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Abstract. Cirrus cloud absorption optical depths retrieved

at 12.05 µm are compared to extinction optical depths re-

trieved at 0.532 µm from perfectly co-located observations

of single-layered semi-transparent cirrus over ocean made

by the Imaging Infrared Radiometer (IIR) and the Cloud

and Aerosol Lidar with Orthogonal Polarization (CALIOP)

flying on board the CALIPSO (Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observations) satellite. IIR in-

frared absorption optical depths are compared to CALIOP

visible extinction optical depths when the latter can be di-

rectly derived from the measured apparent two-way trans-

mittance through the cloud. An evaluation of the CALIOP

multiple scattering factor is inferred from these comparisons

after assessing and correcting biases in IIR and CALIOP op-

tical depths reported in version 3 data products. In particular,

the blackbody radiance taken in the IIR version 3 algorithm

is evaluated, and IIR retrievals are corrected accordingly. Nu-

merical simulations and IIR retrievals of ice crystal sizes sug-

gest that the ratios of CALIOP extinction and IIR absorp-

tion optical depths should remain roughly constant with re-

spect to temperature. Instead, these ratios are found to in-

crease quasi-linearly by about 40 % as the temperature at the

layer centroid altitude decreases from 240 to 200 K. It is dis-

cussed that this behavior can be explained by variations of the

multiple scattering factor ηT applied to correct the measured

apparent two-way transmittance for contribution of forward-

scattering. While the CALIOP version 3 retrievals hold ηT

fixed at 0.6, this study shows that ηT varies with tempera-

ture (and hence cloud particle size) from ηT = 0.8 at 200 K to

ηT = 0.5 at 240 K for single-layered semi-transparent cirrus

clouds with optical depth larger than 0.3. The revised param-

eterization of ηT introduces a concomitant temperature de-

pendence in the simultaneously derived CALIOP lidar ratios

that is consistent with observed changes in CALIOP depolar-

ization ratios and particle habits derived from IIR measure-

ments.

1 Introduction

Cirrus clouds are widely distributed over the globe. Most cir-

rus exhibit compensating thermal and solar radiative effects,

with the net effect depending on optical depth and particle

size (Berry and Mace, 2014). Thus, well-validated global

measurements of cirrus optical depths and properties are re-

quired to reliably assess their radiative impacts (Sassen et al.,

2008). Ideally, these measurements would be validated us-

ing wholly independent retrievals from different instruments

that use different measurement techniques having largely or

wholly independent sources of uncertainty. While this multi-

instrument approach is conceptually straightforward, there

are typically a number of practical difficulties (e.g., accurate

spatial and temporal matching) that make full realization of

the technique somewhat challenging. The sensor design and

selection for the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) mission (Winker et al.,

2010) obviates most of these concerns. The instrumenta-

tion aboard the CALIPSO satellite includes CALIOP (the
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Cloud and Aerosol Lidar with Orthogonal Polarization), a

two-wavelength (532 and 1064 nm) polarization-sensitive (at

532 nm) elastic backscatter lidar (Hunt et al., 2009), a three-

channel Imaging Infrared Radiometer (IIR) operating in the

8–12 µm thermal infrared spectral range (Corlay et al., 2000),

and a wide field camera operating in the visible domain (Pitts

et al., 2007). These instruments are assembled in a staring

and near-nadir-looking configuration. The cross-track swaths

of the passive sensors are centered on the lidar footprint so

that observations from all three instruments are almost per-

fectly collocated in both time and space. The combined mea-

surements thus allow highly detailed comparison studies that

are not subject to collocation uncertainties or concerns about

view angle differences.

CALIOP cirrus visible optical depths are total extinction

optical depths retrieved using one of two different and to-

tally independent techniques (Young and Vaughan, 2009).

The first method is the so-called “constrained retrieval”, in

which the cloud optical depth is derived from the apparent

two-way transmittance as measured from molecular scatter-

ing above and below the cloud layer using an instrument-

specific correction for multiple scattering effects. Indeed, in

case of cirrus clouds, composed of crystals that are very large

compared to the CALIOP visible wavelength (λ= 532 nm),

a significant fraction of the scattering energy is included in a

small angle forward lobe and may stay in the lidar receiver

field of view for an extended distance below the cloud base

and hence contribute to an apparent increase of the measured

two-way transmittance of the cloud. This fraction of energy

varies with ice crystal phase function, ice crystal size, and li-

dar configuration (Nicolas et al., 1997; Chepfer et al., 1999;

Hogan, 2008). The multiple scattering factor, η, introduced

by Platt (Platt, 1973; Platt et al., 2002) is a convenient pa-

rameter to correct the apparent two-way transmittance for

contribution from multiple scattering (Nicolas et al., 1997;

Eloranta, 1998). In the single-scattering limit, η is equal to 1.

In version 3 of the CALIOP algorithm, η is assumed constant

throughout the layer, identical in cloud and below cloud, and

equal to 0.6. The second method, called “unconstrained re-

trievals”, is used when reliable measurements of the appar-

ent two-way transmittance are not available. Optical depths

derived using unconstrained retrievals use the same assump-

tions about η that are used in the constrained technique. In

addition, a priori assumptions about the layer extinction-to-

backscatter ratio, a quantity also known as the lidar ratio,

Scal, are also required. The accuracy of the optical depth esti-

mates obtained in this manner depends critically on the accu-

racy of the assumed apparent lidar ratio S∗, which is defined

as the product of Scal and η.

Direct measurements of apparent two-way transmittance

can also be obtained in the presence of some well-

characterized secondary scattering layer lying beneath the

cirrus. Among the secondary scattering targets that have been

recently identified for use in constrained retrievals are ocean

surfaces (Josset et al., 2012) and opaque water clouds (Hu

et al., 2007). However, the only constrained retrieval target

currently implemented in the standard CALIOP analyses is

clear air. It has long been recognized that when the scattering

characteristics of the ambient molecular atmosphere are well

known (e.g., from models or rawinsonde measurements), the

apparent two-way transmittance of a layer can be measured

directly whenever sufficiently clean air is found immediately

above and below the layer (Young, 1995; Elouragini and Fla-

mant, 1996; del Guasta, 1998; Chen et al., 2002; Yorks et al.,

2011). The main advantage of the constrained retrieval tech-

nique is that it does not require an a priori assumption about

the apparent lidar ratio. On the contrary, because the layer

apparent optical depth has been measured, accurate estimates

of S∗ can be retrieved by applying the constrained retrieval

technique to suitable CALIOP data (Young and Vaughan,

2009; Young et al., 2013). Thus, the only assumed parameter

in the constrained retrieval technique is the multiple scatter-

ing factor.

In order to extend the constrained approach, Platt (1973)

proposed a combined radiometric and lidar retrieval to more

fully characterize cirrus cloud properties. In this paper, the

relationship between infrared absorption and visible extinc-

tion optical depth retrieved from CALIPSO is investigated

in detail, based on heritage from the pioneering work of C.

