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Abstract

The present work is intended as a first step towards applying semidefi-
nite programming models and tools to discrete lot-sizing problems including
sequence-dependent changeover costs and times. Such problems can be for-
mulated as quadratically constrained quadratic binary programs. We investi-
gate several semidefinite relaxations by combining known reformulation tech-
niques recently proposed for generic quadratic binary problems with problem-
specific strengthening procedures developped for lot-sizing problems. Our
computational results show that the semidefinite relaxations consistently pro-
vide lower bounds of significantly improved quality as compared with those
provided by the best previously published linear relaxations. In particular,
the gap between the semidefinite relaxation and the optimal integer solution
value can be closed for a significant proportion of the small-size instances,
thus avoiding to resort to a tree search procedure. The reported computation
times are significant. However improvements in SDP technology can still be
expected in the future, making SDP based approaches to discrete lot-sizing
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more competitive.
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1. Introduction

Capacitated lot-sizing arises in industrial production planning whenever chan-
geover operations such as preheating, tool changing or cleaning are required
between production runs of different products on a machine. The amount
of the related changeover costs usually does not depend on the number of
products processed after the changeover. Thus, to minimize changeover costs,
production should be run using large lot sizes. However, this generates inven-
tory holding costs as the production cannot be synchronized with the actual
demand pattern: products must be held in inventory between the time they
are produced and the time they are used to satisfy customer demand. The
objective of lot-sizing is thus to reach the best possible trade-off between
changeover and inventory holding costs while taking into account both the
customer demand satisfaction and the technical limitations of the production
system.
An early attempt at modelling this trade-off can be found in [32]: the authors
consider the problem of planning production for a single product on a single
resource with an unlimited production capacity. Since this seminal work, a
large part of the research on lot-sizing problems has focused on modelling
operational aspects in more detail to answer the growing industry need to
solve more realistic and complex production planning problems. An overview
of recent developments in the field of modelling industrial extensions of lot-
sizing problems is provided in [18].
In the present paper, we focus on one of the variants of lot-sizing prob-
lems mentioned in [18], namely the multi-product single-resource discrete
lot-sizing and scheduling problem or DLSP. As defined in [9, 18], several
key assumptions are used in the DLSP to model the production planning
problem:

• A set of products is to be produced on a single capacitated production
resource.
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• A finite time horizon subdivided into discrete periods is used to plan
production.

• Demand for products is time-varying (i.e. dynamic) and deterministi-
cally known.

• At most one product can be produced per period (small bucket model)
and the facility processes either one product at full capacity or is com-
pletely idle (discrete or all-or-nothing production policy).

• Costs to be minimized are the inventory holding costs and the changeover
costs.

In the DLSP, it is assumed that a changeover between two production runs
for different products results in a changeover cost and/or a changeover time.
Changeover costs and times can depend either on the next product only
(sequence-independent case) or on the sequence of products (sequence-depen-
dent case). Significant changeover times which consume scarce production
capacity tend to further complicate the problem. We consider here the DLSP
with sequence-dependent changeover costs and times (denoted DLSPSD in
what follows) and assume that the changeover times are expressed as integer
numbers of planning periods and satisfy the triangular inequality.
Sequence-dependent changeover costs and times are mentioned in [18] as one
of the relevant operational aspects to be incorporated into lot-sizing mod-
els. Moreover, a significant number of real-life lot-sizing problems involving
sequence-dependent changeover costs and times have been recently reported
in the academic literature: see among others [5] for an injection moulding
process, [29] for a textile fibre industry or [8] for soft drink production.
A wide variety of solution techniques from the Operations Research field
have been proposed to solve lot-sizing problems: the reader is referred to
[4, 17] for recent reviews on the corresponding literature. The present paper
belongs to the line of research dealing with exact solution approaches, i.e.
aiming at providing guaranteed optimal solutions for the problem. A large
amount of existing solution techniques in this area consists in formulating
the problem as a mixed-integer linear program (MILP) and in relying on a
Branch & Bound type procedure to solve the obtained MILP. However the
efficiency of such a procedure strongly depends on the quality of the lower
bounds used to evaluate the nodes of the search tree. Much research has
been devoted to the polyhedral study of lot-sizing problems and tight MILP
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formulations are now available for many variants of lot-sizing problems: see
e.g. [22] for a general overview of the related literature and [2, 7, 10, 31] for
contributions focusing specifically on the DLSP.
Nevertheless, even if substantial improvements of the lower bounds can be
obtained by using these MILP strengthening techniques, there are still cases
where the obtained linear reformulation of the DLSPSD provides lower bounds
of rather weak quality (see e.g. the numerical results reported in [10]). These
difficulties thus motivate the study of more powerful formulations for the
problem. One such possibility consists in using a semidefinite reformula-
tion of the problem rather than the standard linear reformulation used in
MILP-based solution approaches.
Semidefinite programming (SDP) is a recent area of mathematical program-
ming which can broadly be described as the extension of linear programming
from the space of real vectors to the space of symmetric matrices: variables
of the optimization problem are semidefinite positive matrices instead of pos-
itive real vectors. Since the seminal papers [12, 20] were published, semidefi-
nite programming and its use to solve quadratic optimization problems have
attracted a keen interest among researchers. Thanks to this, there is now
a rather good knowledge on how to efficiently reformulate a quadratic opti-
mization problem into a semidefinite program (see e.g. [26]). Semidefinite
programming has thus proved succesful at providing tight bounds for some
well known quadratic binary problems such as the quadratic knapsack prob-
lem or the quadratic assignment problem (see e.g. [13, 24, 34]). However,
applications of semidefinite programming in the field of industrial production
management are still scarce (see [1, 21, 30] for noticeable exceptions) and to
the best of our knowledge, there is no previous attempt at using semidefi-
nite programming to solve lot-sizing problems. The purpose of the present
paper is thus to provide a first assessment of the potential of semidefinite
programming based approaches to solve discrete lot-sizing problems.
The main contributions of the present paper are thus threefold. First we in-
troduce a new quadratically constrained quadratic binary programming for-
mulation for the DLSPSD. Second, we propose to compute lower bounds for
the DLSPSD using a semidefinite reformulation of the problem rather than a
standard linear reformulation. Finally we present a cutting-plane generation
algorithm based on a semidefinite programming solver to tighten the initial
semidefinite relaxation. The results of the computational experiments car-
ried out on small to medium-size instances show that the proposed approach
provides lower bounds of significantly improved quality as compared to those
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provided by the best previously published linear reformulations, especially for
the instances featuring a product family structure. Furthermore, for a high
proportion of the small-size instances, the residual gap between the semidef-
inite relaxation and the optimal integer solution value is entirely closed so
that there would be no need to resort to a Branch & Bound procedure to ob-
tain the optimal integer solution. However, due to the limitations of available
state-of-the art semidefinite programming solvers, these tight lower bounds
are obtained at the expense of significant computation times.
The paper is organized as follows. We introduce in Section 2 a quadrati-
cally constrained quadratic binary programming (QCQBP) formulation for
the DLSPSD. We then explain in Section 3 how this QCQBP can be refor-
mulated as a semidefinite program and how lower bounds can be obtained for
the DLSPSD by semidefinite relaxation. To achieve this, we not only exploit
reformulation and strengthening techniques recently proposed in the SDP
literature for generic (0-1) quadratic binary problems but also use problem-
specific information such as the polyhedral representation of single-product
discrete lot-sizing problems. Section 4 is devoted to the description of the
valid inequalities used to strengthen the initial semidefinite relaxation of the
problem and to the presentation of the cutting-plane generation algorithm
implemented to add these valid inequalities iteratively into the initial for-
mulation. Some computational results involving a comparison with the best
previously published MILP strengthening techniques are then presented in
Section 5.

