
HAL Id: hal-01120248
https://hal.science/hal-01120248v1

Submitted on 25 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamically Evolving the Structural Variability of
Dynamic Software Product Lines

Luciano Baresi, Clément Quinton

To cite this version:
Luciano Baresi, Clément Quinton. Dynamically Evolving the Structural Variability of Dynamic Soft-
ware Product Lines. 10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, May 2015, Florence, Italy. pp.7. �hal-01120248�

https://hal.science/hal-01120248v1
https://hal.archives-ouvertes.fr


Dynamically Evolving the Structural Variability

of Dynamic Software Product Lines

Luciano Baresi and Clément Quinton

Politecnico di Milano

Dipartimento di Elettronica, Informazione e Bioingegneria

Piazza L. Da Vinci, 32 - 20133 Milano, Italy

Email: {luciano.baresi | clement.quinton}@polimi.it

Abstract—A Dynamic Software Product Line (DSPL) is a widely
used approach to handle variability at runtime, e.g., by activating
or deactivating features to adapt the running configuration. With
the emergence of highly configurable and evolvable systems,
DSPLs have to cope with the evolution of their structural variabil-
ity, i.e., the Feature Model (FM) used to derive the configuration.
So far, little is known about the evolution of the FM while a
configuration derived from this FM is running. In particular,
such a dynamic evolution changes the DSPL configuration space,
which is thus unsynchronized with the running configuration and
its adaptation capabilities. In this position paper, we propose and
describe an initial architecture to manage the dynamic evolution
of DSPLs and their synchronization. In particular, we explain
how this architecture supports the evolution of DSPLs based on
FMs extended with cardinality and attributes, which, to the best
of our knowledge, has never been addressed yet.

I. INTRODUCTION

Deploying large-scale and highly distributed systems such

as cloud-based or cyber-physical systems has recently emerged

as a major trend in software development. While running,

these systems have to cope with changes that may occur

in their environment, and thus have to adapt dynamically

their configuration at runtime to face those changes. A well-

known approach to deal with runtime adaptations is by means

of Dynamic Software Product Lines (DSPL) [1], [2]. DSPLs

aim to bind features dynamically at runtime by activating

or deactivating certain features according to the changing

context. Those runtime reconfigurations are driven by the DSPL

variability model, usually described as a Feature Model (FM),

which defines the DSPL configuration space, i.e., the possible

and allowed reconfigurations.

DSPLs are built on the assumption that runtime adaptations

can be foreseen at design time and thus rely on a predefined

configuration (and reconfiguration) space, i.e., the one limited

by the set of configurations which can be derived from the

FM. However, highly configurable systems have to cope with

uncertainty, facing events that were not predicted at design

time. To deal with these unforeseen events and propose new

runtime adaptations, the DSPL configuration space has to

evolve, i.e., the DSPL FM must be edited. Evolving the struc-

tural variability of the DSPL is thus done dynamically, while

derived configurations are running. Such dynamic structural

evolutions lead to a synchronization issue, where running

configurations are not bound to the correct configuration space

when a reconfiguration is required to adapt to context changes.

To deal with dynamic evolutions of DSPLs and address this

synchronization issue, three main concerns must be taken into

consideration. First, the validation of the dynamic evolution,

to check whether or not the evolved FM is consistent after

being edited and eventually apply the changes. Second, the

rebinding stage, responsible of binding the new configuration

space with the running system when required. Finally, the

configuration adaptation, where the running configuration

must be reconfigured according to a FM evolution or context

changes.

The key contributions presented in this paper with respect

to dynamic evolution of DSPLs are thus as follows.

• We propose a reference architecture for dynamically

evolving DSPLs, which manages the three main stages

of the DSPL evolution process described above. For each

stage, we propose reasoning operations to avoid consis-

tency and correctness issues, which cannot be properly

handled manually by the DSPL maintainer due to their

complexity.

• This architecture deals with FMs extended with both at-

tributes and cardinalities, required to describe highly con-

figurable systems. The dynamic reconfiguration is thus

not only able to deal with feature activation/deactivation,

but also with adaptation regarding quality attributes, as

suggested in [3], number of instances of a feature or struc-

tural evolution involving constraints between features.

