
HAL Id: hal-01120180
https://hal.science/hal-01120180v1

Submitted on 25 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An MDE-based framework to support the development
of Mixed Interactive Systems

Emmanuel Dubois, Christophe Bortolaso, Damien Appert, Guillaume Gauffre

To cite this version:
Emmanuel Dubois, Christophe Bortolaso, Damien Appert, Guillaume Gauffre. An MDE-based frame-
work to support the development of Mixed Interactive Systems. Science of Computer Programming,
2014, vol. 89, pp. 199-221. �10.1016/j.scico.2013.03.007�. �hal-01120180�

https://hal.science/hal-01120180v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12423

To link to this article : DOI :10.1016/j.scico.2013.03.007
URL : http://dx.doi.org/10.1016/j.scico.2013.03.007

To cite this version : Dubois, Emmanuel and Bortolaso, Christophe
and Appert, Damien and Gauffre, Guillaume An MDE-based
framework to support the development of Mixed Interactive Systems.
(2014) Science of Computer Programming, vol. 89 . pp. 199-221. ISSN
0167-6423

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12423/
http://oatao.univ-toulouse.fr/12423/
http://dx.doi.org/10.1016/j.scico.2013.03.007
mailto:staff-oatao@listes-diff.inp-toulouse.fr

An MDE-based framework to support the development of
Mixed Interactive Systems

Emmanuel Dubois a,∗, Christophe Bortolaso b, Damien Appert a,
Guillaume Gauffre a

a University of Toulouse, IRIT – Elipse118, route de Narbonne, 31 062 Toulouse Cedex 9, France
b Queen’s University – School of Computing, Equis Lab, 141 Collingwood St., Kingston, Ontario, Canada K7L 3X6

h i g h l i g h t s

• Five benefits justify the use of MDE for developing Mixed Interactive Systems.
• A combination of MDE tools is proposed to develop complex interactive systems.
• MDE approach contributes to the increasing popularity of Mixed Interactive Systems.
• Multiple design facets of MIS are easily supported by MDE approaches.
• Early design decisions are strongly anchored within a development approach of MIS.

Keywords:

Mixed Interactive System

Model-Driven Engineering

Development process

Domain-specific language

Flexible model transformation

a b s t r a c t

In the domain of Human–Computer Interaction (HCI), recent advances in sensors,
communication technologies, miniaturization and computing capabilities have led to new
and advanced forms of interaction. Among them, Mixed Interactive Systems (MIS), form
a class of interactive systems that comprises augmented reality, tangible interfaces and
ambient computing; MIS aim to take advantage of physical and digital worlds to promote
a more transparent integration of interactive systems with the user’s environment. Due
to the constant change of technologies and the multiplicity of these interaction forms,
specific development approaches have been developed. As a result, numerous taxonomies,
frameworks, API andmodels have emerged, each one covering a specific and limited aspect
of the development of MIS.

To support a coherent use of these multiple development resources and contribute to
the increasing popularity of MIS, we have developed a framework based on Model-Driven
Engineering. The goal is to take advantage of Model-Driven Engineering (MDE) standards,
methodology and tools to support the manipulation of complementary Domain Specific
Languages (DSL), to organize and link the use of different design and implementation
resources, and to ensure a rationalized implementation based on design choices.

In this paper, we first summarize existing uses of MDE in HCI before focusing on five
major benefits MDE can provide in a MIS development context. We then detail which
MDE tools and resources support these benefits and thus form the pillars of the success
of an MDE-based MIS development approach. Based on this analysis, we introduce our
framework, called Guide-Me, and illustrate its use through a case study. This framework
includes two design models. Model transformations are also included to link one model
to another; as a result the frameworks coverage extends from the earliest design step to a
software component-based prototyping platform. A toolset based on the Eclipse Modeling

∗ Corresponding author. Tel.: +33 561557405.

E-mail addresses: Emmanuel.Dubois@irit.fr (E. Dubois), bortolas@cs.queensu.ca (C. Bortolaso), Damien.Appert@irit.fr (D. Appert),

Guillaume.Gauffre@irit.fr (G. Gauffre).

Framework (EMF) that supports the use of the framework is also presented. We finally
assess our MDE-based development process for MIS based on the five major MDE benefits
for MIS.