M. R. Platt in the 1970s, which is applied here to global

space-borne observations. Previously, Lamquin et al. (2008)

conducted a closely related study by combining infrared re-

trievals from Atmospheric Infrared Sounder (AIRS) with ap-

parent optical depths retrieved by the authors from co-located

CALIOP measurements. More recently, Josset et al. (2012)

conducted a similar analysis using IIR data and apparent

optical depth retrievals constrained by ocean surface mea-

surements from both CALIOP and the CloudSat radar. Here,

infrared absorption optical depths retrieved from IIR ob-

servations of single-layered cirrus clouds at 12.05 µm are

compared to the visible optical depths derived by applying

CALIOP’s constrained retrieval technique to precisely col-

located measurements of the same cloud. Based on a de-

tailed analysis of these comparisons, a new relationship de-

scribing the temperature-dependent effect of multiple scatter-

ing in the CALIOP retrievals is derived and discussed. The

technique used to retrieve cirrus emissivity and absorption

optical depths from the CALIPSO IIR measurements is de-

scribed in depth by Garnier et al. (2012a). A substantial re-

view of this method is given below. These analyses use ver-

sion 3 CALIOP Level 2 5 km cloud layer and profile prod-

ucts and the corresponding version 3 IIR Level 2 track prod-

ucts (Powell et al., 2013). The paper is constructed as fol-

lows. Retrieval techniques, sources of uncertainty, and ex-

pected ratios between retrievals in the visible and in the in-

frared are presented in Sect. 2. In the IIR algorithm, emis-

sivity and absorption optical depth are retrieved assuming

an isothermal cloud layer of equivalent temperature inferred

from the CALIOP layer detection algorithm. This technique

is assessed in Sect. 3. CALIOP and IIR retrievals are then

Atmos. Meas. Tech., 8, 2759–2774, 2015 www.atmos-meas-tech.net/8/2759/2015/



A. Garnier et al.: Lidar multiple scattering factors inferred from CALIPSO lidar 2761

compared and discussed in Sect. 4. Using analyses organized

around the specifics of each algorithm and cloud character-

istics such as optical depth and temperature, the CALIOP

multiple scattering factor derived from these comparisons is

evaluated. Section 5 provides a summary of the work and

presents our conclusions about the effectiveness of these

multi-sensor analyses.

2 CALIPSO retrieval techniques

2.1 CALIOP

A detailed overview of CALIOP retrievals can be found in

Winker et al. (2009) and the works cited therein. Here we

provide only a brief synopsis. The CALIOP Level 1 cali-

brated 532 nm total attenuated backscatter profiles are used

to detect scattering layers with horizontal resolutions of 5,

20, or 80 km, defined by the amount of averaging required to

detect the layers (Vaughan et al., 2009). After discriminating

between clouds and aerosols (Liu et al., 2009), cloud layers

are further classified according to thermodynamic phase and

crystal habit as water clouds, randomly oriented ice clouds,

or horizontally oriented ice clouds (Hu et al., 2009). Cirrus

cloud optical depths are then retrieved by CALIOP’s Hy-

brid Extinction Retrieval Algorithms (HERA) (Young and

Vaughan, 2009). Uncertainties in CALIOP optical depth re-

trievals are described extensively in Young et al. (2013).

When clear air is found immediately above and below a

cirrus cloud layer, the apparent two-way transmittance can be

obtained directly from the ratio of the mean attenuated scat-

tering ratios,
〈
R′
〉
, in clear air regions above and below the

cloud; i.e., T 2
apparent =

〈
R′
〉
below

/〈
R′
〉
above

. The visible appar-

ent optical depth is simply

τapparent =

− ln
(
T 2

apparent

)
2

, (1)

and the visible optical depth is

τvis = τapparent

/
η, (2)

where division by the multiple scattering factor η represents

the required correction of the measured transmittance. These

multiple scattering contributions are attributed solely to for-

ward scattered photons that originate from in-cloud scatter-

ing events and subsequently propagate into the clear air be-

low cloud base.

According to the equation introduced by Platt (1973), the

apparent lidar ratio S∗ can be derived from this apparent two-

way transmittance as

S∗ =
1− T 2

apparent

2γ ′
=

1− e−2·τapparent

2γ ′
=

1− e−2·ητvis

2γ ′
, (3)

where γ ′ is the cloud attenuated backscatter vertically inte-

grated between layer top and base altitudes. It is noted that

Eq. (3) was established within cloud, so that η should be

ηc to represent the in-cloud multiple scattering factor that is

supposed to be constant with range. As discussed in Winker

(2003), deriving S∗ from Eq. (3) assumes that the multiple

scattering factors within and below the cloud are identical –

i.e., that η = ηc, whereas η below the cloud can be larger than

ηc in cloud (Nicolas et al., 1997). The difference between S∗

and the true in-cloud apparent lidar ratio, Sc*, can be esti-

mated analytically from Eqs. (2) and (3) as

S∗− S∗c

S∗
=

2 · τapparent · e
−2·τapparent

1− e−2·τapparent
·
(η− ηc)

η
. (4)

As illustrated in Winker (2003), (S∗–Sc*) / S∗ is identical to

(η− ηc) / η when optical depth tends to 0 and decreases as

optical depth increases. Similarly, the analyses in this study

will rely on apparent optical depths derived from apparent

two-way transmittances, so that the inferred multiple scatter-

ing factor will be η below cloud. The lidar ratio Scal will be

derived from S∗ after correction for multiple scattering as

Scal = S
∗
/
η , (5)

whereas the true in-cloud lidar ratio, Scal,c, should be derived

from Eq. (5), but using S∗c and ηc. The difference between

Scal and Scal,c is estimated from Eqs. (4) and (5) as

Scal− Scal,c

Scal

=
S∗− S∗c

S∗
−
η− ηc

η
=(

2 · τapparent · e
−2·τapparent

1− e−2·τapparent
− 1

)
·
(η− ηc)

η
. (6)

Here, the relative bias (Scal–Scal,c) / Scal is 0 when optical

depth tends to 0, and approaches progressively –(η−ηc)/η as

optical depth increases. As η− ηc is ≥ 0, the lidar ratios de-

rived from this technique can be too small, more notably for

the largest optical depths. However, no information is avail-

able to us to quantify this bias.

In version 3 of the CALIOP data products, the HERA

module identifies those layers for which constrained solu-

tions are considered feasible by requiring that the estimated

relative uncertainty in the derived lidar ratio be less than

40 % (Young and Vaughan, 2009). An initial estimate of S∗

is then derived from Eq. (3) and is refined iteratively until the

integral of the retrieved extinction profile exactly matches

the directly determined apparent optical depth (Young and

Vaughan, 2009). This relative uncertainty increases rapidly

for small optical depths (Young et al., 2013) and during

nighttime, constrained solutions are generally deemed not

possible for optical depths typically smaller than 0.3. Be-

cause solar background illumination injects large amounts

of noise into the CALIOP daytime backscatter signal, the

signal-to-noise ratios needed to satisfy this rather stringent

requirement are almost never found in CALIOP daytime

measurements. As a consequence, CALIOP version 3 con-

strained retrievals are available almost exclusively during
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nighttime for optical depths typically larger than 0.3. For

consistency, optical depths reported in the CALIOP 5 km

cloud layer product are derived from the measured appar-

ent two-way transmittance using Eq. (2) only when the con-

strained technique is applied to retrieve the extinction profiles

reported in the CALIOP cloud profile product. Otherwise,

the optical depths reported in the version 3 layer product are

retrieved using an initial lidar ratio set to Scal = 25 sr. Never-

theless, whenever the layer apparent two-way transmittance

could be measured it is also reported, so that optical depth

can also be computed a posteriori using Eq. (2), as for the

constrained retrievals, hence extending the data set of mea-

sured apparent optical depths. In any case, the conversion of

apparent optical depth into single-scattering optical depth de-

pends on an a priori specification of the multiple scattering

factor.

2.2 IIR

The IIR is a passive instrument providing calibrated radi-

ances in three channels in the atmospheric window (8.65,

10.6, and 12.05 µm), with a medium spectral resolution of

about 1 µm and a spatial resolution of 1 km per pixel over

a 69 km swath. IIR channels are optimized for retrievals of

cirrus optical and microphysical properties, such as ice crys-

tals effective diameter (Garnier et al., 2012a, 2013). The IIR

12.05 µm channel, which exhibits the largest absorption by

cirrus clouds, is chosen for this analysis. The pixels located

at the center of the 69 km swath are precisely collocated with

CALIOP lidar footprint, and thus a vertically resolved de-

scription of the atmospheric column associated with passive

IIR observations is obtained from CALIOP active measure-

ments. IIR retrievals rely on cloud and aerosol detections

from CALIOP, and as IIR observations are not vertically re-

solved the most suitable scenes are those containing only

one single cloud layer in the column. Scenes containing low

opaque water clouds, also analyzed by the IIR algorithm,

are not included in this study. In addition, scenes containing

dense depolarizing aerosol layers such as mineral dust are

discarded. They represent less than 1 % of the total number

of scenes.

