPLEX solutions

is mentioned in 2 cases: when using default settings and when higher priorities are assigned to location variables during the branching

procedure. Solution quality is measured as the relative difference between the heuristic solution and the solution produced by CPLEX

applied to the original MIP within 0.2% of optimality. The heuristic uses one of the methods S2Mi, i = 1..3 in the 2nd stage. Optimality

gap for any MIP used in the heuristics was limited to 0.2%. NFS means that no feasible solution was found within the allowed time

limit.

6. Conclusion and future research550

In this paper, we studied a multi-product distribution network design problem arising in the context of car551

distribution. We proposed a modeling approach considering several realistic assumptions. This led to the for-552

mulation of a large-size MIP with minimum volume, maximum covering distance and single sourcing constraints.553

We analyzed the main trade-offs related to the network structure and provided numerical results using real-life554

data. These results showed that it is possible to handle problems featuring about 500 customers, 15 products, 50555
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CPU(min) Heuristic solution CPLEX applied to the original MIP

Test instance S2M1 S2M2 S2M3 Optimality gap set to 0.2%

B.1 1.6 0.2 0.4 29.9

B.2 1.0 0.3 0.2 13.0

B.3 2.4 0.4 0.2 243.1

B.4 0.9 0.3 0.2 41.6

B.5 0.4 0.2 0.2 8.3

B.6 0.3 0.2 0.2 11.8

B.7 1.0 0.2 0.2 11.7

B.8 0.9 0.2 0.2 17.7

B.9 1.1 0.2 0.2 22.1

B.10 2.3 0.5 0.3 31.5

B.11 0.8 0.4 0.2 31.6

B.12 1.2 0.8 0.2 19.8

B.13 0.3 0.2 0.2 23.3

B.14 0.4 0.3 0.3 40.7

B.15 0.9 0.5 0.3 25.0

B.16 2.0 0.2 0.2 67.2

B.17 1.1 0.2 0.3 35.0

B.18 2.2 0.2 0.2 19.2

B.19 0.9 0.2 0.2 20.3

B.20 0.7 0.2 0.3 16.3

Avg 1.1 0.3 0.2 36.5

Solution quality(%) Heuristic solution

Test instance S2M1 S2M2 S2M3

B.1 0.10 1.03 0.61

B.2 -0.03 1.51 0.82

B.3 0.09 1.75 0.63

B.4 -0.03 1.19 0.72

B.5 0.06 1.50 0.93

B.6 -0.07 1.25 0.63

B.7 0.07 1.40 0.70

B.8 0.01 1.93 0.70

B.9 -0.08 1.37 0.49

B.10 -0.07 1.55 0.69

B.11 0.08 1.40 0.51

B.12 0.04 1.57 0.86

B.13 0.08 1.41 0.74

B.14 0.04 1.43 0.72

B.15 0.01 1.51 0.34

B.16 0.06 1.37 0.64

B.17 0.02 1.43 0.83

B.18 0.06 1.68 0.54

B.19 -0.03 1.66 0.53

B.20 0.02 1.46 0.64

Avg 0.02 1.47 0.66

Table 5: CPU (min) and solution quality (%) when varying customer demand (test instances B).
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CPU(min) Heuristic solution CPLEX applied to the original MIP

Test instance S2M1 S2M2 S2M3 Optimality gap set to 0.2%

C.1 0.8 0.3 0.5 8.4

C.2 7.4 0.2 1.0 56.4

C.3 8.7 0.6 1.0 551.9

C.4 1431.9 0.9 8.8 OOM

C.5 6.6 3.0 1.2 377.7

C.6 OOM 3.9 8.7 OOM

C.7 1.7 0.2 0.2 19.3

C.8 1.2 0.1 0.2 25.9

Solution quality(%) Heuristic solution

Test instance S2M1 S2M2 S2M3

C.1 -0.06 1.49 0.73

C.2 0.06 6.06 1.88

C.3 0.01 1.17 1.24

C.4 - - -

C.5 0.04 1.00 0.43

C.6 - - -

C.7 -0.03 1.27 0.67

C.8 0.01 1.25 0.89

Avg 0.01 2.04 0.97

Table 6: CPU (min) and solution quality (%) when varying the minimum and maximum volume parameters (test instances C). OOM

denotes an out of memory status without finding any feasible solution and ”-” means that the solution quality cannot be evaluated as

no reference solution was found.
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CPU(min) Heuristic solution CPLEX applied to the original MIP