1. Introduction

One of the goals of Human–Computer Interaction is to reduce the gaps between users and systems [34]. Solutions
such as, graphical user interfaces (GUI), advanced rendering, interaction metaphors, multimodality and computer
assisted collaborative tools have been widely studied. However, recent advances in sensors, communication technologies,
miniaturization and computing capabilities have led to the emergence of new interaction forms that further reduce these
gaps. These new interaction forms rely on the combination of the physical and digital worlds in order to take advantage
of computing capabilities and of users’ abilities to manipulate objects within their physical environment. The well-known
Nintendo Wii is a simple example of such systems. For example, in the Wii Mario Kart game, (see Fig. 1) the young user is
driving a digital car on a digital road. Instead of pressing buttons on a game pad, the user handles a physical steering wheel.
Several sensors detect the motion of the steering wheel and translate it into a set of digital commands to be applied to the
digital car. To further increase the immersion in the physical world, one can even chose to sit in a carton to simulate the car
itself!

Different terms are used to depict these complex forms of interaction such as augmented reality systems, tangible user
interfaces (TUI), or even pervasive systems. In this paper, we adopt the general term ‘‘Mixed Interactive Systems’’ (MIS)
to refer to these systems. MIS are defined as interactive systems in which users interact with a digital system and involve
the manipulation and/or perception of physical artifacts. Appropriate devices, like sensors and actuators, interpret events
occurring in the physical layer, translate these events into the digital domain and report to the users the results of the
computations through a physical layer. MIS therefore form a class of interactive systems that comprises all the different
combinations of digital and physical worlds [13].

Historically, Mixed Interactive Systems were initially targeted at specific, highly demanding and constrained application
domains such as surgery [28], air traffic control [30] and even military applications [32]. However, these interaction forms
are now found in a large set of application domains (e.g. arts, knowledge transfer, communication, marketing) and have
largely demonstrated their potential benefits [43] from end-users’ perspective. To face this growing interest and to ease
the understanding and implementation of these interaction forms, efficient development resources are required. These
are essential to effectively support the development of MIS, i.e. their design, implementation and evaluation. However,
compared to traditional interactive systems based on the screen/mouse/keyboard paradigm, these interaction forms are
tremendously complex and implies newchallenges. Indeed, Shaer and Jacob [42] underline that ‘‘designing and building a TUI1

requires cross-disciplinary knowledge’’ and argue that due to the intrinsically complex nature of these systems, ‘‘developers
face several conceptual, methodological and technical difficulties’’.

This complexity is mainly due to two aspects:

• Interaction design is no longer confined to desktop environments.
• Additional dimensions need to be considered.

For example, the presence of physical artifacts, the strong links between physical objects and digital data implied by
MIS and the variety of devices and technology must be addressed. Consequently, suitable development resources have
been developed. On one hand conceptual taxonomies and models [24,47,11] have been defined to understand mixed
interactive situations, the elements characterizing them and their properties. On the other hand, software toolkits and
frameworks [22,25,13], rapid prototyping environments [10] or runtime platforms [4,26] have been proposed to structure
the implementation of MIS. These two sets of development resources cover the relevant aspects of the development of MIS.
However, these two complementary resources (i.e. design model/taxonomies and toolkit/framework) still remain highly
separated, thus creating a gap between early design specifications and implementation considerations. Indeed, concrete
and systematic links have not been clearly expressed between high-level design models and implementation frameworks.

In this context, combining and taking advantage of these two type of resources, i.e. the set of abstract supports for the
design and the set of concrete supports for the implementation,would ensure amore efficient support to the development of
MIS. First, development time could be reduced through the reuse of components thus rationalizing the design options. Then
MIS potentials could be more systematically exploited thanks to a clarification of MIS concepts and specificities . Finally,
possible automation of parts of the development would be more easily identified. Our contribution to a more integrated
development of MIS aims to bring these perspectives together by adopting a Model-Driven Engineering (MDE) approach.
Indeed, MDE promotes the interconnection of models through the use of mappings and transformations [18] and relies on
the definition of metamodels, each of them carefully describing a model, i.e. a specific point of view of the system.

1 TUI stands for Tangible User Interface and is one form of Mixed Interactive Systems.

Fig. 1. A young player using the Nintendo Wii Mario Kart in a physically immersed version.