Cloud absorption is characterized through its emissivity

ε as (Platt and Gambling, 1971; Platt, 1973; Garnier et al.,

2012a)

ε =
RBG−Rm

RBG−RBB

, (7)

where Rm is the measured calibrated radiance,RBG is the

background radiance at the top of the atmosphere that would

be observed in the absence of the studied cloud, and RBB

is the radiance of a blackbody source located at the cloud

radiative altitude. Cloud absorption optical depth τa is subse-

quently derived as

τa =− ln(1− ε) . (8)

Figure 1. Relative sensitivity of absorption optical depth τa to vari-

ations of measured (dotted), background (dashed), and blackbody

(solid) brightness temperatures dTm =−0.3 K, dTBG = 0.5 K, and

dTBB = 2 K, respectively.

Uncertainty in the emissivity includes three components as-

sociated with errors on Rm, RBG, and RBB and is inversely

proportional to the radiative contrast RBG–RBB (Garnier et

al., 2012a). In other words, the colder the cloud with respect

to the underlying scene, the smaller the uncertainty in the

emissivity retrievals. It is convenient to introduce the error

dR′x on the radiance Rx , where the subscript x refers to m,

BB, or BG, further weighted by the inverse of the radiative

contrast, so that

dR′x =
∂Rx

∂T
· dTx ·

1

RBG−RBB

, (9)

where dTx is the error on the radiance Rx converted in terms

of equivalent brightness temperature. Thus, the sensitivity

dτa,x of τa to an error dTx can be simply written for each

component:

dτa,m =
(
−1

/
1− ε

)
· dR′m (10a)

dτa,BB =
(
ε
/

1− ε
)
· dR′BB (10b)

dτa,BG = dR′BG. (10c)

Uncertainty estimates are derived after assessing the ran-

dom and systematic errors dTm, dTBG, and dTBB. As an il-

lustration, Fig. 1 shows the relative sensitivity dτa,x / τa to

dTm =−0.3 K, dTBG =+0.5 K, and dTBB =+2 K for cirrus

clouds. The rationale for this choice of values is given below.

The variation dτa,BG due to a variation dR′BG of the weighted

background radiance does not depend on ε, and the relative

variation dτa,BG / τa (dashed line) decreases with τa, more

rapidly for 2τa smaller than 0.3. A similar behavior is seen

for the measured radiance (dotted line). However, the relative

variation of τa due to a variation of dTBB increases steadily

with τa (solid line).

The on-board measured calibrated radiances have been

validated by comparison with airborne observations (Sour-

deval et al., 2012). Assuming that the measurement is not bi-

ased, a random noise dTm =±0.3 K is considered based on

Atmos. Meas. Tech., 8, 2759–2774, 2015 www.atmos-meas-tech.net/8/2759/2015/
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the noise equivalent differential temperature and calibration

accuracy as assessed by the Centre National d’Etudes Spa-

tiales (CNES).

Both RBG and RBB in Eq. (7) are inferred in synergy with

CALIOP observations and so too are the respective uncer-

tainty estimates dTBG and dTBB (Garnier et al., 2012a).

The background radiance, RBG, is preferably retrieved

from cloud-free observations in neighboring pixels along

track as identified by CALIOP at a distance chosen to be

smaller than 100 km from the analyzed pixel. The cloud lay-

ers for which these conditions are fulfilled are identified

as “type 1 clouds”. If these conditions are not found, RBG

is computed using the FASt RADiative (FASRAD) transfer

model (Dubuisson et al., 2005) and ancillary atmospheric and

surface data from the GEOS 5 model of the Global Model-

ing and Assimilation Office (Rienecker et al., 2008). This

second ensemble of cloud layers is called “type 2 clouds”.

Type 1 and type 2 clouds will be evaluated separately as their

sources of uncertainty are different. Indeed, for type 1 clouds,

RBG is derived purely from observations and is expected to

be unbiased with respect to measured radiances. A random

error dTBG is assumed, which is arbitrarily augmented from

the instrumental random noise dTm =±0.3 to ±0.5 K to ac-

count for possible differences between the studied area and

the nearby non-cloudy area.

The blackbody radiance RBB is computed from the FAS-

RAD model and the thermodynamic temperature, Tc, at the

centroid altitude, Zc, of the CALIOP attenuated backscat-

ter profile at 532 nm within the cloud layer (Vaughan et al.,

2005). This parameter, derived from Level 1 CALIOP obser-

vations, is reported in the CALIOP 5 km layer product and

is available as an input to the IIR Level 2 operational algo-

rithm. In order to assess possible systematic errors dTBB, the

cloud radiative temperature, Tr, can be computed a posteri-

ori from CALIOP extinction profiles and compared with the

temperature Tc. This analysis is detailed in Sect. 3. Subse-

quent systematic errors on IIR optical depth and corrections

will also be discussed. An additional error of dTBB =± 2 K

is assumed to account for possible biases in the atmospheric

model.

Even though the IIR analyses take advantage of spatial in-

formation (e.g., cloud heights) derived from CALIOP collo-

cated vertical profile observations, the IIR cloud optical prop-

erties retrievals are entirely independent from the CALIOP

optical properties retrievals. The measurement techniques

used by the two sensors rely on different physical principles

and hence are subject to very different sources of uncertainty.

The expected relationship between CALIOP and IIR optical

depths is presented in the following section.

2.3 Simulated relationships between CALIOP and IIR

optical depths

Ratios of CALIOP cirrus visible extinction optical depth τvis

to IIR absorption optical depth τa at 12.05 µm are simulated

Figure 2. Simulations of the ratio between CALIOP optical depth

at 532 nm (τvis) and IIR absorption optical depth at 12.05 µm

(τa) at τa = 0.25 against effective diameter De for hexagonal solid

columns (blue) and aggregates (red). Vertical dashed lines indicate

De smaller than 15 µm (see text).

using the FASDOM radiative transfer model (Dubuisson et

al., 2005, 2008) for an isothermal cloud and ice crystal op-

tical properties retrieved from pre-computed tables (Yang et

al., 2005). Figure 2 shows simulated τvis / τa ratios for clouds

composed of hexagonal solid columns and of aggregates by

taking τa = 0.25. Effective diameters (De) (x axis) are de-

fined as 3/2 times the ratio of volume to projected area

(Mitchell, 2002). As seen in Fig. 2, τvis / τa increases as De

increases for De larger than 10–15 µm, from 1.7–1.9 at De

equal to 20 µm up to 2.07 at De equal to 140 µm. These

simplified simulations, which assume mono-disperse parti-

cle size distributions, are sufficient to assess the sensitivity

of τvis / τa to ice crystal size and habit and to establish that

τvis / τa is expected to be around 2. A more detailed discus-

sion is given in Sect. 4. It is to be noted that τa is not, strictly

speaking, an absorption optical depth as it includes a small

contribution from multiple scattering, which becomes more

important as optical depth grows larger. Simulations show

that τa is increased by less than 3 % with respect to pure ab-

sorption optical depth at τa equal to 1.25, or τvis around 2.5,

which is the maximum value attained by the semi-transparent

cirrus clouds considered in this study.

3 Cloud radiative temperature

As seen in Sect. 2, cloud effective emissivity and hence in-

frared absorption optical depth are retrieved through a simple

relationship (see Eq. 7) by considering an isothermal cloud of

blackbody radiance RBB computed using the centroid tem-

perature Tc at the centroid altitude Zc. In this section, sys-

tematic errors in the blackbody brightness temperature dTBB

resulting from this assumption are quantified. To do so, the

cloud radiative temperature Tr is computed a posteriori from

CALIOP extinction profiles and compared to Tc, so that ul-

www.atmos-meas-tech.net/8/2759/2015/ Atmos. Meas. Tech., 8, 2759–2774, 2015
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timately IIR retrievals can be corrected using Eqs. (9) and

(10b).