2. QCQBP formulation of the DLSPSD

We first discuss a new formulation of the DLSPSD as a quadratically con-
strained quadratic binary (QCQBP) program. The sequence-dependent na-
ture of the changeover costs namely leads to the introduction of a series
of quadratic terms in the objective function. Moreover, inequalities involv-
ing quadratic terms are needed to ensure that the positive changeover times
between different production runs for different products are respected.

2.1. Initial QCQBP formulation

We wish to plan production for a set of products denoted p = 1...P to be
processed on a single production machine over a planning horizon involving
t = 1...T periods. Product p = 0 represents the idle state of the machine and
period t = 0 is used to describe the initial state of the production system.
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Production capacity is assumed to be constant throughout the planning hori-
zon. We can thus w.l.o.g. normalize the production capacity to one unit per
period and apply a preprocessing step on the original demand matrix (see
[9, 11]) resulting in a demand matrix containing only 0/1 values. We denote
dpt ∈ {0, 1} the demand for product p in period t, hp the inventory holding
cost per unit per period for product p, Spq the sequence-dependent changeover
cost to be incurred whenever the resource setup state is changed from prod-
uct p to product q and ∆pq the required sequence-dependent changeover time
between a production run for product p and a production run for product q.
Using this notation, the DLSPSD can be seen as the problem of assigning
at most one product to each period of the planning horizon while ensuring
demand satisfaction and respect of required changeover durations.
We thus introduce the binary decision variables ypt where ypt = 1 if product p
is assigned to period t and 0 otherwise, and νt where νt = 1 if the resource is
undergoing a transition between production runs at period t and 0 otherwise.
This leads to the following DLSPSD1 formulation.
The objective function (1) corresponds to the minimization of the inventory
holding and changeover costs over the planning horizon.

∑t
τ=1(ypτ − dpτ )

is the inventory level of product p at the end of period t and the quadratic
term yp,tyq,t+∆pq+1 is equal to 1 if and only if the machine starts a changeover
from product p to product q at the beginning of period t + 1. Constraints
(2) impose that the cumulated demand over interval [1, t] is satisfied by the
cumulated production over the same time interval. Constraints (3) ensure
that, in each period, the resource is either producing a single product or
undergoing a changeover between two production runs. Constraints (4) and
(5) impose that the requested changeover times between production runs are
respected. Thus, equalities (4) guarantee that product p can be produced in
period t if and only if a changeover from p to another product q (possibly
q = p) takes place at the beginning of period t + 1. Similarly, equalities
(5) guarantee that product q can be produced in period t if and only if a
changeover from another product p (possibly p = q) to product q begins
early enough (i.e. in period t−∆pq) to be finished at the beginning of period
t. Πstart

p,t = {q = 0...P s.t. t+ ∆pq + 1 ≤ T} is defined as the set of products
towards which it is possible to start a changeover from product p at the
beginning of period t+ 1. Similarly, Πend

q,t = {p = 0...P s.t. t−∆pq − 1 ≥ 0}
is the set of products from which a changeover to product q ending at the
beginning of period t can be done.
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(DLSPSD1)

ZDLSPSD = min

P∑
p=1

T∑
t=1

hp

t∑
τ=1

(ypτ − dpτ )

+
P∑

p,q=0

Sp,q

T−∆pq−1∑
t=0

yptyq,t+∆pq+1 (1)

t∑
τ=1

ypτ ≥
t∑

τ=1

dpτ ∀p,∀t (2)

P∑
p=0

ypt + νt = 1, ∀t (3)

yp,t =
∑

q∈Πstartp,t

yp,tyq,t+∆pq+1 ∀p,∀t (4)

yq,t =
∑

p∈Πendq,t

yp,t−∆pq−1yq,t ∀q,∀t (5)

ypt ∈ {0, 1} ∀p,∀t (6)

νt ∈ {0, 1} ∀t (7)

Formulation (DLSPSD1) can be seen as the quadratic counterpart of the
MILP formulation proposed for the DLSPSD in [10]. Namely, introducing
the so-called changeover variables defined as wpq,t+1 = yp,tyq,t+∆pq+1 enables
us to linearize the proposed QCQBP formulation and leads to the formulation
discussed in [10]. We would like to point out that this can only be done if
the changeover times satisfy the triangular inequality. Otherwise, we may
have situations where yp,tyq,t+∆pq+1 = 1 while no changeover from product p
to product q starts at the beginning of period t + 1 (i.e. wpq,t+1 = 0). To
the best of our knowledge, this is the first time such a QCQBP formulation
is proposed for the DLSPSD.
Note that, in case all changeover times are equal to zero, transition variables
νt are not needed in the formulation, capacity constraints (3) are reformulated
as