During the last decade, MDE principles have been explored to tackle HCI development issues. Consequently, we first
present in this paper a review of the literature, related to previous uses of MDE in HCI. We then focus on five major benefits
of MDE particularly relevant to MIS, a specific category of HCI as defined previously in this paper. Among the existing MDE
tools and resources we identify and briefly introduce those supporting these benefits: they form the pillars of the success
of an MDE-based MIS development approach. Based on this analysis, a detailed presentation of Guide-Me, our MDE-based
framework for MIS development, follows. Guide-Me includes:

• Two complementary Domain Specific Languages (DSL): each one addresses some of the most relevant design and
implementation facets of MIS. The goal of these two DSL is mainly to help designers and developers in expressing their
choices at different steps of the development process.

• Mappings and transformation mechanisms between these models and component-based prototyping platforms: these
mechanisms are required to maintain consistency from design to runtime, through flexible links between models of
different design steps.

Then, we present a concrete environment based on Eclipse EMF that supports the use of our framework. The different
aspects of our framework are illustrated all along the paper on a case study called ‘‘notepad assisted slideshow’’. Finally, we
discuss the outcomes and limits of Guide-Me with regards to the five benefits of MDE for MIS, identified at the beginning of
the paper. This analysis (i) reveals aspects of an MDE-based development process covered by our framework for MIS and,
(ii) supports the identification of future developments of the considered framework.

2. Model Driven Engineering in human–computer interaction

The fundamental principle of Model Driven Engineering (MDE) is that ‘‘Everything is a model’’ [5]. When developing a
system, several models are instantiated to describe different points of view on the system. For each point of view, i.e. a
model, ametamodel defines themodel‘s rules and syntax. In addition, model transformations are used to systematically link
several metamodels. For example, when developing an interactive system, high-level design models and software code are
different representations of the same system.MDE approaches and tools have been successfully used to obtain a final system
implementation from conceptual and abstract models. However as underlined in [49], most of the MDE experiences focus
on the design of ‘‘the functionality and persistency of Information Systems [. . .], pushing into the background the UI modeling ’’.
And yet, HCI plays a large role in the design and acceptability of software systems.

Therefore, the HCI community has also worked at developing the use of models during the design process. HCI design
approaches relying on the use of models are known under the generic term of Model Based User Interface Development
Environments. Among them, one of the earliest works established a link between the data type structures required by the
application and the widgets used in the layout to present and manipulate the data [19]. As a result high level specifications
were transformed into runnable code which contributes to more rapid development process. Following the successful use
of MDE principles in different contexts, such as multi-platform systems, dynamic web applications or reverse engineering,
HCI design approaches relying on models also explored the benefits of advanced and structured MDE resources. In the
following sections, we illustrate this trend by synthesizing existing MDE attempts in the field of HCI. We have structured

our review according to two main usages of MDE in HCI: (1) a support for the implementation and (2) a support for the
system adaptation.

2.1. MDE for supporting HCI implementation

The first category of work exploring MDE in HCI, aims to offer support to the implementation based on specifications
expressed in different models: different abstraction levels of a system are thus combined. These approaches promote a
distinction between Platform Independent Models (PIM), used to describe different design considerations, and Platform
Specific Models (PSM), used to describe aspects of the concrete software implementation. PSM are thus highly dependent
on the implementation platform. Among them, PervML [41] is an extension to UML that takes into account the specific facets
of pervasive systems, especially the services and communications involved. Using transformations, each PervML model is
mapped to OSGI platforms. This approach manages the heterogeneity of interaction techniques by promoting modularity
and reusability. However, the modeling resources implied are system-centered and thus user-centered considerations are
difficult to consider into this MDE process. Furthermore, no mechanisms are proposed to integrate design choices during
transformations, limiting the developers’ interventions.

The distinction between PIM and PSM is also present in numerous works that are not affiliated with MDE approaches.
They use markup languages linked together with MIS development toolkits. For example, an extension of the User Interface
Markup Language (UIML), the CUIML schema [39], is used in DWARF, a platform dedicated to the prototyping of Augmented
Reality systems. Similarly, the APRIL schema [29] associated with the Studierstube SDK, and theMRIML schema [50], enable
the creation of models to configure platforms and to generate a description of the interaction technique. APRIL and MRIML
use XSLT and generate Virtual Reality Markup Language (VRML) or HTML. The use of markup languages such as XSLT, VRML
and HTML offers a high level of abstraction (as opposed to code), but the underlying architecture remains specific to a
dedicated platform. Conversely, approaches such as WComp [10] or Open-Interface [36] adopt a highly generic approach
to describe the software and are not limited to a set of specific technologies as Studierstube does with marker-based video
recognition input or VRML rendering.