CALIOP extinction profiles are reported at 5 km horizon-

tal resolution in the cloud profile products and are derived

from the exact same attenuated backscatter profiles that are

used to compute the centroid altitudes reported in the 5 km

layer products. As the intent is to evaluate IIR retrievals,

analyses are conducted for single-layered semi-transparent

cirrus clouds over ocean. Data selection is further restricted

to the subset of cirrus clouds composed of randomly ori-

ented ice crystals for which the ice–water phase classifica-

tion is reported with high confidence. In addition, possible

contamination from mixed-phase clouds is minimized by re-

stricting the analysis to clouds whose temperature at base

altitude is colder than −20 ◦C (Hu et al., 2010). CALIOP

optical depths and extinction profiles are retrieved from the

constrained technique described previously. The chosen time

period covers 12 months in 2008.

Each cloud is composed of a number, n, of vertical bins,

i, of resolution δz, with i = 1 to i = n extending from base

to top. Emissivity in bin i is noted ε(i) and absorption opti-

cal depth derived from Eq. (8) is τa(i). By applying Eq. (7)

successively to each of the bins, from cloud base to cloud

top, it is found that the cloud blackbody radiance RBB can be

expressed as

RBB =

∑i=n
i=1ε (i) ·RBB (i) .e

−
∑j=n+1
j=i+1 τa(j)∑i=n

i=1ε (i) · e
−
∑j=n+1
j=i+1 τa(j)

, (11)

where RBB (i) is the blackbody radiance of bin i of thermo-

dynamic temperature T (i), and τa(n+ 1) represents absorp-

tion above the cloud.

The denominator in Eq. (11) represents the cloud emissiv-

ity. The cloud blackbody radiance can be seen as the centroid

radiance of the attenuated emissivity profile, with the attenu-

ation term corresponding to the infrared transmittance above

the bin i. This expression has been validated by comparing

RBB from Eq. (11) and from the FASRAD model. In Eq. (11),

absorption by gases such as water vapor and ozone in the cir-

rus cloud is neglected, so that absorption is assumed to be

purely due to the cloud. This simplification has no impact

on the result for τa larger than 0.2 and otherwise biases RBB

by only 0.4 K of equivalent brightness temperature when τa

tends to 0. Assuming a ratio r between CALIOP visible op-

tical depth τvis and IIR absorption optical depth τa, Eq. (11)

can be rewritten as a function of the CALIOP cloud extinc-

tion coefficient α (in km−1) and r as

RBB =

∑i=n
i=1

(
1− e− [α (i) · δz /r ]

)
·RBB (i) .e

−
∑j=n+1
j=i+1 [α(j)·δz/r ]∑i=n

i=1

(
1− e− [α (i) · δz /r ]

)
· e
−
∑j=n+1
j=i+1 [α(j)·δz/r ]

. (12)

The temperature Tr is derived from the blackbody radiance

RBB computed using Eq. (12). The ratio r is taken equal to

2 based on the simulations shown in Sect. 2.3, as well as

2± 0.4 to evaluate the sensitivity of RBB to r . The verti-

cal resolution δz is equal to 0.06 km in the CALIOP profiles

products.

However, the centroid altitude Zc can be written as

Zc =

∑i=n
i=1Z(i) ·

(
βpart (i)+βmol (i)

)
· e
−2
∑j=n
j=i [ηαpart(j)+αmol(j)]·δz∑i=n

i=1

(
βpart (i)+βmol (i)

)
· e
−2
∑j=n
j=i [ηαpart(j)+αmol(j)]·δz

, (13)

where Z(i) is the altitude of bin i, βpart(i) and βmol(i) are,

respectively, the particulate and molecular components of the

total backscatter (in sr−1 km−1), αpart(i) and αmol(i) are, re-

spectively, the particulate and molecular extinction coeffi-

cients (in km−1), and η represents the required correction for

multiple scattering introduced in Sect. 2.1. Equation (13) ex-

hibits interesting similarities with Eq. (12). As radiance and

altitude vary quasi-linearly with temperature within a few

kilometer deep layer, Eqs. (12) and (13) are effectively two

different weighted averages of the cloud temperature pro-

file. In both cases, the weight is composed of the product

of a transmittance term and of a multiplying term. For cirrus

clouds of sufficient optical depth, the molecular contribution

is weak compared to the particulate one, and the transmit-

tance term in Eq. (13) is driven by 2ηα(j) or 1.2α(j) as-

suming η = 0.6 for CALIOP observations, which is larger

than α(j)/r in Eq. (12), or α(j)/2 if r = 2. Thus, the smaller

transmittance term in Eq. (13) compared to that in Eq. (12)

tends to provide Zc higher than the radiative cloud altitude

for observations from the top of the atmosphere. However,

this is partly compensated by the multiplying terms. Indeed,

in Eq. (13) the multiplying term is roughly proportional to

the bin absorption optical depth τa(i)= α(i) · δz/r , because

the lidar ratio is constant in CALIOP extinction retrievals

(Young and Vaughan, 2009). Therefore, the multiplying term

in Eq. (13) can be seen as τa(i), which is larger than the mul-

tiplying term in Eq. (12), i.e., the emissivity ε(i).

Overall, the temperature Tr derived from Eq. (12) is found

to be warmer than the temperature Tc derived from Eq. (13)

as seen in Fig. 3a, where mean Tr–Tc differences are plot-

ted against 2τa for several ranges in cloud geometric thick-

nesses 1z from 1–2 km up to 7–8 km (colored lines) and for

all observations (black line). The Tr–Tc differences represent

systematic errors dTBB on the blackbody brightness temper-

ature used in the IIR standard retrievals. They are primar-

ily driven by the cloud geometric thickness 1z and increase

quasi-linearly with optical depth (2τa) for a given 1z. The

slope is close to 0 for the smallest thicknesses,1z in 1–2 km,

and increases up to 1.5 K per unit optical depth for 1z in 7–

8 km. On average, the bias increases with 2τa (black curve)

from 0.5 to 3 K because optical depth and geometric thick-

ness are not fully independent. Standard deviations are be-

tween 0.2 and 1.5 K (Fig. 3b) and include variability due to

the fact that Tr–Tc varies with the shape of the extinction pro-

file for a given optical depth and a given geometric thickness.

Biases shown in Fig. 3a have been retrieved assuming an

a priori value r = 2. Sensitivity to this assumption is seen
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Figure 3. (a) Mean value and (b) standard deviation of the differ-

ence Tr–Tc between cloud radiative temperature and temperature at

centroid altitude of attenuated total backscatter against 2τa assum-

ing r = τvis / τa = 2. Colored lines are for several ranges in cloud

geometric thickness. The black line is for all samples. The hori-

zontal dotted lines indicate maximum values discussed in the text.

Data set: single-layered cirrus randomly oriented ice with high con-

fidence, base temperature <−20 ◦C, over ocean, 2008.

in Fig. 4, showing relative variations 1Tr / (Tr–Tc) of Tr–Tc

when r is changed to 2.4 (1r =+20 %, solid lines) and to

1.6 (1r =−20 %, dashed lines), to cover a range of possi-

ble values according to the simulations (Fig. 2). As will be

shown in Sect. 4, assuming r between 1.6 and 2.4 also allows

coverage of the range of retrieved values. Increasing the ratio

r = τvis / τa does decrease τa as τvis is set from CALIOP re-

trievals, and the radiative temperature is increased (1Tr / (Tr–

Tc) is positive). The opposite behavior is found when the ra-

tio r is decreased. The estimated bias dTBB = Tr–Tc shown

in Fig. 3a for r = 2 is found to vary by less than 16 % in

the worst case, which is for 2τa = 2.5 and1r =−20 %, with

small variations with respect to geometric thickness. There-

fore, the bias dTBB is estimated and corrected in the follow-

ing by taking r = 2.

Correcting for a bias dTBB ranging between 0.5 K at

2τa ≈ 0 and 7 K at 2τa = 2 as seen in Fig. 3a induces a rela-

tive increase of τa between 0.5 and 17 % according to Fig. 1

and, on average, the largest increase is 7 % for dTBB = 3 K at

2τa = 2. In the following, CALIOP and IIR retrievals will be

compared before and after correcting IIR absorption optical

depths for those biases in order to assess the impact on the

comparisons.