∑P
p=0 ypt = 1 and changeover time constraints (4)-(5) are removed from

the formulation.
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2.2. Reformulation involving knapsack constraints with positive coefficients

In what follows, to derive a semidefinite relaxation of the DSLPSD, we intend
to apply on the demand satisfaction constraints a reformulation technique
proposed by [15, 19] for linear knapsack constraints. However, this reformu-
lation technique requires that all coefficients in the knapsack constraints are
positive. This is why we carry out a change of decision variables by replacing
each binary variable ypt by its complementary variable zpt = 1− ypt.
We thus introduce the binary decision variables zpt where zpt = 1 if product
p is not assigned to period t and 0 otherwise. This leads to the following DL-
SPSD2 formulation of the DLSPSD which involves a series of linear knapsack
constraints with positive coefficients to model the customer demand satisfac-
tion.

(DLSPSD2)

ZDLSPSD = min
P∑
p=1

T∑
t=1

hp

t∑
τ=1

(1− zpτ − dpτ )

+
P∑

p,q=0

Sp,q

T−∆pq∑
t=0

(1− zpt)(1− zq,t+∆pq+1) (8)

t∑
τ=1

zpτ ≤ t−
t∑

τ=1

dpτ ∀p,∀t (9)

P∑
p=0

zpt − νt = P ∀t (10)∑
q∈Πstartp,t

(zp,tzq,t+∆pq+1 − zp,t − zq,t+∆pq+1)

= |Πstart
p,t | − 1− zp,t ∀p,∀t (11)∑

p∈Πendq,t

(zp,t−∆pq−1zq,t)− zp,t−∆pq−1 − zq,t)

= |Πendq, t| − 1− zq,t ∀q,∀t (12)

zpt ∈ {0, 1} ∀p,∀t (13)

νt ∈ {0, 1} ∀t (14)

The objective function (8) corresponds to the minimization of the inventory
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holding and changeover costs over the planning horizon. Constraints (9)
limit the number of non-productive periods for product p over interval [1, t]
so as to garantee that there are enough productive periods left to satisfy
the cumulated demand for this product over interval [1, t]. Constraints (10)
ensure that, in case the resource is undergoing a changeover in period t, then
none of the P + 1 products involved in the production planning problem
can be produced, and that in case there is no changeover during period t, P
out of the P+1 products are not produced. Quadratic equalities (11)-(12)
garantee that the imposed duration of changeovers between production runs
is respected.

3. Initial semidefinite relaxation of the DLSPSD

As mentioned in section 2.1, the current state of the art to solve the DLSPSD
is to carry out a linearization of formulation DLSPSD1 by introducing lin-
earization variables wpqt and linking these variables to the variables ypt using
a so-called flow formulation of the changeovers (see among others [2, 10]).
The obtained linear reformulation can then be strengthened by using the
valid inequalities proposed in [10].
In what follows, we investigate another way of solving the problem which
does not rely on a linearization of the quadratic formulation but rather uses
a semidefinite reformulation.

3.1. Notation and definitions

We first introduce some useful notation and definitions. We refer the reader
to the survey provided in [16] for a more comprehensive introduction to the
field of semidefinite programming.
We denote Sn the set of symmetric matrices of size n. The standard scalar
product between two matrices A and B in Sn is defined as:

< A,B >=
∑n

i=1

∑n
j=1 AijBij.

In denotes the unit matrix of size n, e ∈ Rn is the vector of all ones and
ei ∈ Rn is the ith unit vector. We denote diag(A) the vector containing the
main diagonal of a square matrix A and Diag(a) = atIn the n× n diagonal
matrix formed from vector a ∈ Rn.
A matrix X ∈ Sn is said to be positive semidefinite if and only if all its eigen-
values are nonnegative: we write it X � 0. The set of positive semidefinite
matrices is denoted S+

n ⊂ Sn.
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As explained in [16], semidefinite programming is linear programming over
the cone of positive semidefinite matrices S+

n . A semidefinite program thus
involves a matrix variable X ∈ S+

n and deals with the maximization of a
linear function of X subject to a series of constraints whose expression are
also linear with respect to X. Symmetric matrices C,A1, ...AM are used to
formulate the objective function and the technical constraints. The non-
negativity constraints on the vector variable used in linear programming are
replaced by semidefiniteness constraints on the matrix variable.
This leads to the following standard formulation for a semidefinite program:

Z = max < C,X > (15)

< Am, X >≤ bm, ∀m = 1..M (16)

X ∈ S+
n (17)

Semidefinite programs are convex optimization problems which can be solved
either by interior-point algorithms (see e.g. [3]) or by spectral bundle meth-
ods (see e.g. [14]).

3.2. Semidefinite relaxation of the DLSPSD

We now explain how a semidefinite relaxation can be derived from the QC-
QBP formulation of the DLSPSD. To carry out this reformulation, we rely
on reformulation techniques recently developped for generic 0-1 quadratic
programs (see e.g. [15, 20, 23]). Moreover, as pointed out by several authors
([13, 26]), semidefinite relaxations of significantly improved quality can be
obtained by applying some specific pretreatments to the linear (equality or in-
equality) constraints of the original QCQBP: in what follows, we exploit this
knowledge to improve the quality of the bounds provided by the semidefinite
relaxation of the DLSPSD. One of these pretreatments requires that linear
knapsack inequality constraints involve only non-negative coefficients: this is
why we start from formulation DLSPSD2 (instead of formulation DLSPSD1)
to derive the semidefinite relaxation of the DLSPSD.

3.2.1. Reformulation in the space Sn+1

The first step of the reformulation consists in lifting the problem from the
space of real vectors to the higher dimensional space of the symmetric ma-
trices.
Let n = (P + 2)T .
We first define the vector x ∈ Rn:
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x = [z01, ..., z0T , ..., zpt, ..., zPT , ν1, ...νT ]t = [xi]i=1...n

and introduce the following matrix X ∈ Sn+1.