In terms of implementation, additional considerations at higher levels of abstraction are also relevant and have applied
MDE approaches. For example, the FIIA framework proposes a metamodel with conceptual and distribution levels [51]. By
linking these two levels using a specific transformation engine, FIIA assists the development of distributed and collaborative
systems. Therefore, FIIA does not particularly focus on user interaction, but highlights the helpfulness ofMDE for distributed
computing considerations, a complementary facet of interactive systems.

Although these approaches play a role in the insertion of HCI considerations into an MDE-based design process, they
do not clearly support the entire design process. Indeed, only specific steps of the design process are covered such as the
generation of running applications or the distribution over the network. Some rare attempts seek to cover the whole design
cycle of HCI with an MDE-based approach: this is the case of Teresa [33] and the TOOD+ approach [31]. However, these two
approaches have the severe drawback that the models used at each step of the design are specific to the approach. Only
Concur Task Tree (CTT) model [37] can be used with Teresa and, TOOD+ recreates its own set of designmodels for each step.
In addition, no concrete mechanism is described or offered to link these approaches with other models: links between the
different models involved are hard-coded in the environments. TERESA and TOOD+ thus appear as universal ‘‘black boxes’’
to be used to design HCI with a MDE-based design process. As a result, designers are no longer free to use their preferred
models in the analysis, design or implementation steps, and are forced to use those provided by the approach.

2.2. MDE for supporting HCI adaptation

The second category ofworks exploitingMDE inHCI is related to the adaptation of systems. Suchworks take advantage of
MDE principles in order to generate multiple but coherent versions of a unique application [7]. For example, an application
involving the famous triptic screen/mouse/keyboard could be derived in a first version executed on a desktop-based device
and. Simultaneously, the same application could be derived in another version running on a smartphone and thus involving
adapted interaction resources such as a smaller screen and multi-touch input.

More recent works in this area are intended to manage this sort of adaptation at run-time. These systems are commonly
known as plastic and context-sensitive interactive systems [46]. With such interactive systems, tasks, devices, dialog, users’
abilities, etc. are taken into account at run-time to dynamically adapt the structure and/or appearance of the interactive
system. To do so, these systems are defined as a set of models andmappings between them. In addition, to support run-time
adaptations, models and their relationships change dynamically at run-time: changes in one model at run-time affect the
other models and the behavior of the system; transformations implied can either be parameterized with ergonomic rules
or controlled by the user [46]. These works also provide explicit metamodels, mappings and interactive transformation
mechanisms of great interest to the HCI community.

2.3. MDE in HCI: outcomes

To summarize, the earliest approaches of MDE in HCI design focused primarily on direct translations from abstract
models to code. This is fully in line with HCI design approaches. Indeed user’s centered questions such as requirements,

tasks, goals or preferences are prevalent when developing interactive systems and allow developers to reason about the
system without placing an emphasis on code and technological preoccupations too early in the process. Further evolutions
of the use of MDE in HCI have been influenced by the kind of models used. Although UML is a well established reference in
terms of models, and offers multiple diagrams to address different aspects, it is not sufficient to describe HCI aspects: too
little attention is paid to the users, their activities and their relationships with the system. As a result, the HCI domain has
progressively developed models to specifically address its central dimensions: MDE in HCI was no longer limited to the use
of UML diagrams. Finally, the latest use of MDE in HCI aims to have models co-existing with the running application. This
allows for dynamic adjustments of the application’s behavior, even for non-experts in the field of programming languages.
The Cameleon framework [8] reconciles and structures these different approaches through the identification of four design
levels: final UIs are considered as a PSM, while three other levels identify different forms and places of possible adaptations
at a PIM level.

It therefore appears that MDE gradually contributes to explicit specific metamodels in HCI engineering. In addition,
established mappings between these metamodels help HCI designers to provide an understanding of the relationships
between models and to specify their adequacy for different development steps. But HCI is still evolving, continually
discovering new and more advanced forms of interaction. Adaptations in the development process are thus required and
the way MDE is used for advanced HCI must continue to evolve.

To anticipate and support these evolutions, we have identified several aspects of MDE that are particularly relevant to
the field of HCI. Among these aspects, five were identified as crucial for the design and engineering of Mixed Interactive
Systems (MIS) [21]. The following section briefly defines these five aspects, highlighting their value for the development of
MIS and placing these benefits within the MIS development process.