The rest of the paper is organized as follows: Section II

introduces background information and motivates this work

by highlighting the problem of evolving DSPLs. Section III

presents the different kinds of evolution and explains their

impact on configuration space synchronization. Section IV

describes the architecture supporting the dynamic evolution

of DSPLs, Section V discusses related work and Section VI

concludes the paper.

II. BACKGROUND AND MOTIVATION

This section introduces some background information about

the FMs we use in our approach and illustrates the problems

that might arise during their evolution at runtime by a moti-

vating example.



A. Extended Feature Models

In our approach, we extend the FODA notation [4], well-

known for variability modeling by means of Boolean FMs,

with cardinalities and attributes. In the rest of the paper, we

refer to this kind of FMs as extended FMs. These extensions

are required to describe the variability of complex and highly

configurable systems such as cloud environments [5], e.g.,

to express required resources or the number of instances. A

cardinality-based FM supports feature cardinalities defined as

an interval [m..n] [6], as well as constraints on these cardinali-

ties, e.g., to express that a feature requires a certain number of

instances of another feature [7]. A feature cardinality specifies

how many instances of a feature can be included in the

configuration.

Attribute-based FMs, on the other hand, are FMs whose addi-

tional information is defined in terms of feature attributes [8],

[9]. Those attributes, mostly used to specify non-functional

properties, e.g., a size or a quantity, can be either booleans,

integers, reals, or enumerations. In addition, the extended FMs

used in this paper come with attribute-based constraints [5],

i.e., attributes are constrained to a given value under certain

conditions. Figure 1 depicts such an extended FM.

Dyno

[1..150] 

Name: size
Type: enum 
Values: {1X, 2X, PX}

Name: RAM
Type: enum 
Values: {512, 1024, 6144}

Load
Balancer

Database

 Postgres ClearDB

Heroku

Dyno.size= 1X ⟶ Dyno.RAM= 512

Dyno.size= 2X ⟶ Dyno.RAM= 1024

Dyno.size= PX ⟶ Dyno.RAM= 6144

[2,*] Dyno ⟶"Load Balancer

optional mandatory

alternative

or [0..20] cardinality

attribute

Fig. 1. Simplified Heroku PaaS Feature Model.

The FM describes an excerpt of the variability of Heroku1, a

Platform-as-a-Service cloud environment. Some configurations

of this FM may involve up to 150 instances of the Dyno

feature, which is a computational block that provides a certain

amount of resources, i.e., 512, 1024 or 6144 MB of memory

depending on the Dyno size, as expressed by the three first

constraints on attribute values. When at least two Dynos are

part of the configuration, then a Load Balancer is required

1https://www.heroku.com

for balancing requests across these Dynos. This requirement

is expressed with the fourth constraint, i.e., a constraint over

the Dyno feature cardinality. In addition, Heroku provides

optional support to several databases such as Postgres and

ClearDB.

In the remainder of the paper, all references to the architec-

tural FM of the DSPL imply an extended FM.

B. Motivation and Examples

Current limitations of today’s DSPLs rely on their inability

to change the structural variability at runtime, and most of

dynamic variability techniques deal with reconfiguration tasks

such as activating or deactivating features without dealing with

dynamic variability changes [10]. Yet, DSPLs (and SPLs) are

likely to structurally evolve over time, for at least two main

reasons. First, they are often a long-term investment, and they

need to evolve to meet new requirements over many years.

Second, dealing with a single, large, monolithic FM is not the

right way: previous work has pointed out that dealing with

such a large FM is problematic [11], [12], and it rather suggests

to deal with incremental edits to the FM [13].