X =


1 xT

x xxT

 =


1 x1 x2 . . . xn
x1 x2

1 x1x2 . . . x1xn
x1 x1x2 x2

2 . . . x1x2
...
xn x1xn x1xn . . . x2

n

 ∈ Sn+1

We would like to point out here that each possible quadratic term xixj now
corresponds to a coefficient Xij of matrix X. Thus, given a quadratic ex-
pression involving vector x such as xtQ̃x+ qtx, we can obtain an equivalent
linear expression involving matrix X, i.e. xtQ̃x + qtx = < Q,X > where
Q ∈ Sn+1 is defined as:

Q =


0 qT/2

q/2 Q̃


The second step of the reformulation consists in reformulating the initial
QCQBP formulation as a linear optimization problem in space Sn+1.

The reformulation of the objective function (8) is straightforward . Namely,
(8) is a quadratic expression of the form xtC̃x+ ctx and can therefore refor-
mulated as min < C,X > where C is defined using matrix C̃ and vector c
as explained above.

We now consider the reformulation of the customer demand satisfaction con-
straints (9). These constraints can be seen as linear knapsack constraints of
the form atx ≤ b with ai ≥ 0,∀i ∈ [1, n]. A straightforward way of reformu-
lating each of these linear inequalities would be to use a so-called ”diagonal
representation” (see [13]): we add a zero coefficient to vector a to obtain a
vector [0, a] ∈ Rn+1, introduce the diagonal matrix Diag([0, a]) ∈ Sn+1 and
reformulate the knapsack constraint as: < Diag([0, a]), X >≤ b. However
a better semidefinite relaxation can be obtained by applying a pretreatment
of these constraints before reformulating them in the SDP. This pretreat-
ment consists in multiplying both sides of the linear inequality atx ≤ b by
atx (see [15, 19, 26]). This can be done only if atx ≥ 0,∀x ≥ 0, i.e. if all
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coefficients of vector a are non negative. We obtain the quadratic inequal-
ity −xtaatx + batx ≥ 0, which can be reformulated < A,X >≥ 0 where
A is defined using matrix aat and vector bat as explained above. We carry
out this reformulation on each of the PT customer demand satisfaction con-
straints (9), which leads to a series of constraints: < Ãpt, X̃ >≥ 0 ∀p,∀t in
the semidefinite reformulation of DLSPSD2.

We then deal with the reformulation of the resource capacity constraints
(10). These are linear equality constraints of the form atx = b. Following
the recommandations found in [23, 26], we first reformulate each of them
using the ”diagonal representation” < Diag([0, a]), X >= b. We then seek
to improve the reformulation through the use of a ”square representation” of
these linear equalities. This is done by squaring both sides of the equality.
This leads to quadratic equalities of the form xTaatx = b2 which can then be
reformulated in space Sn+1. We thus obtain 2T equality constraints of the
form: < Bd

t , X >= P, ∀t and < Bs
t , X >= P 2, ∀t.

Constraints (11)-(12) ensuring that changeover times between production
runs for different products are respected are quadratic equalities of the form
xtF̃ x + f tx = θ and can therefore be reformulated as < F,X >= θ where
matrix F is obtained from matrix F̃ and vector f as explained above. We
carry out this reformulation on each of the 2PT changeover times satis-
faction constraints, wich leads to a series of constraints: < F start

p,t , X >=
|Πstart

p,t | − 1 ∀p,∀t and < F end
q,t , X >= |Πendq, t| − 1 ∀q,∀t in the semidefinite

reformulation of DLSPSD2.

We finally focus on the constraints (13)-(14) imposing the binary character of
the decision variables. We note that x ∈ {0, 1}n is equivalent to x2

i = xi,∀i ∈
[1, n], i.e. to Xii − 0.5Xi0 − 0.5X0i = 0, ∀i ∈ [1, n]. This is enforced in the
semidefinite reformulation by a series of constraints of the form< Di, X >= 0

where Di ∈ Sn+1 is defined as: Di =


0 eti/2

ei
2

eie
t
i

.

We thus obtain the following semidefinite reformulation of formulation DLSP2
in the space Sn+1.
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(SDP)

ZDLDPSD = min < C,X > (18)

< Apt, X >≥ 0, ∀t,∀p (19)

< Bd
t , X >= P, ∀t (20)

< Bs
t , X >= P 2, ∀t (21)

< F start
p,t , X >= |Πstart

p,t | − 1 ∀p,∀t (22)

< F end
q,t , X >= |Πendq, t| − 1 ∀q,∀t (23)

< Di, X >= 0, ∀i ∈ [1, n] (24)

X =


1 xT

x xxT

 (25)

In case all changeover times are equal to zero, the proposed reformulation
of the problem can be adapted in a straightforward manner. As transition
variables νt are not introduced into the formulation, we define n = (P + 1)T
and x = [z01, ..., z0T , ..., zpt, ..., zPT ]. Constraints (22)-(23) are not included in
the formulation, the other constraints are reformulated as described above.

3.2.2. Convex relaxation

Problem (18)-(25) is equivalent to the initial QCQBP problem. However it
cannot be solved as such due to the presence of the nonconvex constraint
(25). We thus carry out a convex relaxation, i.e. we enlarge the feasible set
of the problem to make it convex by dropping some of the constraints of the
problem.
This convex relaxation can be explained as follows (see e.g. [13]).
We first note that:

X =


1 xT

x xxT

 ⇔


X00 = 1
X � 0
rank(X) = 1

⇔


< D0, X >= 1
X � 0
rank(X) = 1

where D0 is a (n + 1) × (n + 1) matrix where all coefficients are 0 except
D00

0 = 1.
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We then relax the problem by dropping the rank one constraint. This leads to
the formulation of a standard semidefinite program such as (15)-(17) which
is a convex optimization problem solvable by available SDP solvers. How-
ever, as some constraints of the original problem have been removed, the
corresponding optimal solution value will only provide a lower bound on the
integer optimal solution value ZDLSPSD. We denote it ZSDP0 ≤ ZDLSPSD.
We thus obtain the following semidefinite program which provides an initial
semidefinite relaxation of the DLSPSD.