4 Comparison of IIR and CALIOP retrievals

CALIOP and IIR cirrus retrievals are evaluated through ra-

tios of CALIOP visible optical depth τvis to IIR absorption

optical depth τa. Data selection is the same as in Sect. 3.

IIR absorption optical depths, reported at 1 km pixel reso-

lution under the lidar track in the IIR Level 2 track prod-

ucts, are averaged to a 5 km horizontal resolution to match

the resolution at which CALIOP optical depth is reported in

the CALIOP 5 km cloud layer products. Median τvis / τa ra-

tios during 2008 in the 25◦ S–25◦ N latitude band are plotted

Figure 4. Relative sensitivity (in percentage) of the difference Tr–Tc

to a variation of1r =+20 % (solid lines) and1r =−20 % (dashed

lines) of the assumed τvis / τa ratio r = 2. Colored lines are for sev-

eral ranges in cloud geometric thickness1z .The black lines are for

all samples. Same data set as in Fig. 3.

against 2τa in Fig. 5. Figure 5a is from the standard prod-

ucts whereas Fig. 5b is obtained with τa corrected by using

the cloud blackbody radianceRBB derived from CALIOP ex-

tinction profiles as described in Sect. 3. In order to simultane-

ously evaluate biases due to the background radiance RBG as

presented in Sect. 2, results are plotted by segregating type 1

clouds, for which a measured RBG is available and used to

retrieve τa (solid lines), from type 2 clouds, for which RBG

is from computations (dashed lines). Furthermore, retrievals

from computed RBG are also plotted for type 1 clouds (dot-

ted lines) for comparison with the standard retrievals (solid

line). Finally, the τvis / τa ratios are shown for several ranges

in centroid temperature Tc. Figure 5c shows the number of

samples used to build the statistics. The standard deviation of

the τvis / τa ratios plotted in Fig. 5d is found similar when τa

is from standard products or corrected for the cloud radiative

temperature. Figure 5 shows that the median τvis / τa ratios

are overall within the ranges of expected values according to

the simulations shown in Fig. 2. Figure 5 also contains pieces

of information about systematic errors on IIR and CALIOP

retrievals, which are discussed first. The retrieved τvis / τa ra-

tios and their variations with Tc as seen in both Fig. 5a and b

are discussed afterwards. Tropics are chosen for this discus-

sion for simplicity, because biases due to computed RBG are

known to vary with latitude (Garnier et al., 2012a), but this

does not affect the representativeness of the results.
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4.1 Systematic errors: IIR

The τvis / τa ratios derived for type 1 clouds from measured

RBG (Fig. 5, solid lines) are expected to be the most accurate

because they are the most constrained by IIR observations.

For these exact same clouds, τa from computed RBG (dot-

ted lines) differs from τa from measured RBG (solid line) by

less than 2 % at 2τa = 0.7. As, according to Fig. 1, an error

dTBG = 0.5 K induces a relative error in τa equal to 3.5 % at

2τa = 0.7, this indicates a bias dTBG = 0.3 K in the compu-

tations. However, as seen in Sect. 3, the correction of RBB

increases τa and as expected, the τvis / τa ratios in Fig. 5b are

smaller than in Fig. 5a. For type 1 clouds, it is seen that the

corrected RBB decreases the τvis / τa ratio by less than 5 % for

the largest optical depths.

Type 1 and type 2 clouds are mutually exclusive and ap-

pear to have different properties. As seen in Fig. 5c, the frac-

tion of type 2 clouds is larger at colder temperatures and

the number of type 1 clouds is not significant at 193–203 K.

Type 2 clouds are found to represent more than 85 % of the

analyzed clouds in the western Pacific, in the Indian Ocean,

and in the Atlantic Ocean and to represent 76 % overall in

the tropics. Type 1 clouds are expected to be isolated cloud

systems of small horizontal dimension or at the edge of large

systems, whereas type 2 clouds are expected to be embed-

ded in large cloudy areas. This is consistent with the fact that

most of the type 1 clouds have a geometric thickness 1z be-

tween 1.5 and 3 km whereas type 2 clouds are deeper, with

1z mostly between 3 and 6 km and up to 8 km (not shown).

Therefore, the blackbody correction is overall larger for type

2 clouds than for type 1 ones (Fig. 3a). As a result, a bet-

ter agreement between τvis / τa from type 1 (dotted lines) and

from type 2 (dashed) clouds is clearly noted after correction

(Fig. 5b) than before correction (Fig. 5a) for the largest 2τa

between 1 and 1.5. After correction, the overall difference

between τvis / τa from type 2 and from type 1 clouds is +1

to +5 % at 2τa = 0.7, which is possibly due to additional bi-

ases of −0.2 to −0.8 K (Fig. 1) in the computed RBG, even

though actual differences of the τvis / τa ratios cannot be ruled

out because two distinct ensembles of clouds are compared.

Further analyses of the differences between observations and

computations are being conducted to help inform and im-

prove future versions of the IIR science data products.

The τvis / τa ratio exhibits a sharp decrease of about 40 %

from 2τa = 0.3 to 2τa = 0.5 for each temperature range and

decreases slowly by about 10 % from 2τa= 0.7 to 2τa = 2.5.

This behavior is observed for both type 1 and type 2 clouds.

Because for type 1 clouds (solid lines)RBG is from neighbor-

ing observations, biases in IIR τa retrievals do not seem to be

a tenable explanation. As a consequence, possible biases in

CALIOP retrievals are investigated in the following section.

Figure 5. Median τvis / τa ratio against 2τa (a) from IIR standard

products and (b) after correction for cloud radiative temperature,

(c) sample count, and (d) τvis / τa ratio standard deviation. Type 1

clouds: measured RBG available and τa either from measured RBG

(solid) or from computed RBG (dotted); type 2 clouds: no measured

RBG available and RBG from computations (dashed). Colors are

for temperature at centroid altitude Tc in 193–203 K (purple), 203–

213 K (navy blue), 213–223 K (light blue), 223–233 K (orange), and

233–243 K (red). The vertical dotted lines highlight the results for

2τa between 0.3 and 0.7 (see text). Data set: single-layered cir-

rus randomly oriented ice with high confidence, base temperature

<−20 ◦C, over ocean, 25◦ S–25◦ N, 2008.

4.2 Systematic errors: CALIOP

As seen in Sect. 2.1, CALIOP optical depth is retrieved us-

ing the constrained technique only when the estimated rela-

tive uncertainty in the derived lidar ratio is less than 40 %,

and this relative uncertainty increases rapidly for small opti-

cal depths. Because the signal is noisy, optical depth distri-

butions derived from constrained retrievals are increasingly

truncated as actual optical depth decreases, because a larger

fraction of these small optical depths does not satisfy the es-

timated relative uncertainty requirement and thus is excluded

from the sample data set. This leads to an increasing high bias

in constrained optical depths τvis as optical depth decreases,

which explains the sharp increase of the τvis / τa ratio seen in

Fig. 5 as 2τa decreases.

In order to confirm this interpretation, the analysis is now

applied to all the layers for which an apparent two-way trans-

mittance could be measured, including those that do not sat-

isfy the conditions required for the constrained technique, as

introduced in Sect. 2.1. An extended set of CALIOP optical

depth measurements is thus obtained from Eqs. (1) and (2),

still limited to nighttime data, and is compared to IIR τa re-

trievals. Median τvis / τa ratios for the standard constrained

retrievals (thin lines) and for the extended optical depth data
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Figure 6. (a) Median τvis / τa ratio and (b) standard deviation from

standard CALIOP constrained retrievals (thin lines) and from ex-

tended CALIOP optical depth measurements (thick lines) for type

1 clouds retrieved from measured RBG after correction for cloud

radiative temperature. The vertical dotted lines highlight the differ-

ences for 2τa between 0.3 and 0.6 (see text). Same data set and color

code as in Fig. 5.

set (thick lines) are shown in Fig. 6a for type 1 clouds only

for more clarity, after correction of IIR τa for the cloud ra-

diative temperature, and again for several ranges in tempera-

ture Tc. Associated standard deviations are plotted in Fig. 6b.