3. Model Driven Engineering (MDE) benefits for Mixed Interactive Systems (MIS) development

MDE has proven its usefulness to the field of HCI, especially because of the tools, methods and mechanisms included in
MDE. Among the benefits of MDE to HCI, five appear particularly valuable, relevant and useful for MIS. In particular, MDE is
useful for:

1. Identifying and characterizing the entities
2. Generating multiple representations
3. Constructing, maintaining and manipulating a graph of models
4. Structuring the development process
5. Supporting the integration of design decisions

For each of these five benefits, we briefly summarize its role and illustrate it.We then elaborate on the anticipated benefit
it provides for the development of advanced forms of interaction such as MIS. Further discussions about these selected
benefits can be found in [21].

3.1. Benefit 1: identifying and characterizing entities

HCI design relies on the use of multiple models, each of them focusing on different design considerations. In the previous
section, we highlighted that adoptingMDE for designing HCI facilitates the use of thesemultiplemodels. Indeed, eachmodel
constitutes a specific point of view of the system and therefore deals with a set of specific concepts present in the interactive
system. It is therefore a prerequisite to provide an explicit description of each concept, i.e. a well identified and relevant set
of attributes. Models will act as a reference language and ensure a unified representation and correct understanding of the
system.WhenusingMDE approaches,metamodels help to identify and characterize the entities that are potentially involved
in the system. Metamodels also provide explicit semantics and syntax for supporting the diffusion of models. Indeed they
can be seen as a detailed legend of the concepts used in the model (name, type, hierarchy). As a result, metamodels serve as
a unique reference for understanding the language used to describe the system.

In the context of MIS development, metamodeling is thus the key activity to clarify the intrinsically complex nature of
MIS, the semantics and the role of the multiple entities involved. Each metamodel will serve to establish a solid reference
language for describing MIS.

3.2. Benefit 2: generating multiple representations

In the existing approaches using MDE to produce code from abstract specifications, many solutions generate runnable
programs and simultaneously provide a diagrammatic representation of the software components, ports, events and
exchange of data. However, the development process generally involves different stakeholderswho are used tomanipulating
different representations. The use of MDE approaches thus offers the possibility of generating multiple representations of
a unique model (see Fig. 2). XML, HTML, textual, graphical, partial or detailed views and automatic documentations can be
easily derived with the help of existing MDE automation resources.

Because developingMIS is intrinsically amultidisciplinary activity, offering themost appropriate representations to each
stakeholder will facilitate the building of a common understanding of the system and so ease collaboration and decision-
making.

Fig. 2. Using models to easily link different views of a system and the concrete system itself.

3.3. Benefit 3: constructing, maintaining and manipulating a graph of models

The design of interactive systems, which automatically adapt at runtime, reveals the need to simultaneously combine
multiple models to make decisions. A modification in one model may potentially impact all other models. Graph of models
have been used in particular to express which ergonomic properties are preserved through a link [45]. To support such a
requirement, MDE resources provide different supports for constructing, maintaining and manipulating a graph of models.
More concretely, such supports include tools andmechanisms that explicitly highlight and characterize the relationships and
dependences between models [12]. In graphs of models, nodes usually represent models, while arcs express the presence
of a link (e.g. a transformation) between two models and its properties (e.g. preserving or not specific ergonomic criteria).

Developing aMIS requires tomanage simultaneouslymultiple considerations, all along the development process. A graph
of models will thus be highly supportive for MIS design and implementation to provide a complete overview on the relevant
models and theirmutual impact. In addition, given themultiplicity of existingmodels developed to cover parts ofMIS design,
the presence of cycles in graphs ofmodels will also be useful to highlight equivalent design paths, based on differentmodels,
but covering the same design aspects of MIS. Choosing one cycle, i.e. one set of models, rather than another may then rely
on how familiar the designer is with the proposed sets of models.

3.4. Benefit 4: structuring the development process

HCI design activity traditionally iterates through four phases: analysis, design, prototyping and evaluation. Each phase
involves different models and has to consider and integrate decisions taken in previous phases. Through the explicit
definition of transformations between models, MDE approaches help to structure the development process of interactive
systems. Source models and target models of a transformation may be part of different design phases; implicitly the
transformations create the dependency and sequence order between two design models: they orient the arcs in the graph
of models.

MIS are just a specific and more complex form of HCI. Structuring their development is even more relevant since a wider
range of decisions, related to different facets of the MIS, must be taken before going to the next steps.