So far, little support exists for evolving the FM of a DSPL,

that is, dynamically evolving its architectural FM while a

derived system configuration is running and might require

runtime adaptations. For example, cloud computing is a

domain constantly evolving, and such a support is required to

properly handle those evolutions, e.g., availability of a new

service, legacy service no more supported, new deployment

plan and provided resources, etc. For instance, in February

2014, Heroku introduced a new kind of Dyno, the PX one,

providing 12 times more RAM than the basic 1X one, as

depicted in Figure 1. Such an evolution is not functional

and thus does not require any adaptation involving feature

activation or deactivation. Nevertheless, it may require an

adaptation of the running configuration, e.g., to run a better-

suited configuration regarding non-functional requirements

(e.g., a configuration with one PX Dyno can be cheaper than

one with six 2X Dynos, for the same amount of provided

resources). Another issue was met by early adopters of

Postgres instances based on the 32-bit version. Heroku

then changed to 64-bit ones, leading to incompatibility

issues for customers trying to upgrade to a larger database

plan [14]. In other words, the running configurations relying

on 32-bits versions were not synchronized with the Heroku

architectural model providing 64-bits versions and adapting

these configurations was impossible.

Evolving the architectural FM, although necessary, may

nevertheless lead to two main issues. First, inconsistencies

may arise in the new FM which has to be checked prior to

be used as the DSPL architectural FM. In DSPL approaches,

model driven engineering has been widely used to address

this issue, e.g., relying on type conformance [15]. However,

this is not sufficient in the presence of extended FMs, where

additional checking operations must be performed to ensure

the consistency of the model (see Section IV-B). Second, once



evolved, the architectural FM provides a configuration space

that is different from the one provided by the previous FM,

thus leading to a running configuration that is not synchronized

anymore with the DSPL FM when trying to adapt.

III. DESYNCHRONIZED CONFIGURATION SPACES

In this section, we provide a big picture of the problem

of configuration space desynchronization. Then, we analyze

the different kinds of dynamic evolution regarding the DSPL

FM and whether they require a rebinding of the configuration

space.

A. Structural Variability Evolution and Desynchronization

Evolving the architectural FM of a DSPL while a derived

configuration is running leads to a desynchronization between

this running configuration and the DSPL FM, and causes issues

when an adaptation is triggered. Figure 2 illustrates such a

desynchronization.

Heroku

Dyno DB

Postgres ClearDB

(Re)configuration
space

?

Architectural FM RunTime

Time

Evolution

Heroku

Dyno DB

Postgres ClearDB

Heroku

Dyno DB

Postgres ClearDB

Heroku

Dyno DB

Postgres

Fig. 2. Evolving the DSPL FM and related (re)configuration spaces.

The running system, i.e., the derived configuration used at

runtime, is based on the original architectural FM, as depicted

in the top part of the figure. If required, e.g., because of

context changes, the running configuration can be adapted and

changed accordingly by activating or deactivating a feature,

or by reducing the number of running feature instances. This

adaptation is done within a given configuration space, i.e., the

one provided by the architectural FM the running configuration

has been derived from. Then, for any possible reason, e.g.,

unmodeled features because they were unknown a priori or

because of mistakes in the FM, the architectural FM of the

DSPL has to evolve, while the existing configuration is still

running and adapting itself according to context changes.

The new architectural FM (bottom-left corner of the figure)

now comes with a new configuration space, i.e., without the

ClearDB feature. In this situation, the running configuration

is said desynchronized with respect to the new reference

architectural FM (bottom part of the figure), since originally

bound and derived from the previous FM configuration space

(top part of the figure).

The main issue with such a desynchronization is to deter-

mine and bind the correct configuration space to the running

system for further possible adaptations. In the depicted exam-

ple, should the running system still rely on ClearDB and,

if not, should it be adapted according to the former or the

new configuration space? In the next section, we discuss the

different evolution scenarios about the DSPL architectural FM

and their impact on the synchronization.

B. Synchronizing Configuration Spaces

This section investigates edits (manual or automated) done

to extended FMs and their impact on the configuration space

evolution. We consider here atomic model edits only, i.e., to

add, remove or update a model element where updating a

model element means changing one of its properties. Here,

relevant model elements are features and cross-tree constraints,

and relevant feature properties are cardinalities and attributes.

The different edits discussed in this paper are listed in TABLE I

and TABLE II.