For the extended data set (thick lines), the τvis / τa ratios

now increase steadily from the largest optical depths down

to 2τa = 0.3, suggesting that the extended CALIOP optical

depth distributions are not as biased for this data set. A sharp

increase of the τvis / τa ratio is still seen for 2τa smaller than

0.3, as this ratio of two small numbers becomes more sen-

sitive to small residual biases. In addition, the τvis distribu-

tions are still truncated, because non-physical negative opti-

cal depths due to random noise are discarded from the anal-

ysis. Standard deviations of the τvis / τa ratios are larger for

the extended than for the standard constrained data set, sug-

gesting larger random errors because CALIOP distributions

are not as severely truncated in the former case. Implications

are threefold. First, this confirms that IIR τa retrievals are not

biased by unidentified issues. Secondly, this highlights a sys-

tematic bias in all CALIOP standard constrained retrievals

(thin lines) for optical depths smaller than about 0.6, which

is of the order of +50 % at 2τa = 0.3. This translates into

similar relative biases in the retrieved lidar ratios, which is of

importance when cirrus lidar ratios derived from constrained

retrievals are used to evaluate the default lidar ratio used in

unconstrained retrievals (Garnier et al., 2012b). Finally, this

shows that the constrained technique could be improved, in

the mean, by relaxing the threshold in the relative lidar ra-

tio uncertainties used in version 3 of the CALIOP algorithm,

notwithstanding the large dispersion.

4.3 Retrieved τvis / τa ratios

In the following, the retrieved median τvis / τa ratios are dis-

cussed. Results obtained after τa is corrected for cloud radia-

tive temperature are considered. As seen in Figs. 5 and 6, the

ratios are found to increase by about 10 % as the temperature

Tc decreases by 10 K. The ratios derived from type 1 clouds

are found between 1.6 at 233–243 K and 2.1 at 203–213 K,

with a standard deviation of the order of 0.3 at 2τa larger

than 1. For type 2 clouds, the ratios are larger by 2 to 5 %,

which could be partly explained by possible biases on IIR

τa retrievals. Nevertheless, as both type 1 and type 2 clouds

exhibit the same behavior with respect to temperature, they

will be combined in the following analyses. To reduce the

impact of biases, subsequent analyses are limited to cases for

which 2τa is larger than 0.3. Also, CALIOP extended opti-

cal depth retrievals are chosen to avoid biases in CALIOP

standard constrained retrievals. For a given temperature, the

ratios decrease by about 10 % from 2τa = 0.3 to 2τa = 2, as

seen in Fig. 6a. This may be due partly to an increasing con-

tribution of multiple scattering in τa, yet expected to not in-

crease by more than 2 % according to simulations performed

on numerous crystal habits.

The clear dependence of τvis / τa on temperature Tc is in-

teresting. According to the simulations shown in Fig. 2 for

the 12.05 µm IIR channel, for effective diameters larger than

10–15 µm, the ratios are expected to increase as the effective

diameter increases, with little sensitivity to effective diame-

ters larger than 100 µm. Thus, the increase of the observed

τvis / τa with decreasing Tc could conceivably be caused by

larger crystals, but this is in contradiction with the fact that

mean crystal sizes and effective diameters are known to be

generally decreasing with decreasing temperature for clouds

of moderate optical depth smaller than 2.5 as considered in

this study (see for example Heymsfield et al., 2014). Obser-

vations could also be explained by ice crystals effective di-

ameters decreasing from 10–15 µm at Tc = 240 K down to

5 µm at Tc = 200 K, but this is very unlikely according to re-

cent analyses of in situ observations (Heymsfield et al., 2014,

and references herein). To go further in the discussion, ice

crystal effective diameters retrieved from IIR measurements

in the three available channels are investigated. The funda-

mental parameters are the so-called microphysical indices

β12/10 and β12/08, defined as the ratios of τa from channel

12.05 µm to the absorption optical depths retrieved at 10.6

and at 08.65 µm, respectively (Garnier et al., 2013). These

indices can be converted into an effective diameter through

lookup tables, as illustrated in Fig. 7a, which shows the the-

oretical microphysical indices β12/10 (solid lines) and β12/08

(dashed lines) derived for hexagonal solid columns (blue)

and aggregates (red) for τa = 0.25. The effective diameter

is derived from the crystal model for which the relationship

between β12/10 and β12/08 agrees the best with the obser-

vations. More details about the IIR microphysical algorithm

can be found in Garnier et al. (2013). Figure 7b shows the cu-

mulative probability density function of the derived effective

diameter De. As discussed earlier, the analysis is applied to

clouds exhibiting an optical depth 2τa larger than 0.3, which

allows minimizing possible biases in IIR retrievals at small

optical depth. Still, as the IIR microphysical retrievals are

the most robust for type 1 clouds with RBG derived from ob-
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Figure 7. (a) Theoretical microphysical indices β12/10 (solid lines)

and β12/08 (dashed lines) against effective diameter De for a cloud

composed of hexagonal solid columns (blue) and of aggregates

(red), with τa = 0.25. The vertical dashed lines highlight the large

sensitivity to De smaller than 15 µm (see text). (b) Cumulative

probability density function of De retrieved from IIR microphys-

ical indices for type 1 clouds (green, measured RBG) and by com-

bining type 1 and type 2 clouds (black). Data set: single-layered

cirrus randomly oriented ice with high confidence, base temper-

ature <−20 ◦C, extended CALIOP optical depth measurements,

2τa > 0.3, over ocean, 2008.

servations as described in Garnier et al. (2013), the results

are shown for type 1 clouds (green) only and by combining

type 1 and type 2 clouds (black) in order to assess the impact

of possible biases in the latter case. For both configurations,

only 0.3 % of the retrieved diameters are smaller than 15 µm,

which confirms that the observed behavior of the τvis / τa ra-

tios with respect to Tc cannot be explained by very small

crystal sizes, especially because IIR retrievals are the most

sensitive to small sizes, as evidenced in Fig. 7a.

IIR microphysical retrievals are representative of the small

mode of the particle size distribution (Mitchell et al., 2010).

Nonetheless, they indicate that IIR absorption optical depth

is sensitive to the presence of ice crystals exhibiting these

ranges in effective diameter, and the expected τvis / τa ratio

can be estimated from the simulations shown in Fig. 2. The

median expected ratios are plotted in Fig. 8a against the cen-

troid temperature Tc (thick lines), together with the median

observed ratios (thin lines) to facilitate the discussion. The

green curves are for type 1 clouds whereas the black curves

show the results obtained by combining type 1 and type 2

clouds. As the black and green curves are very close in the

overlapping region, the analysis is conducted by combining

all clouds to take advantage of the larger number of samples,

especially at the coldest temperatures (Fig. 8b). The expected

τvis / τa ratio (thick lines) steadily increases from 1.8± 0.1 at

Tc = 195 K up to 1.95± 0.1 at Tc larger than 230 K. This re-

sult is driven by the fact that effective diameters are found in-

creasing as temperature increases from 195 up to 230 K, and

with a decreasing occurrence of retrieved hexagonal solid

columns, as will be shown in Sect. 4.5.

There is an obvious disagreement between observed and

expected variations with temperature of the τvis / τa ratios,

which needs to be explained. The accuracy of the theoret-

Figure 8. (a) Median observed (thin lines) and expected (thick

lines) τvis / τa ratio± standard deviation and (b) associated samples

count against temperature Tc for type 1 clouds (green, measured

RBG) and combined type 1 and type 2 clouds (black). Same data

set as in Fig. 7b.

ical simulations is difficult to assess, but it is unlikely that

they do not correctly reproduce the general behavior with re-

spect to effective diameter. The expected τvis / τa ratios are

weakly sensitive to the microphysical properties, so that the

overall disagreement between observed and expected ratios

is unlikely to be attributable to errors in IIR microphysical re-

trievals. However, even though CALIOP retrievals are robust

because they are directly derived from the measured cloud

layer two-way transmittance, the retrieved quantity is the ap-

parent optical depth, which can be converted to the single-

scattering optical depth only after applying a correction for

the effect of multiple scattering. After rewriting Eq. (2) as

τapparent = η · τvis = ηT · τvis,T, (14)

where ηT is the “true” multiple scattering correction factor

and τvis,T is the “true” single-scattering visible optical depth,

it can be seen that variations of τvis / τa could be accounted

for by a correction factor ηT, which increases as Tc decreases.