3.5. Benefit 5: supporting the integration of design decisions

Finally, developers must take into account design decisions adopted earlier in the development process. Using MDE
provides strong support for the integration of design decisions throughout the development process. Indeed, as we have
mentioned, MDE transformations structure the order in which different design resources are used. They can also be
productive and therefore drive the translation fromone step to another and therefore contribute tomaintain the consistency
in the graph of model.

This benefit will largely support the development of MIS because early and original design considerations, specific for
example to physical characteristics, will be easily integrated into software design reasoning.

3.6. Overview of a MIS development process integrating MDE benefits

To summarize these five benefits, it appears that MDE brings two core elements to the development of MIS. The first
core element is a detailed description of elements composing a MIS. As identified in benefit 1, metamodels clearly identify
and characterize entities involved in the system. The second core element is a scaffold structuring the use of the different
relevantmodels. As expressed by benefit 4, model transformations implicitly highlight dependencies betweenmodels, thus
structuring their use and the design process.

Fig. 3. Integrative illustration of the place of the five MDE benefits in a MIS development process.

Fig. 4. Operational MDE resources, roles and associated benefits for the development of MIS.

Those two core elements are instrumented by MDE’s additional abilities. First it supports the production of multiple
representations of a metamodel. As underlined in benefit 2, information that are conform to a metamodel can easily be
rendered through different predefined format. Second, it offers transformation mechanisms. As depicted in benefit 5, such
mechanisms contribute to integrate design decision all along the design process.

Finally an MDE approach offers an overview of the development process of MIS through the notion of graph of models
(benefit 3) that groups and articulates the two core elements (metamodels and structure) and the identified MDE abilities
(multiple representations and transformations). This summary is illustrated in Fig. 3.

In the previous sections, we emphasized, from a theoretical point of view, which benefits have driven the successful use
ofMDE for the development of HCI and advanced forms of interactive systems such asMIS. In the following section, we focus
on a practical point of view and identify which MDE resources may be useful to concretize each of these benefits. We then
build a generic overview of an MDE-based development process for MIS through which we emphasize the set of relevant
resources as well as their role.

4. MDE resources supporting MDE benefits

As mentioned above, MIS developments may take advantage of five major benefits of MDE approaches. Among the rich
and evolutionary set of tools, languages and mechanisms proposed in MDE, we have identified a subset of MDE resources
that can effectively cover these benefits: this subset of resources is the key to the successful use of MDE for the design and
engineering of MIS. Fig. 4 summarizes these MDE resources and the remainder of this section details their role with regard
to the five benefits identified.

To clearly identify and characterize entities involved in a MIS (Section 3.1), models and their corresponding metamodels
are the first cornerstones of the introduction of MDE in MIS development. The Eclipse Modeling Framework (EMF) offers
appropriate features to effectively develop metamodels. In particular, EMF Ecore allows the creation and editing of class
diagrams, in which a class depicts a type of entity. A class includes attributes and can be connected to other classes through
dependency, inheritance or composition links. EMF Ecore also includes pre-existing primitive types such as EInteger,
EString, EDate. In addition, ECore diagrams enable the graphical editing of class diagrams representingmetamodels. Finally
XMI is the underlying format for storing and exporting class diagrams.

To support model editing, that maintains conformance with the metamodel, GMF2 and SWT3 provide strong support
for generating a graphical editor. They offer basic features for displaying, modifying and saving a model with respect to its
metamodel syntax and semantic. The resulting editor is integrated in the Eclipse environment as a specific plugin. Through
this editor and its basic functionalities, multiple forms of rendering can easily be derived. At a minimum it provides the
designer with textual or graphical representations, but it also facilitates the implementation of more advanced features
such as the generation of HTML pages or the adoption of different views on the model. This contributes towards the second
benefit of MDE to MIS development, offering the possibility of generating multiple representations (Section 3.2).

As mentioned before, the creation of different metamodels is crucial for covering the different design aspects of MIS.
To do so simply relies on creating multiple ECore metamodels, and their associated editors. As a result, multiple views are
added to the Eclipse environment and can be selected according to the metamodel of interest. With this Eclipse toolset, the
main advantage is that all the metamodels and graphical tools for manipulating the metamodel instances are grouped in a
common environment instead of requiring a multitude of standalone applications. This MDE facility therefore contributes
to satisfying the third benefit of MDE to MIS development, constructing, maintaining and manipulating a graph of models
(Section 3.3).