For each edit, the tables indicate whether the considered edit

requires a rebinding to synchronize the FM and the running

configuration C or not. In addition, it indicates whenever an

adaptation is required. For both operations, we distinguish

between a soft and a hard requirement. More precisely, we

consider that a rebinding or an adaptation can be either

required or suggested. The former is meant to be mandatory

and refers to functional adaptations, while the latter is optional

but may improve the running configuration by providing best-

suited non-functional properties. This distinction is denoted in

the table as R and r for a required and suggested rebinding,

respectively (A and a for an adaptation). Please not that a

rebinding, whatever required or suggested, is always followed

by an adaptation, thus ensuring the running configuration C to

be synchronized with the new FM.

Feature Optional Mandatory

Add r R

Remove
f /∈ C - N.A.

f ∈ C A R

Feature Opt. → Mand. Mand. → Opt.

Update
f /∈ C R N.A.

f ∈ C - a

TABLE I
EDITS ON FEATURES.

TABLE I describes the edits that can be performed on

features. A feature f can be added or removed from the FM, or



can be updated from optional to mandatory (Opt. → Mand.)

or conversely (other cardinality updates, e.g., from [1..4] to

[1..2], are discussed in TABLE II). Adding an optional feature

in the DSPL FM does not require a rebinding. However, such

a rebinding is suggested, since a more suitable configuration

involving the added optional feature may be derived. On the

other hand, when a new mandatory feature f is added, the

rebinding is required to derive a new configuration including

f , e.g., to fix a bug in the current configuration C.

Removing an optional feature f that is not involved in the

current running configuration (f /∈ C) does not lead to any

change, while removing a mandatory feature not involved in

C cannot happen (if f is mandatory, f ∈ C). On the other

hand, removing an optional feature involved in C requires an

adaptation of C, e.g., deactivate the feature. If such a feature is

mandatory, then a rebinding is required. The reader may notice

that, for the removal, we assume that the involved feature does

not have dangling references in cross-tree constraints anymore

(in such a case, the involved constraint must be removed before

removing the feature).

Updating a feature f not involved in C from optional to

mandatory implies C to be bound to the new configuration

space and be adapted to include the mandatory feature. The

reverse update is not applicable as a mandatory feature is

always included in C. Considering f ∈ C, updating f from

optional to mandatory does not change C as f is already

included in C. Finally, switching f from mandatory to optional

does not prevent C to run properly, but an adaptation is

suggested as alternative configurations may be more suitable.

Constraint δ → β

Add

Update

Remove

δ /∈ C -

δ ∈ C A

Cardinality / Attribute

Update
f /∈ C a

f ∈ C A

TABLE II
EDITS TO CONSTRAINTS, CARDINALITIES AND ATTRIBUTES.

TABLE II describes the edits that can be performed on

cross-tree constraints, whether Boolean or non-Boolean

ones, e.g., constraints on the number of instances of a

given feature [16]. δ and β can thus be either features or

attribute/cardinality values. Whatever the considered edit, an

adaptation is required if δ ∈ C is supposed to include, exclude

or update β. If δ /∈ C, then C does not have to change. The last

edit discussed in this paper is about updating some properties

of the FM, i.e., the value of a feature cardinality or attribute.

If the feature is not part of the running configuration, then

an adaptation is suggested as the new value may enable

more suitable alternative configurations. If the feature is

part of the configuration, then the adaptation is required

as the new value may have consequences on the whole

configuration. For example, regarding a cloud environment

DSPL, two application server nodes require a load balancer to

be configured while it is not mandatory when only one node

is configured [7].

In the next section, we describe an architecture that supports

the dynamic evolution of the architectural FM of a DSPL, and

provides related rebinding and adaptation mechanisms.

IV. PROPOSED ARCHITECTURE

To support dynamic architectural evolution in a DSPL en-

gineering process, we propose an architecture that relies on

three main components. The proposed architecture is depicted

in Figure 3.

Model 
Checker

Evolves

Checks
consistency

Running
configuration

Provides

Is derived and 
adapted from

Synchronization 
Engine

BindsMonitors

Context
Monitor

Monitors

Environment

Configuration
space

Architectural 
FM

Cloud

Fig. 3. Overview of the Architecture.