This tentative explanation is investigated in the following

section.

4.4 CALIOP multiple scattering factor

Following the approach introduced by Platt (1973), the

“bulk” multiple scattering factors ηT, derived by reconciling

the observed and the expected ratios of visible optical depth

to infrared absorption optical depth, are now examined. For

every cloud sample used to build Fig. 8a, we invoke the rela-

tionship given in Eq. (14) to derive

ηT = η ·

(
τvis

/
τa

)
observed(

τvis

/
τa

)
expected

. (15)

The 2-D histogram of ηT (y axis) and Tc (x axis) is shown in

Fig. 9a for the same data set as in Fig. 8 and by combining

type 1 and type 2 clouds. The mean multiple scattering fac-

tor is found to be decreasing from ηT = 0.8 at Tc = 200 K to

ηT = 0.6 at 220 K and then more slowly to ηT = 0.5 at 240 K,

which is the lower limit if scattering is only due to diffraction
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Figure 9. Two-dimensional histogram of multiple scattering factor

ηT and (a) temperature Tc and (b) equivalent diameter Deq. The

color code is the number of samples. The median and mean val-

ues against Tc are the black solid and dashed lines, respectively. In

Fig. 9a, the horizontal red dotted dashed line shows the mean value

of ηT overall (0.601). The dotted lines indicate values discussed in

the text. Same data set as in Fig. 8, all clouds combined.

(Hogan, 2008). The overall mean value of ηT is 0.601, which

is encouraging, since this is essentially identical to the con-

stant value η = 0.6 used in the version 3 CALIOP operational

algorithm. The results shown in Fig. 9 are for the 12 months

of 2008. The same analysis has been applied during 2010 and

2012, and very similar results within a few percents over the

whole range of temperature are obtained (not shown), with

overall mean values of ηT equal to 0.604 and 0.602, respec-

tively. Lamquin et al. (2008) also found larger values of ηT

at temperatures colder than 210 K than at 230–240 K. Jos-

set et al. (2012) reported a mean value ηT = 0.61± 0.15 for

mid-layer temperatures colder than 233 K but by considering

(τvis /τa)expected from Eq. (15) about 15 % larger than estab-

lished from this study.

Variations of the multiple scattering factor reflect changes

in the probability that a scattered photon will stay within the

field of view and subsequently contribute to the measured

signal. This probability becomes smaller as the lateral dis-

placement of the photon in the clear region below the cloud

increases and possibly exceeds the receiver footprint. The

lateral displacement increases with the diffraction angle θ ,

which is inversely proportional to the ice crystal equivalent

diameter Deq, defined as the diameter of a sphere of equiv-

alent volume (Nicolas et al., 1997; Comstock and Sassen,

2001). For further evaluation, the 2-D histogram of ηT and

equivalentDeq derived from the IIR microphysical algorithm

is shown in Fig. 9b. It is seen that, as expected, the mean

value of ηT progressively decreases as Deq increases or as

the diffraction angle θ decreases. As the IIR effective diam-

eter is sensitive to the small mode of the size distribution, it

is a priori underestimated for many of these clouds, so that

only qualitative conclusions can be drawn. Finally, the rela-

tion between ηT and a simplified estimate of the lateral dis-

placement resulting from forward diffraction only is exam-

ined. By taking the centroid altitude Zc as the “bulk” cloud

altitude, the distance between the diffracting ice crystals and

the region where the two-way transmittance is measured is

Figure 10. (a) Mean value of the multiple scattering factor ηT as a

function of visible optical depth (τvis,T) and estimated lateral dis-

placement (ld); (b) associated number of samples. Same data set as

in Fig. 9.

the difference between Zc and the altitude Zb taken 2 km be-

low the cloud base altitude. Thus, the lateral geometric dis-

placement (ld) is roughly estimated as

ld= θ · (Zc−Zb)=
1.22λ

Deq

· (Zc−Zb) . (16)

Figure 10a shows the mean value of the multiple scattering

factor ηT as a function of the “true” visible optical depth

τvis,T derived from Eq. (14) and of the estimated lateral dis-

placement. The corresponding number of samples is shown

in Fig. 10b. For most samples, optical depth is smaller than

1 and the estimated ld is found to be smaller than 60 m. For

comparison, the radius of the CALIOP receiver footprint is

about 50 m and the radius of the laser footprint is about 42 m

(Hunt et al., 2009). The mean value of ηT is found to be in-

creasing toward the single-scattering limit (ηT = 1) as the es-

timated value of ld increases (Fig. 10a) and increasing less

rapidly as optical depth increases. It is recognized that ld is a

crude estimate based on simplified geometric considerations

and scattering due to diffraction only, and a quantified dis-

cussion would be hazardous. Nonetheless, these qualitative

results indicate that the “bulk” multiple scattering factors ηT

derived by reconciling observed and expected τvis / τa ratios

at cloud layer scale are a real measurement of the result of the

complex journey of the photons within and below the layer

due to diffraction and scattering.

4.5 Discussion: implications for CALIOP retrievals

Several parameters related to ice crystal microphysics are

retrieved from the CALIPSO mission. Lidar ratios derived

from measurements of the two-way transmittance provide

insights into ice crystals scattering phase function at 180◦,

and depolarization ratios at 532 nm are an indicator of ice

crystal shape ratios (Noël et al., 2002). These measured pa-

rameters, available at global scale, have been compared with

simulations for numerous ice crystal models (Baum et al.,

2011). The depolarization ratio of semi-transparent cirrus

clouds observed by CALIOP is not expected to be signif-
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Figure 11. Two-dimensional histogram of (a) τvis (η = 0.6) and

(b) τvis,T (ηT from this study), and centroid temperature Tc. The

color code is the number of samples. Same data set as in Fig. 9.

icantly impacted by multiple scattering (Reichardt and Re-

ichardt, 2003). However, the derived lidar ratio is inversely

proportional to the multiple scattering factor (see Eq. 5).

The changes in optical depth and lidar ratio resulting from

using ηT as derived above, instead of η = 0.6 as used in the

standard retrieval, are now examined.

4.5.1 Optical depth

The multiple scattering factor has been found to vary be-

tween ηT = 0.8 and ηT = 0.5 as temperature increases and to

be equal to 0.6 on average. In this case, the CALIOP optical

depth retrieved by using a constant value η = 0.6 is overes-

timated by 30 % on average at the coldest temperatures and

underestimated by 15 % on average at the warmest ones. The

resulting changes in optical depth histograms are shown in

Fig. 11, which compares the 2-D histograms of τvis (η = 0.6,

Fig. 11a) and τvis,T derived from Eq. (14) (ηT, Fig. 11b)

and centroid temperature, Tc. Note that in Fig.11b, τvis,T is

mostly larger than 0.3, because the analysis is conducted for

2τa larger than 0.3. τvis,T exhibits a general increase with

increasing temperature (Fig. 11b), which is not seen in τvis

(Fig. 11a). This implies that on average, the extinction coef-

ficients derived from CALIOP using ηT would increase more

rapidly with temperature than those retrieved using η = 0.6.

This change would also be reflected in the ice water content

estimates reported in the CALIOP data products, because ice

water content is inferred from a parameterization based on

extinction coefficients (Heymsfield et al., 2005, 2014).