Structuring the development process and supporting a better integration of design decisions in subsequent development
phases rely on the second cornerstone of MDE: transformations. In fact, without them, all the models would be isolated.
The first type of transformation consists of mapping elements (e.g. entities, attributes, associations) of a source metamodel
to elements of a target metamodel. Consequently it transforms abstract models (Platform Independent Models, PIM) into
PlatformSpecificModels (PSM).ATL (ATL Transformation Language) is one language among several that allows the definition
of rules to specify the mappings. In conjunction with ATL, an algorithm using OCL (Object Constraint Language) operations
implements the transformation rules. It defines the behavior that must be applied according to the values of the source
attributes/elements. Later in the development process, such mappings target the code generation. To do so, languages such
asXPand, are specialized in code generation based on EMFmodels. It creates the envelope of the software component, i.e. its
signature. Therefore mappings define an order in which different metamodels must be considered along the development
process and thus help to structure the development process (Section 3.4). The content of the transformation, i.e. the rules
translating an element from a source metamodel into an element of a target metamodel, goes even further and concretely
ensures that design decisions are well considered in further steps of the development process (Section 3.5): they trigger the
creation of specific elements of one of the subsequent metamodels used along the process.

However designing advanced user interfaces requires adjusting the design, fine-tuning the solution: this can only rely
on human expertise. Monolithic code generators and straight model translators are not sufficient; human intervention is
required during the transformation to allow the designer to manually provide additional information. The second type of
transformation addresses this requirement and complements basic mappings. The goal of these advanced transformation
mechanisms is to handle small, reusable and extensible parts of the transformations. The global transformation is thus
split into subparts; the designer can interact at each level and select a solution from several propositions built through the
transformation process; the designer can also, if necessary, adjust the most appropriate transformation result. The result
of the transformation can then be added to a library for further use. In this way, expertise can be captured and packaged
into transformation libraries. Enhancing the reusability of such elements is a second way to promote the integration of
design decision into the development process. Two complementary tools offer such features. The first tool consists of an
ontology used as an input to transformations. For example Protégé [38], an ontology editor, is fully compatible with the
ATL transformation language. Indeed, Protégé allows the querying of the ontology in the definition of the transformation
rules. The execution of the transformation rules thus takes advantage of the knowledge saved in the ontology to perform the
transformation. Conforming to theOWLmetamodel, a Protégé ontology contains links between instances of an attribute (or
a set of attributes) from a source metamodel and instances of an attribute (or a set of attributes) in a targeted metamodel. A
so-called repository is a second tool that complements this knowledge base: it stores the concrete and complete descriptions
of an already existing solution expressed in a model. These advanced transformationmechanisms thus strongly support the
integration of design decisions in subsequent design steps (Section 3.5): elements of the source model are more precisely
and completely taken into account and elements of the target model can be more precisely defined thanks to the ontology
content.

To complement the view provided in Fig. 3 on the place of the benefits of MDE in the MIS development process, Fig. 5
summarizes the roles of the MDE tools and thus highlighting the part of a MDE-based development process to which each
of these MDE tools and resources may contribute.

In the remainder of this paper, we present the Guide-Me Framework. Guide-Me is a concrete instance of this structured
and generic overview of the MDE-based development process for MIS, introduced in the previous sections. The goal of
this concrete instance is to take advantage of (1) the benefits of MDE for MIS, (2) their place in a design process and
(3) the role of MDE tools and resources in a design process. The Guide-Me framework, available online [23], its metamodels,
transformations and other resources are introduced and illustrated in the following sections.

2 GMF: Graphical Modeling Framework; http://www.eclipse.org/modeling/gmp/.
3 SWT: Standard Widget Toolkit; http://www.eclipse.org/swt/.

Fig. 5. Generic overview of an MDE-based development process for Mixed Interactive Systems and appropriate MDE resources.

Fig. 6. Concrete components of the Guide-Me framework and link with the five benefits of MDE for MIS design and engineering.

5. Models involved in the Guide-Me framework

To instantiate the overview given in Fig. 5 of an MDE-based process for the development of MIS several metamodels are
required. Among the multiple design models that have been proposed in the field of MIS, Guide-Me is composed of three
main metamodels. The ASUR metamodel [21] describes the interaction level with a user-centered perspective. Rather than
focusing on the technology used or a specific facet of the system, it provides a detailed overview of the interaction that
takes place between the user and the different elements of the system. To fill the gap between such an abstract view on the
system and its concrete implementation, a complementary metamodel is used: ASUR-IL provides support for expressing
design decisions related to the software architecture and the implementation underlying a MIS. Finally, WComp [10] is a
component based runtime platform used to produce the running application.