The initial running configuration is derived from the ini-

tial architectural FM, i.e., with respect to the configuration

space provided by this FM. Once the system is running,

the runtime environment is monitored through a context

monitoring engine and adaptations can be triggered (Sec-

tion IV-A). These adaptations are performed with respect to

a given configuration space. This configuration space may

evolve if the architectural FM has evolved as well. In such

a case, the consistency of the new FM is checked by the

model checker before using it as the new reference model

(Section IV-B). Once the consistency of the model is ensured,

the synchronization engine is responsible for binding

the running system with the correct configuration space if a

rebinding is required (Section IV-C).

A. Runtime Adaptations

While existing DSPL architectures are focused on activation

and deactivation of features to handle the required adaptation,

our approach supports in addition new kinds of adaptation

mechanisms, related to the FM extensions: adaptation with

respect to (i) the number of feature instances (cardinalities)

and (ii) the non-functional properties (attributes).



Postgres

Hobby Standard

Name: #Con
Type: int 
Value: [0..20]

Heroku

PgBouncer pg:kill
Larger
plan

limits #Of

kills oneOf

Monitored
attribute

Class modeling
relationship

switch to

Adaptation options

Fig. 4. Adaptation with respect to a changing attribute value.

Figure 4 illustrates an adaptation triggered by an evolving

attribute value. Another excerpt of the Heroku FM is de-

picted, focusing on the Postgres database service. Heroku

provides such a Postgres database support with different

configuration plans, i.e., different amount of resources and

different prices. In this example, the Hobby configuration

enables up to 20 active connections, which is lower than the

Standard one that is more expensive (prices and attributes

related to the Standard feature are not depicted for the

sake of clarity). Once the database has reached the maximum

number of active connections, it will no longer accept new

connections. This will result in connection timeouts and will

likely cause exceptions. In this case, there are three different

adaptation options, depicted in the bottom part of the figure

by mixing feature and class modeling as suggested in [17].

First, one can migrate to a larger plan. Second, we may

consider killing the long running queries by the pg:kill

command provided by the Heroku SDK. Finally, we may use

the PgBouncer connection pooler which limits the number

of connections before reaching the database connection limit.

Handling such adaptation mechanisms allows our architec-

ture to support soft adaptations, i.e., adaptations according

to non-functional properties such as the number of active

connections. These adaptations avoid the derivation of a new

configuration with different functional features activated, for

instance switching to a ClearDB database.

B. Checking the Consistency of the Evolving Feature Model

Evolving a model, whatever the model and evolution might

be done dynamically or not, can lead to a new but inconsistent

model. In our approach, once the architectural FM has evolved,

the consistency of the new FM is checked through a two-step

procedure. First, our architecture relies on model driven engi-

neering principles, and each FM is defined as an instance of

the extended FM metamodel depicted in Figure 5 (a complete

description of this metamodel is given in [18]). Relying on

this metamodel, a type-conformance checking procedure is

executed to ensure the correctness of the evolved FM, i.e.,

that the new FM conforms to the FM metamodel.

Feature CardinalityAttribute

FM

ConstraintElement

1..*

0..*

from

to

Fig. 5. Excerpt of the Extended FM Metamodel.

Second, we perform additional consistency checking. In-

deed, dealing with extended FMs poses additional complexity,

in particular when handling cardinalities into FMs and their

constraints. Figure 6 depicts such a situation, the FM on the

left-hand side of the figure being evolved to become the one

on the right-hand side.

DB Dyno

...
[0..4]

DB Dyno

...
[0..4]

!DB!⟶!2Dyno

[0..2] [0..3]

!DB!⟶!2Dyno

Fig. 6. A cardinality update leading to an inconsistency.

In this evolution scenario, one more Postgres database

instance can now be configured, and the cardinality of the

optional database feature DB is updated from [0..2] to [0..3].
However, the cross-tree constraint specifies that each config-

ured instance of DB requires 2 instances of Dyno to run

properly. As the upper bound of Dyno is still 4, it is not

possible to configure more than 2 instances of DB since not

enough Dynos are provided, and the evolved FM is said

inconsistent. Although rather simplistic, this example shows

that evolving extended FMs while ensuring their consistency

is a complex task. In our previous work [16], we described the

different kinds of inconsistencies that may arise in such evo-

lution scenarios and showed that detecting and understanding

why the FM is inconsistent is not trivial. We thus provided an

automated support to detect such inconsistencies and explain

the cause of the inconsistency and where it is located in the

model. In our architecture, we rely on this automated support

to perform the second consistency checking.