4.5.2 Parameters related to microphysics

Lidar ratios can be derived using Eqs. (3) and (5) with con-

stant or variable multiple scattering factors. Figure 12 com-

pares the 2-D histograms of Scal (η = 0.6, Fig. 12a) and Scal,T

(ηT, Fig. 12b) and centroid temperature, Tc. When η is taken

constant, the median lidar ratio Scal is found to be weakly

varying with temperature, with a maximum Scal = 31 sr at

Tc = 225 K and minima at Tc = 200 and 240 K that are

smaller by only 10 % (Scal = 28 sr). Because η is taken con-

stant, we can conclude that the apparent lidar ratio S∗ is like-

Figure 12. Two-dimensional histogram of lidar ratio (a) Scal

(η = 0.6) and (b) Scal,T (ηT from this study) and centroid tempera-

ture Tc. The color code is the number of samples. The black solid

line is the median value. The dotted lines indicate minimum and

maximum values and associated temperatures (see text). Same data

set as in Fig. 9.

wise only weakly varying with temperature. When the mul-

tiple scattering factor is taken from this study (ηT), the tem-

perature dependence is increased, as the median lidar ratio

Scal,T is found to increase by about 50 % from Scal,T = 21 sr

at Tc = 200 K up to Scal,T = 34 sr at Tc = 228 K and to be

roughly constant for Tc warmer than 228 K These findings

are qualitatively consistent with airborne observations over

the Pacific Ocean as reported by Yorks et al. (2011).

Cirrus lidar ratio and depolarization are both expected to

vary somewhat with crystal habit. Distributions of the inte-

grated volume (blue) and particulate (red) depolarization ra-

tios reported in the CALIOP products are shown in Fig. 13a.

The particulate depolarization ratio is derived from the stan-

dard extinction solutions and thus according to this analy-

sis should be expected to change slightly. Nevertheless, the

temperature-dependent behavior of the particulate depolar-

ization ratio is similar to the volume depolarization ratio,

which indicates that contributions from molecular scatter-

ing is weak and therefore that the current particulate depo-

larization ratio provides sufficient accuracy for this discus-

sion. As for the lidar ratio Scal,T, the depolarization ratio is

found to be essentially constant at Tc larger than 228 K, and

it is found to be increasing as Tc gets colder. This behav-

ior is consistent with observations reported in Sassen and

Benson (2001) based on profiles from ground-based ruby li-

dar located in Salt Lake City, Utah. Furthermore, as seen in

Fig. 13b, IIR retrievals suggest a decrease in the occurrence

of hexagonal solid columns as Tc increases up to the same

limit Tc = 228 K, with no temperature dependence at warmer

temperatures. Keeping in mind that this analysis is conducted

for clouds dominated by randomly oriented ice crystals, both

Fig. 13a and b suggest a progressive transition from solid

columns-like crystals having large aspect shape ratios and

depolarization ratios (Noël et al., 2002) at colder tempera-

tures to more compact and less depolarizing crystals as tem-

peratures increase. The inferred changes of crystal habit with

temperature are in good agreement with in situ observations

(Bailey and Hallett, 2009). Relationships between lidar ra-
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Figure 13. (a) Mean ± standard deviation volume (blue) and par-

ticulate (red) depolarization ratio against Tc; (b) IIR retrieved shape

occurrence against Tc. The dotted lines indicate variations with Tc

discussed in the text. Same data set as in Fig. 9.

tios and depolarization ratios have been reported by numer-

ous authors (e. g. Chen et al., 2002; Reichardt et al., 2002;

Yorks et al., 2011), and a degree of correlation is expected.

Overall, these observations show an apparent consistency be-

tween several independently retrieved parameters in terms

of variations with layer centroid temperature. The improved

correlation between depolarization ratio and lidar ratio when

the latter is derived using ηT rather than by assuming a con-

stant value is noticeable and deemed another indication of

the overall consistency of our analyses.

5 Conclusions

Infrared absorption optical depths (τa) retrieved from IIR ob-

servations of cirrus clouds at 12.05 µm are compared to vis-

ible extinction optical depths (τvis) derived from CALIOP

observations of the same cloud when direct measurements

of the apparent two-way transmittance are available. IIR ab-

sorption optical depths are derived for suitable scenes se-

lected by taking advantage of the vertical information avail-

able from collocated CALIOP observations. In this paper, we

focus on single-layered cirrus clouds over ocean, composed

of randomly oriented ice according to CALIOP ice–water

classification (high confidence) and with base temperatures

colder than −20 ◦C.

The retrieved τvis / τa ratios exhibit an unexpected quasi-

linear dependence with temperature at layer centroid altitude

Tc. The observed values increase by about 10 % for each 10 K

decrease in temperature over a range from Tc = 240 K down

to Tc = 200 K. This behavior is not consistent with theoret-

ical expectations inferred from simulations and IIR micro-

physical retrievals of ice crystal effective diameter De and

most probable crystal shape. The suggested explanation is a

temperature-dependent multiple scattering factor ηT, which

is assumed constant and equal to 0.6 in CALIOP version 3

optical depth retrievals.

A “bulk” multiple scattering factor is derived by reconcil-

ing the retrieved and expected τvis / τa ratios after a detailed

analysis of possible biases and after applying corrections,

whenever relevant. For IIR, it is shown that the cloud radia-

tive temperature can be derived a posteriori from CALIOP

cloud extinction profiles. IIR standard version 3 absorption

optical depths are corrected a posteriori and are augmented

by 1 to 17 % with corrections that increase with geomet-

ric thickness and optical depth. Biases resulting from the

background radiances computed using the radiative transfer

model and GEOS 5 ancillary data are also evaluated by com-

paring retrievals for which τa is from computed background

radiances (type 2 clouds) with more accurate retrievals for

which the background radiance could be measured in neigh-

boring pixels (type 1 clouds). After correction for the cloud

radiative temperature, the τvis / τa ratios for type 1 and type

2 clouds are found in satisfactory agreement. The multiple

scattering factor is therefore derived by combining both types

of clouds, which ensures a significant number of samples be-

tween 200 and 240 K. For CALIOP, selection biases in stan-

dard version 3 constrained retrievals are seen for visible opti-

cal depths smaller than about 0.6. When using only those op-

tical depths originally accepted by the constrained retrieval

algorithm, optical depth selection biases are seen to increase

as optical depth decreases. For optical depths of 0.3, these bi-

ases introduce an overestimate of ∼ 50 %. For this analysis,

all the layers for which an apparent two-way transmittance

could be measured are considered, as using this extended

data set substantially improves the τvis / τa ratios at small op-

tical depths while at the same time substantially increasing

the number of layers included in the study. However, because

biases are still evidenced at 2τa smaller than 0.3, the multi-

ple scattering factor is only estimated for 2τa larger than this

limit.

The bulk multiple scattering factor is found to decrease

from ηT = 0.8 at Tc = 200 K to ηT = 0.5 at Tc = 240 K and

to be equal to 0.6 on average. The temperature dependence

of ηT retrieved from this study appears plausible according

to simplified estimates of key parameters driving the multi-

ple scattering factor. The next step in the assessment would

be to perform detailed simulations in order to improve the

accuracy of the current results. These findings, if confirmed,

would imply that CALIOP optical depth and extinction coef-

ficients from constrained retrievals are on average overesti-

mated by about 30 % at Tc = 200 K and underestimated by

about 15 % at Tc = 240 K for the data set selected in this

study. This statement would need to be confirmed through

comparisons with retrievals from other instruments. The ap-

parent consistency between several independently retrieved

parameters related to microphysics, namely the integrated

depolarization ratio, the ice crystal shape occurrence derived

from the IIR, and the lidar ratio is reinforced when the lat-

ter is derived from ηT rather than by assuming a constant

value. The increased correlation between lidar ratio and de-

polarization ratio is considered to be further evidence that the

ηT parameterization more accurately reflects the underlying

microphysics of cirrus clouds. These results could contribute

to a better characterization of optically thin cirrus clouds at
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night over ocean, with subsequent opportunities for improved

understanding of possible formation mechanisms.

This paper illustrates the added value of synergetic anal-

yses of perfectly collocated retrievals from the IIR passive

radiometer and the CALIOP active lidar. Understanding and

estimating biases, even for a limited data set, allows refin-

ing uncertainty estimates and improving the consistency of

the retrievals and provides guidance for the development of

future versions of the products. Continuous assessment and

improvement of the CALIPSO data record, now spanning

9 years in both the visible and the thermal infrared spectral

domains, are of importance for a better understanding of the

radiative impact of cirrus clouds at global scale.
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