(SDP0)

ZSDP0 = min < C,X > (26)

< Apt, X >≥ 0, ∀t,∀p (27)

< Bd
t , X >= P, ∀t (28)

< Bs
t , X >= P 2, ∀t (29)

< F start
p,t , X >= |Πstart

p,t | − 1 ∀p,∀t (30)

< F end
q,t , X >= |Πendq, t| − 1 ∀q,∀t (31)

< Di, X >= 0, ∀i ∈ [1, n] (32)

< D0, X >= 1 (33)

X � 0 (34)

4. Strengthening of the initial semidefinite relaxation

4.1. Valid inequalities

As explained above, solving formulation SDP0 provides an initial lower bound
ZSDP0 of the optimal integer value ZDSDP of the DLSPDP. This lower bound
can be improved by strengthening the initial semidefinite relaxation of the
DLSPSD. In what follows, we propose to achieve this by using five families
of valid inequalities: one family exploiting some specific features of the prob-
lem under study and four families which have been proposed to strengthen
semidefinite relaxations of generic quadratic binary problems.

4.1.1. Problem-specific valid inequalities

We first consider a family of valid inequalities proposed for the single-product
DLSP with sequence-dependent changeover times in [10]. These valid in-
equalities can be seen as an extension of the valid inequalities developed
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in [31] for the case whithout changeover times. They are shown in [10] to
be rather efficient at strengthening the continuous relaxation of the linear
reformulation of the DLSPSD.
We introduce some additional notation to express these constraints:

• dp,t,τ : cumulated demand for product p in the interval {t, ..., τ}.

• θp,v: period where the vth unit demand for product p occurs. Note
that θp,dp,1,t+v denotes the period in which the vth positive demand for
product p after period t occurs.

The following constraints are valid inequalities for the DLSPSD.

t∑
τ=1

(1− zpτ )−
t∑

τ=1

dpτ

+
w∑
v=1

[
(1− zp,t+v) +

θp,dp,1,t+v∑
τ=t+v+1

∑
q∈Πendp,τ ,q 6=p

(1− zq,τ−∆qp−1)(1− zp,τ )
]

≥ w

∀p,∀t,∀w ∈ [1, dp,t+1,T ] (35)

The idea underlying (35) is to make sure, that, at the end of period t, we
will be capable of satisfying the forthcoming w unit demands for product p,
either by relying on units of product p currently in inventory or by producing
them on the resource within the time interval [t+1, θp,dp,1,t+w]. The first term
of the left hand side of inequalities (35) thus computes the inventory level
of product p at the end of period t as the difference between the cumulated
production and the cumulated demand for this product over the interval [1, t].
The second term computes the production capacity available for product p
within interval [t + 1, θp,dp,1,t+w] by considering the resource setup states on
these periods. Inequalities (35) thus state that the sum of these two terms
(inventory + production capacity) should be large enough to satisfy the first
w units of demand for product p occuring after period t.
We now explain in more detail how the production capacity available for
product p within interval [t+ 1, θp,dp,1,t+w] is computed. We first consider the
case where w = 1, i.e. the case where we focus on satisfying the first unit of
demand for product p after period t. If the unit demand is to be produced in
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the interval [t+ 1; θp,dp,1,t+1], the resource either has to be setup for product
p in period t+ 1 (in which case the term 1− zp,t+1 is equal to one) or has to
undergo a changeover from a product q to product p to allow production of
product p in at least one of the periods t+2...θp,dp,1,t+1 (in which case at least
one of the terms (1 − zq,τ−∆qp−1)(1 − zp,τ ) is equal to one). This reasoning
can be generalized by a mathematical induction on w to take into account
not only the first unit demand for product p after period t (w = 1), but any
possible number of unit demands (w ∈ [1, dp,t+1,T ]) .

4.1.2. Generic valid inequalities

We now explain how some of the valid inequalities recently proposed for
strengthening the semidefinite relaxation of generic quadratic binary pro-
grams can be used for computing tight lower bounds for the DLSPSD.

The first family of generic valid inequalities exploits the presence of implicit
binary exclusion constraints implied by the resource capacity constraints (3)
and changeover time satisfaction constraints (11)-(12). Namely, assigning
a product p to a given period t is not compatible with assigning another
product q to any period τ ∈ [t; t + ∆pq]. This leads to the following valid
equalities:

(1− zpt)(1− zqτ ) = 0 ∀p,∀q s.t. p 6= q,∀t, ∀τ ∈ [t; t+ ∆pq] (36)

We also use two families of valid inequalities discussed among others in [13]
for the quadratic knapsack problem and in [26] for general bivalent quadratic
problems. These valid inequalities are obtained by multiplying each knapsack
inequality of type (9) either by zqt′ or by (1 − zqt′). This approach can be
seen as a generalization of the reformulation method first proposed by [28]
to obtain strong relaxations for bivalent linear programs. We thus obtain:∑

τ=1..t

zpτzq,t′ ≤ (t−
∑
τ=1..t

dpτ )zq,t′ , ∀p,∀q,∀t,∀t′ (37)

∑
τ=1..t

zpτ (1− zq,t′) ≤ (t−
∑
τ=1..t

dpτ )(1− zq,t′), ∀p,∀q,∀t, ∀t′ (38)

We note here that a similar strengthening technique could have been applied
on the linear equality constraints (10). However, the preliminary computa-
tional experiments we carried out showed that it neither lead to better lower
bounds nor improve the overall computation time. This is why we do not
include them in our strengthening procedure.
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Finally, we use a family of simple valid inequalities which are part of the
triangle inequalities used in computing semidefinite relaxation for uncon-
strained quadratic programs (see e.g. [13]). These are obtained by relying
on the fact that we have:

(1− zpt)(1− zqt′) ≥ 0, ∀p,∀q,∀t,∀t′ (39)

Valid inequalities (35)-(39) are quadratic constraints of the form x̃tF̃ x+f ts ≤
g. We reformulate them in the semidefinite progam by introducing a matrix

F ∈ Sn+1 such that F =


0 f t/2

f
2 F̃

 and add them to formulation SDP0

as < F,X >≤ g.