C. Configuration Space Synchronizer

The configuration space synchronizer is responsible for

monitoring the changes of the architectural FM and for binding

the running configuration with the new configuration space, if

needed. Thus, once the FM has evolved and has been evaluated

consistent, it might trigger a rebinding between the running

system and the new configuration space. To determine whether



such a rebinding is required or not, the architecture provides a

support to identify which kind of edit has been performed (see

Section III-B). This identification is based on the computation

of the differences between the FM before the evolution and the

evolved one. In particular, it relies on a syntactic difference

diff operator that takes two FMs as input and computes

their differences [19]. Figure 7 depicts the integration of

this operator in the synchronization decision process. Thus,

a rebinding, an adaptation or nothing is performed given the

result of the diff operator.

reason

rebind

FM
old

FM
new

different

￢different

adapt

Ɣβδ

Ɣ = {Remove opt. !, !"∉"C ; ...}

β = {Add constraint ; Update cardinality ; ...}

δ = {Add mand. !"; Remove mand. !, !"∈"C ;"...}

From TABLE I and TABLE II : 

diff 

Fig. 7. Synchronization decision process.

Binding the running configuration with a new configuration

space does not only imply the notification to the running con-

figuration when the new configuration space is available, but

also the provision of all related software artifacts. Thus, these

artifacts must be easily accessible by the running configuration

to let it use them when reconfiguring. Although embedding

them within the running configuration is possible, it is a threat

to the system behavior, as it may increase memory footprint

or computation time while decreasing overall performance. In

the proposed solution, the FM and related artifacts are thus

provided in the cloud and accessible as any other cloud service.

When an evolution requires a rebinding, the synchronization

engine notifies the running configuration that, in turn, uses

provided artifacts for the reconfiguration.

V. RELATED WORK

As pointed out by Capilla et al. [10] in their survey on

DSPL practices, there are two main limitations in existing

DSPL approaches regarding runtime variability management,

both being addressed with the solution described in this

paper. The first limitation refers to handling structural changes

dynamically. So far, little support exists for evolving the

DSPL variability model. For instance, Helleboogh et al. [20]

propose to explicitly document the way the variability model

of the DSPL may evolve using a so-called meta-variability

model. This approach, however, is limited to specific evolution

scenarios, e.g., adding variants on-the-fly, and assumes that all

possible evolutions are known and modeled at design time.

The second limitation is related to checking the consistency

of the evolved structural variability model at runtime. Recently,

Weyns [21] reported an extensive survey on the use of vari-

ability in software systems. In particular, this survey highlights

the lack of support in current variability modeling approaches

for guaranteeing correctness and consistency at runtime [22].

Morin et al. [23] described a model-driven approach to sup-

port adaptation in dynamically adaptive systems, and rely on

metamodels to check the consistency of the designed models.

We also perform such a checking, but the models involved

in large-scale and highly configurable systems may be more

complex than the ones they manage, and require additional

consistency checking.

Among existing solutions for model checking FMs, few

provide automated support and most of them only manage

Boolean FMs, i.e., FMs without extensions [24]. Within the

proposed architecture, we leverage the automated consistency

checking support described in [16] at runtime, by providing

it as a model checker-as-a-service. Assessing the correctness

of the DSPL and supporting the dynamic evolution of its

structural variability provide very valuable means for the

specification and analysis of robust and reliable self-adaptive

systems [25]. Perrouin et al. [26], for instance, pointed out

the synchronization issue when evolving the variability model

at runtime and highlighted the need for a runtime checker

ensuring the validity of dynamically adaptive systems.