Test instance S2M1 S2M2 S2M3 Optimality gap set to 0.2%

D.1 1.1 0.7 0.7 26.4

D.2 2.4 0.2 0.2 103.6

D.3 0.4 0.3 0.3 32.7

D.4 10.9 0.2 0.5 47.2

D.5 0.2 0.2 0.2 7.3

D.6 1.1 0.2 0.2 6.8

D.7 0.2 0.2 0.2 6.2

D.8 0.6 0.2 0.2 5.7

D.9 0.5 0.3 0.2 8.0

D.10 1.0 0.2 0.2 5.4

D.11 0.6 0.2 0.1 5.7

D.12 0.5 0.3 0.3 11.4

D.13 0.6 0.2 0.2 1.6

D.14 0.8 0.2 0.5 12.4

D.15 0.9 0.2 0.2 4.9

D.16 0.2 0.2 0.2 2.2

D.17 0.4 0.1 0.1 6.5

D.18 0.9 0.2 0.2 22.3

D.19 0.9 0.4 0.2 3.6

D.20 0.6 0.2 0.2 23.6

Avg 1.2 0.2 0.2 17.2

Solution quality(%) Heuristic solution

Test instance S2M1 S2M2 S2M3

D.1 0.08 1.56 0.56

D.2 -0.01 1.20 0.70

D.3 0.09 0.87 0.47

D.4 0.08 1.65 0.57

D.5 -0.001 0.89 0.44

D.6 0.09 1.32 0.75

D.7 0.002 0.85 0.61

D.8 -0.05 1.01 0.64

D.9 0.04 1.15 0.81

D.10 0.06 1.29 0.82

D.11 -0.05 0.99 0.69

D.12 0.02 0.69 0.42

D.13 0.04 0.88 0.75

D.14 -0.07 1.47 0.71

D.15 -0.02 1.16 0.41

D.16 -0.04 1.02 0.65

D.17 -0.04 0.69 0.62

D.18 0.003 1.14 0.74

D.19 -0.07 1.10 0.68

D.20 0.05 1.12 0.78

Avg 0.01 1.10 0.64

Table 7: CPU(min) and solution quality(%) when varying the list of potential DCs (test instances D)
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potential locations for DCs and, for each product, an average of 6 possible assignments of customers to DCs. The556

corresponding MIP models, which can be solved within 0.2% accuracy in less than 2 hours CPU, typically involve557

45100 0-1 variables and 15000 constraints.558

In order to improve the computational performance of the solution procedure, several heuristic methods using559

various relaxations of the original MIP formulation of the problem have been described. They were validated through560

extensive computational experiments where the produced solutions have been compared with those obtained using561

an efficient state-of-the-art exact MIP solver. To the best of our knowledge, it is the first time that this kind562

of approach is applied to determine both optimal location and assignment decisions in a supply chain network563

design problem subject to minimum volume and distance constraints. All the related papers that we found in the564

literature worked only on rounding the location decisions. The results of our computational experiments confirm565

the good performance of the proposed heuristic approaches even for the hardest case (62832 0-1 variables and 17120566

constraints). Good quality feasible solutions are consistently obtained within short computation times on instances567

for which a state-of-the-art MIP solver does not produce any feasible solution.568

In terms of future research, it would be interesting to study other possible approaches to constructing heuristic569

solutions. For instance, within the fixing strategy, one such possibility would be to accept infeasible solutions and to570

repair them instead of building only feasible solutions. Another challenging option that is worth being considered571

for future research is to look at a dynamic or multi-scenario version of the current model in order to deal with572

demand seasonality. Various scenarios of demand could indeed have different impact on the network structure and573

in particular on the major decision variables related to distribution centre location. Moreover, this extension of574

the model is likely to take full benefit from the good performance of our two-stage heuristic approach especially575

designed for tackling problems of larger sizes.576
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