The number of valid inequalities (35)-(39) grows very fast with the problem
size. It is therefore not possible to include all of them directly in the initial
formulation SDP0. A cutting-plane generation algorithm is thus proposed in
the next subsection to iteratively include a subset of these valid inequalities
in formulation SDP0.

4.2. Cutting-plane generation algorithm

We use the following cutting-plane generation algorithm (CPA) to strengthen
the initial semidefinite relaxation of the DLSPSD obtained by solving formu-
lation SDP0.

Algorithm (CPA)
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Step 1
- Define the initial formulation (SDP0)
- Add all valid inequalities of type (35).
- Add all valid inequalities of type (39) corresponding to t′ = t +
∆pq + 1.
- Solve the resulting strengthened formulation (SDP1).
- Let test=0.

Step 2
While (test = 0):

Consider the optimal solution of the current semidefinite program.
- Remove all added inequalities inactive in the current solution, i.e.
having a strictly positive slack variable.
- Look up for the p1 most violated inequalities of type (35).
- Look up for the p2 most violated equalities of type (36).
- Look up for the p3 most violated inequalities of type (37).
- Look up for the p4 most violated inequalities of type (38).
- Look up for the p5 most violated inequalities of type (39).
- Add the selected violated inequalities of each family to the current
semidefinite program.
- If at least minCuts violated inequalities have been found during
the current iteration, solve the strengthened semidefinite program
(SDP2).
- Else set test = 1 to stop the algorithm.

Step 1 of algorithm (CPA) starts with the initial semidefinite relaxation
(SDP0) of the problem. Our computational experiments showed that this
initial formulation provides rather poor lower bounds. For some instances,
we even have Zsdp0 ≤ 0 which means that the gap between the lower bound
provided by the semidefinite relaxation and the integer optimal solution value
is larger than 100%. This is due among others to the fact that the coefficients
of the variable matrix X violate a large proportion of the triangle inequali-
ties (39). In particular, they do not comply with the subset of the triangle
inequalities (39) for which t′ = t + ∆pq + 1: (1 − zpt)(1 − zq,t+∆pq+1) ≥ 0
The left hand side of these inequalities corresponds to a term with a posi-
tive cost coefficient Spq in the objective function (8) of the problem. Thus,
in case XpT+t,qT+t+∆pq+1 − X1,pT+t − X1,qT+t+∆pq+1 + 1 < 0 in the current
SDP solution, the corresponding term in the objective value takes a nega-
tive value, which decreases the quality of the obtained lower bound. This
is why we add a priori to the initial formulation of the problem all valid
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inequalities of family (39) corresponding to t′ = t + ∆pq + 1 to improve the
quality of the initial lower bound Zsdp0 and reduce the number of iterations
of the cutting-plane generation algorithm. Similarly, we add a priori all
single-product valid inequalities (35) as this leads to an overall decrease in
the number of cutting-plane generation iterations needed to strengthen the
semidefinite relaxation.
At the end of step 1 of algorithm (CPA), we obtain a lower bound ZSDP1 of
the optimal integer solution value ZDSLP of problem DSLPSD with ZSDP0 ≤
ZSDP1 ≤ ZDSLP .
Step 2 of algorithm (CPA) starts with removing the inequalities added in
the formulation which are inactive for the current primal solution. Theoret-
ically, the redundancy of a primal constraint should be indicaded by a zero
dual variable. However, as mentioned e.g. in [6], interior-point algorithms
terminate at approximate solutions that are still interior so that the com-
plentary condition is never satisfied exactly and dual variables of redundant
inequalities might take values significantly different from zero. This is why
we choose to remove valid inequalities from the formulation using only the
value of their primal slack variable.
Step 2 of algorithm (CPA) then goes on with the addition of valid inequali-
ties which are violated by the current solution. In the numerical experiments
presented in Section 5, we used p1 = p2 = p3 = p4 = 100, p5 = 300 and
minCuts = 200. Namely, solving large semidefinite programs is computa-
tionally intensive and usually requires a rather large amount of computation
time. During the cutting plane generation, we should thus avoid to repeatidly
solve semidefinite programs differing from one another only by the addition
of a small number of cuts. This is why we try to generate at each step a
rather large number of violated cuts belonging to the different families of
valid inequalities and, in any case, we prevent the algorithm from resolving
the semidefinite program if less than minCuts cuts have been added to the
formulation.
When algorithm (CPA) stops, we obtain a lower bound ZSDP2 of the optimal
integer solution value ZDSLP of problem DSLPSD with ZSDP0 ≤ ZSDP1 ≤
ZSDP2 ≤ ZDSLPSD.

5. Computational experiments

We now discuss the results of some computational experiments carried out
to evaluate the quality of the lower bounds provided by the semidefinite
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relaxation of the DLSPSD discussed in Sections 3 and 4.

5.1. Problem instance generation

We randomly generated instances of the problem using a procedure similar
to the one described in [27] for the DLSP with sequence-dependent change-
over costs and times. More precisely, the various instances tested have the
following characteristics:

• Problem dimension. The problem dimension is represented by the num-
ber of products P and the number of periods T : we solved small to
medium-size instances involving 4 to 6 products and 15 to 50 periods.

• Changeover times. We have experimented with problem instances with-
out changeover times (sets A1-A11 and A1f-A11f) and problem in-
stances with changeover times (sets B1-B9 and B1f-B9f). Among the
instances with positive changeover times, instances of sets B1-B9 have
a general changeover time structure where the changeover times are
randomly generated from a discrete uniform DU(0, 1) distribution. In-
stances B1f-B9f correspond to the case where products can be grouped
into families. In this case, there is a changeover time of 1 period be-
tween products belonging to different families and no changeover time
between products belonging to the same family.