VI. CONCLUSION & RESEARCH AGENDA

In this paper, we have presented a solution for dealing

with the dynamic evolution of DSPLs, i.e., the evolution of

the architectural FM of the DSPL while derived configurations

are running. In particular, this architecture is able to handle

the evolution of FMs extended with both attributes and cardi-

nalities. These extended FMs are required to describe highly

configurable systems such as cloud environments, which we

used as running example to motivate the need for such an

architecture. We have shown that dynamically evolving the FM

of a DSPL leads to configuration space synchronization issues,

and we have explained the different automated approaches and

tools required to cope with these issues.

As future work, we envision to apply and evaluate our ap-

proach on different domains, e.g., on cyber-physical systems.

The aim of having a wider range of analyzed domains is

to assess the validity of the proposed solution. In particular,

synchronization rules might be slightly different whether the

DSPL is used in the area of information systems or industrial

automation, e.g., delaying a rebinding or applying it only

on a subset of running configurations. Further investigation

could also consider traceability and history of DSPL evolutions

to support the rollback of faulty reconfigurations or apply

proactive adaptations.

ACKNOWLEDGMENT

The work presented in this paper has been partially sup-

ported by project Giocoso: GIOchi pediatrici per la COmuni-

cazione e la SOcializzazione (Regione Lombardia).



REFERENCES

[1] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic Soft-
ware Product Lines,” Computer, vol. 41, no. 4, pp. 93–95, April 2008.

[2] M. Hinchey, S. Park, and K. Schmid, “Building Dynamic Software
Product Lines,” Computer, vol. 45, no. 10, pp. 22–26, Oct 2012.

[3] A. Metzger and K. Pohl, “Software Product Line Engineering
and Variability Management: Achievements and Challenges,” in
Proceedings of the Future of Software Engineering, ser. FOSE 2014.
New York, NY, USA: ACM, 2014, pp. 70–84. [Online]. Available:
http://doi.acm.org/10.1145/2593882.2593888

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-Oriented Domain Analysis (FODA) - Feasibility Study,” The
Software Engineering Institute, Tech. Rep., 1990. [Online]. Available:
http://www.sei.cmu.edu/reports/90tr021.pdf

[5] C. Quinton, D. Romero, and L. Duchien, “Automated selection and
configuration of cloud environments using software product lines
principles,” in 2014 IEEE 7th International Conference on Cloud

Computing, Anchorage, AK, USA, June 27 - July 2, 2014. IEEE, 2014,
pp. 144–151. [Online]. Available: http://dx.doi.org/10.1109/CLOUD.
2014.29

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
Cardinality-based Feature Models and their Specialization,” Software

Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.
[7] C. Quinton, D. Romero, and L. Duchien, “Cardinality-based Feature

Models with Constraints: A Pragmatic Approach,” in Proceedings of

the 17th International Software Product Line Conference, ser. SPLC’13.
New York, NY, USA: ACM, 2013, pp. 162–166. [Online]. Available:
http://doi.acm.org/10.1145/2491627.2491638

[8] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated Reasoning
on Feature Models,” in Proceedings of the 17th International Conference

on Advanced Information Systems Engineering, ser. CAiSE’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 491–503. [Online]. Available:
http://dx.doi.org/10.1007/11431855_34

[9] D. Batory, D. Benavides, and A. Ruiz-Cortes, “Automated Analysis of
Feature Models: Challenges Ahead,” Commun. ACM, vol. 49, no. 12,
pp. 45–47, Dec. 2006. [Online]. Available: http://doi.acm.org/10.1145/
1183236.1183264

[10] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and M. Hinchey,
“An Overview of Dynamic Software Product Line Architectures
and Techniques: Observations from Research and Industry,” J.

Syst. Softw., vol. 91, pp. 3–23, May 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2013.12.038

[11] M.-O. Reiser and M. Weber, “Multi-level feature trees: A pragmatic
approach to managing highly complex product families,” Requir.

Eng., vol. 12, no. 2, pp. 57–75, May 2007. [Online]. Available:
http://dx.doi.org/10.1007/s00766-007-0046-0

[12] M. Acher, P. Collet, P. Lahire, and R. France, “Composing Feature
Models,” in Software Language Engineering, ser. Lecture Notes in
Computer Science, M. van den Brand, D. Gašević, and J. Gray, Eds.
Springer Berlin Heidelberg, 2010, vol. 5969, pp. 62–81. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-12107-4_6

[13] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged Configuration
through Specialization and Multilevel Configuration of Feature
Models,” Software Process: Improvement and Practice, vol. 10,
no. 2, pp. 143–169, 2005. [Online]. Available: http://dblp.uni-
trier.de/db/journals/sopr/sopr10.html#CzarneckiHE05a

[14] “How to Upgrade a Legacy Heroku Database,” 2013,
accessed 15.01.2015. [Online]. Available: http://blog.sendhub.com/
post/30041247598/how-to-upgrade-a-legacy-heroku-database

[15] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based Model
Conformance and Multiview Consistency Checking,” ACM Trans.

Softw. Eng. Methodol., vol. 16, no. 3, Jul. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1243987.1243989

[16] C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, and G. Botterweck,
“Consistency Checking for the Evolution of Cardinality-based Feature
Models,” in Proceedings of the 18th International Software Product

Line Conference - Volume 1, ser. SPLC’14. New York, NY, USA:
ACM, 2014, pp. 122–131. [Online]. Available: http://doi.acm.org/10.
1145/2648511.2648524

[17] K. Bąk, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wąsowski,
“Clafer: Unifying class and feature modeling,” Software & Systems

Modeling, pp. 1–35, 2014. [Online]. Available: http://dx.doi.org/10.
1007/s10270-014-0441-1

[18] C. Quinton, D. Romero, and L. Duchien, “SALOON: a Platform for
Selecting and Configuring Cloud Environments,” Software: Practice

and Experience, 2015. [Online]. Available: http://dx.doi.org/10.1002/
spe.2311

[19] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and
P. Merle, “Feature Model Differences,” in Advanced Information

Systems Engineering, ser. Lecture Notes in Computer Science,
J. Ralyté, X. Franch, S. Brinkkemper, and S. Wrycza, Eds. Springer
Berlin Heidelberg, 2012, vol. 7328, pp. 629–645. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31095-9_41

[20] A. Helleboogh, D. Weyns, K. Schmid, T. Holvoet, K. Schelfthout,
and W. Van Betsbrugge, “Adding Variants on-the-fly: Modeling Meta-
Variability in Dynamic Software Product Lines,” in Proceedings of

the 3rd International Workshop on Dynamic Software Product Lines

(DSPL’09), D. Muthig and J. D. McGregor, Eds. ACM, 2009, pp.
18–27.

[21] D. Weyns, “Variability: From software product lines to self-adaptive
systems,” in Proceedings of the 18th International Software Product

Line Conference: Companion Volume for Workshops, Demonstrations

and Tools - Volume 2, ser. SPLC ’14. New York, NY, USA:
ACM, 2014, pp. 12–12. [Online]. Available: http://doi.acm.org/10.1145/
2647908.2655959

[22] “Variability: From Software Product Lines to Self-Adaptive Systems,”
2014, accessed 15.01.2015. [Online]. Available: http://homepage.lnu.se/
staff/daweaa/papers/2014DSPL.pdf

[23] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg, “Mod-
els@ Run.time to Support Dynamic Adaptation,” Computer, vol. 42,
no. 10, pp. 44–51, 2009.

[24] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated Analysis
of Feature Models 20 Years Later: A Literature Review,” Inf.

Syst., vol. 35, no. 6, pp. 615–636, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2010.01.001

[25] L. Baresi, “Self-adaptive systems, services, and product lines,” in
Proceedings of the 18th International Software Product Line Conference

- Volume 1, ser. SPLC ’14. New York, NY, USA: ACM, 2014, pp.
2–4. [Online]. Available: http://doi.acm.org/10.1145/2648511.2648512

[26] G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein, Y. Le Traon,
O. Barais, and J.-M. Jézéquel, “Towards Flexible Evolution of
Dynamically Adaptive Systems,” in Proceedings of the 34th

International Conference on Software Engineering, ser. ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 1353–1356. [Online].

Available: http://dl.acm.org/citation.cfm?id=2337223.2337416