• Inventory holding costs. For each product, inventory holding costs have
been randomly generated from a discrete uniform DU(5, 10) distribu-
tion.

• Changeover costs. We used two different types of structure for the
changeover cost matrix S. Instances of sets A1-A11 and B1-B9 have
a general cost structure: the cost of a changeover from product p
to product q, Spq, was randomly generated from a discrete uniform
DU(100, 200) distribution. Instances of sets A1f-A11f and B1f-B9f
correspond to the frequently encountered case where products can be
grouped into product families: there is a high changeover cost between
products of different families and a smaller changeover cost between
products belonging to the same family. In this case, for products p and
q belonging to different product families, Spq was randomly generated
from a discrete uniform DU(100, 200) distribution; for products p and
q belonging to the same product family, Spq was randomly generated
from a discrete uniform DU(0, 100) distribution.
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• Production capacity utilization. Production capacity utilization ρ is de-
fined as the ratio between the total cumulated demand (

∑P
p=1

∑T
t=1 dpt)

and the total cumulated available capacity (T ). We set ρ = 0.95 for
instances with zero changeover times and ρ = 0.80 for instances with
positive changeover times.

• Demand pattern. Binary demands dpt ∈ {0, 1} for each product have
been randomly generated according to the following procedure:

1. We randomly select a product p∗ from a discrete uniform
DU(1, N) distribution and set dp∗T = 1.
2. For each product p, except product p∗, we randomly select a
period tp from a discrete uniform DU(1, T ) distribution and set
dp,tp = 1.
3. For each entry in a P × T matrix, except for the entries cor-
responding to the (p, t) combinations for which we set dpt > 0 in
steps 1 or 2, we randomly generate a number αpt from a discrete
uniform DU(1, PT ) distribution.
4. While the total cumulated demand (

∑P
p=1

∑T
t=1 dpt) does not

exceed ρT , we consider the entries (p, t) one by one in the increasing
order of the corresponding value αpt and set dpt = 1.
5. When the total cumulated demand reaches ρT , we examine
whether the corresponding instance is feasible by checking that∑P

p=1

∑t
τ=1 dpτ ≤ t for all t. If the instance is infeasible, we re-

peat steps 1 to 4.

We generated 220 instances with zero changeover times and 180 instances
with positive changeover times, leading to a total of 400 instances.

5.2. Computational results

For each instance, we compute:

• the lower bound Zlp provided by the linear relaxation of DLSPSD1
discussed in [10] and strengthened by the valid inequalities proposed
by [10] for the single-product DLSP.

• the lower bound Zsdp1 provided by the semidefinite relaxation of DL-
SPSD2 discussed in Section 3 and strengthened by step 1 of algorithm
(CPA).
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• the lower bound Zsdp2 provided by the semidefinite relaxation of DL-
SPSD2 discussed in Section 3 and strengthened by steps 1 and 2 of
algorithm (CPA).

• the optimal integer solution value Zip obtained by applying on the
problem a Branch & Bound procedure using the lower bound Zlp at
each node of the search tree.

Linear programs are computed using the simplex algorithm embedded in
CPLEX 12.5 whereas the optimal integer solution value is obtained using
the standard Branch & Bound algorithm embedded in CPLEX 12.5. We
use the semidefinite programming solver DSDP based on an interior-point
type algorithm (see [3]) to solve the various semidefinite programs involved
in algorithm (CPA). All tests were run on an Intel Core i5 (2.7 GHz) with 4
GB of RAM, running under Windows 7.
Tables 1-4 display the computational results. We provide for each set of 10
instances:

• P and T : the number of products and planning periods involved in the
production planning problem.

• Vlp and Clp: the number of variables and constraints in the linear re-
laxation.

• n + 1 and Csdp: the size of the variable matrix X and the number of
constraints involved in the initial semidefinite relaxation.

• Cut1: the average number of cuts added to the SDP formulation by
step 1 of algorithm (CPA) and Cut2 the average total number of cuts
generated by steps 1 and 2 of algorithm (CPA).

• Glp (resp. Gsdp1 and Gsdp2): the average percentage gap between the
lower bound Zlp (resp. Zsdp1 and Zsdp2) and the optimal integer solution
value Zip.

• Opt: the number of instances for which the proposed semidefinite pro-
gramming based approach provides the exact optimal solution value of
the DLSPSD.

• Tlp (resp. Tsdp1 and Tsdp2): the average computation time (in seconds)
needed to obtain Zlp (resp. Zsdp1 and Zsdp2).
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Table 1: Results for instances without changeover times: general cost structure
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Table 2: Results for instances without changeover times: product family cost structure
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Table 3: Results for instances with positive changeover times: general cost structure

Set B1 B2 B3 B4 B5 B6 B7 B8 B9
P 4 6 4 6 4 6 4 6 4
T 15 15 20 20 25 25 30 30 40
Vlp 450 840 600 1120 750 1400 900 1680 1200
Clp 348 439 506 627 692 725 962 1105 1398
Glp 2.4% 0.2% 7.4% 3.0% 16.7% 8.4% 16.7% 11.5% 22.8%
Tlp 0.1s 0.1s 0.1s 0.2s 0.1s 0.2s 0.1s 0.2s 0.2s
n+ 1 91 121 121 161 151 201 181 241 241
Csdp 272 364 361 483 451 577 510 692 678
Cut1 391 688 573 982 785 1308 1039 1669 1565
Gsdp1 11.9% 11.3% 9.7% 9.8% 13.5% 11.8% 9.6% 12.4% 9.3%
Tsdp1 13s 37s 27s 86s 58s 168s 147s 333s 437s
Cut2 1377 1462 1734 2214 2239 2626 2453 2542 2526
Gsdp2 0.0% 0.0% 0.6% 0.3% 1.9% 4.9% 2.3% 7.3% 3.9%
Opt2 10 10 7 8 3 1 2 0 0
Tsdp2 205s 393s 640s 962s 921s 2170s 1773s 2231s 2533s

Table 4: Results for instances with positive changeover times: product family cost struc-
ture
Set B1f B2f B3f B4f B5f B6f B7f B8f B9f
P 4 6 4 6 4 6 4 6 4
T 15 15 20 20 25 25 30 30 40
Vlp 450 815 600 1120 750 1400 900 1680 1200
Clp 346 436 512 630 684 525 975 1112 1400
Glp 3.9% 9.8% 8.0% 7.7% 23.4% 19.4% 23.0% 21.2% 32.6%
Tlp 0.1 s 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 0.2s 0.2s
n+ 1 91 121 121 161 151 201 181 241 241
Csdp 272 364 361 483 451 577 510 692 678
Cut1 285 683 576 984 777 1300 1050 1676 1564
Gsdp1 34.3% 12.8% 30.6% 39.2% 35.1% 48.7% 21.1% 18.9% 23.7%
Tsdp1 12s 40s 35s 87s 61s 176s 165s 390s 469s
Cut2 1332 1402 2034 2793 2548 2719 2644 2477 2480
Gsdp2 0.3% 1.1% 1.1% 6.0% 5.1% 18.6% 4.3% 10.9% 10.9%
Opt2 9 9 8 2 1 0 0 0 0
Tsdp2 238s 452s 600s 2327s 1727s 2750s 2017s 2349s 2464s
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Results from Tables 1 and 2 show that, for the instances with zero changeover
times, the lower bounds provided by the proposed semidefinite relaxation of
the DLSPSD are of significantly improved quality as compared with the
ones provided by the strongest linear relaxations known for the problem.
Namely, the average gap over the 110 instances A1-A11 involving a general
changeover cost structure is decreased from 2.2% with the strengthened linear
reformulation to 0.4% with the semidefinite relaxation. The improvement is
even more significant for instances A1f-A11f involving a product family cost
structure as the average gap over the 110 corresponding instances is decreased
from 10.1% to 2.3%.
Similar results can be seen from Tables 3 and 4 for the instances with positive
changeover times. Namely, the average gap is decreased from 9.9% to 2.4%
for the 90 instances B1-B9 involving a general cost structure and from 16.5%
to 6.5% for the 90 instances B1f-B9f involving a family cost structure.
Moreover, we point out that for 166 out of the 200 small-size instances in-
volving up to 4 products and 25 periods, we have Zsdp1 = ZDSLP , i.e. the
proposed semidefinite relaxation provides the optimal integer solution value
so that the residual gap vanishes. This means that for these instances, the
discrete problem is solved to exact optimality without resorting to any kind
of tree search process. We are not aware of any other previously published
relaxation achieving such an accurate approximation of the MIP solution set
for the class of discrete lot-sizing problems addressed here.

5.3. Discussion

The improvement in the quality of the lower bounds obtained by using the
proposed semidefinite relaxation of the problem might be explained by two
main reasons. First, lifting the problem into a higher dimensional space
where every possible quadratic term xixj might be used to express the prob-
lem constraints enables us to exploit a variety of formulation strengthening
techniques which can otherwise not be directly applied when using the linear
reformulation of DLSPSD1 considered in [2, 10]. Moreover, by reformulat-
ing the problem as a semidefinite program and requiring that the variable
matrix X is positive semidefinite, we implicitly add an infinite number of
constraints in the problem. Namely, imposing the semidefiniteness of matrix
X � 0 would be equivalent to incorporating into the linear reformulation an
infinite set of constraints of the form vtXv ≥ 0,∀v ∈ Rn+1.
However, our results are obtained at the expense of significant computation
time. This might be first explained by the limitations of available state-of-
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the-art semidefinite programming solvers. Solving a semidefinite program
is namely more computationally intensive than solving a linear program.
As mentioned by [25], currently available SDP interior-point methods work
nicely for instances with a matrix size below 200 and less than 2000 con-
straints whereas instances with a matrix size over 1000 and more than 10000
constraints are considered as impractical. Study of algorithms and develop-
ment of software capable of solving large-size semidefinite programs is cur-
rently an active area of research so that significant progress may be expected
in the near future (see e.g. [33]). A second possible explanation for the ob-
served significant computation times could be that, in the proposed solution
procedure, we solve a series of semidefinite programs of increasing size during
the cutting-plane generation algorithm without being able to use a warm-
start strategy. Namely, using the optimal solution of the previous iteration
of the cutting-plane generation to reoptimize the problem slightly changed by
the addition of some valid inequalities is difficult to implement with interior-
point algorithms such as the one embedded in the solver DSDP. It might thus
be worth investigating the use of a semidefinite programming solver based
on another type of algorithm (such as the spectral bundle method presented
in [13]) as this might enable us to more easily exploit a warm-start strategy
during the cutting-plane generation.

6. Conclusion

We studied the discrete lot-sizing and scheduling problem with sequence-
dependent changeover costs and times. This optimization problem can be
formulated as a quadratically constrained quadratic binary progam. We pro-
posed in the present paper to compute a lower bound of the optimal integer
solution value of the problem by carrying out a semidefinite relaxation. To
achieve this, we not only exploited reformulation and strengthening tech-
niques recently proposed in the SDP literature for generic (0-1) quadratic
binary problems but also used problem-specific information such as the poly-
hedral representation of single-product discrete lot-sizing problems. The re-
sults of our computational experiments show that, in terms of solution qual-
ity, the proposed approach compares well with the best MILP strengthening
techniques known for the problem. It provides lower bounds of significantly
improved quality, especially for the instances featuring a product family cost
structure, and is capable of completely closing the gap between the lower
bound and the optimal integer solution value for a significant proportion of
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the small-size instances. However, due to the limitations of available state-
of-the art semidefinite programming solvers, these results are obtained at the
expense of significant computation times so that it does not seem possible
for the time being to solve large-size industrial instances with the proposed
approach.
The present work can thus be viewed as a first step towards applying SDP
models and tools to discrete lot-sizing problems. Sure, the reported compu-
tation times are still significant, however future improvements in the com-
putational efficiency of the SDP technology are likely to occur. In such a
perspective, the methodology proposed here might serve as a basis for com-
petitive SDP-based approaches to lot-sizing.
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