The framework also includes mappings and transformations to guide the designer from abstract interaction design
to concrete software implementation. Fig. 6 summarizes the content of the Guide-Me framework and conforms to the
diagrammatic representation provided in Fig. 3 to express how Guide-Me takes advantage of the MDE benefit in a MIS
development process. The following sub-sections detail and illustrate the metamodels. The transformations are described
and illustrated in Section 6.

To illustrate the content of our framework, we first present the ‘‘notepad assisted slideshow’’, a MIS development case
study.

Fig. 7. Use of the ‘‘notepad assisted slideshow’’.

Fig. 8. Main elements of the ASUR metamodel.

5.1. The ‘‘notepad assisted slideshow’’

For oral presentations, sequential slideshow systems like PowerPoint are commonly used. The prototype we have
designed is a physical enhancement of such a slideshow system. It involves a notepad as a ‘‘remote control’’ and provides
several feedbacks. Each page of the notepad is linked to one digital slide (see Fig. 7). When using this prototype, the speaker
opens the notepad at the page corresponding to the slide s/he wants to display to the audience; the speaker can thus write
his own comments on the notepad and easily access the corresponding slide. An additional feature supports the standard
animation steps mechanism: each tap on the notepad advances the slide animation by one step.

The interactive solution we have developed is based on the use of a webcam combined with a fiducial marker based
detection API. As shown in Fig. 7, a marker is printed on each page of the notepad. Each marker corresponds to a notepad
slide number. When captured by the webcam and recognized by the system, the corresponding slide is displayed through
a video-projector. In addition, a touch sensor detects the user taps used for advancing the slide animation. Finally, a private
display is provided to the speaker on which private information is displayed (slide, time elapsed, remaining slides).

This design solution has been conveniently chosen to illustrate the most relevant aspects of our framework; it does not
ensure that the chosen design is the most usable one. It rather demonstrates how design decisions expressed in the earliest
design stages are forwarded in the subsequent development steps.

5.2. ASUR: modeling a Mixed Interactive System

ASUR aims at describing the user’s interaction with a MIS. It stands for Adapter, System, User and Real world. As
introduced and justified in its first definition [15] the ASURmetamodel includes four corresponding types of entities (see left
side of Fig. 8): Adapters which bridge the physical and digital worlds, System depicting the digital entities involved in the
system, theUser of the system and Real objects taken from the physical world and involved in the interaction. Each of these
entities may interact with the others through interaction channels (→): these relationships denote existing information
exchanges when using this interactive system.

The latest evolution of ASUR [14] refines the concept of relationships between entities and channels (see right side of
Fig. 8). Inspired from information theory [44], it describes the relationship between two entities as a composition of an

Fig. 9. ASUR modeling of the ‘‘notepad assisted slideshow’’. Dotted lines emphasize the four layers corresponding to the four main kinds of ASUR

components (Adapter, System, User, Real object) mentioned in the legend (left of the figure).

Fig. 10. Interaction between the speaker and its notepad.

emitter, a channel and a receiver. The emitter (modification method ⊙) expresses the way an entity affects a channel and
the receiver (sensingmechanism⊗) expresses theway the targeted entity senses the channel state. A channel is established
between themand is characterizedby amedium (e.g. light, physical contact, infrared, air). Finally, a representation expresses
the coding scheme used on a channel and is principally characterized by the dimension and language form of the data. These
elements are part of the ASUR metamodel [21] and are also illustrated in Fig. 8.

In the case of the ‘‘notepad assisted slideshow’’, the corresponding model is diagrammatically represented in Fig. 9. The
ASUR diagram should be read as follows: the ‘‘User’’ (U) selects the pages of the ‘‘notepad’’ (R). Each page is detected by
an adapter ‘‘PageDetector’’ (A). In addition, the ‘‘User’’ (U) may click on a second adapter ‘‘StepDetector’’ (A) to animate
the slide. These two adapters deliver digital data to the ‘‘Slideshow’’ (S). The Slideshow provides the data contained in the
current slide. Finally, the state of the slideshow is rendered through two different adapters (A), the ‘‘Private Display’’ and
the ‘‘Public Display’’ respectively providing information to the ‘‘User’’ (U) and the ‘‘Attendees’’ (U).

Fig. 10 shows only a subset of the ASUR model used in our case study, in order to show the attributes of an interaction
channel that are not visually represented on the ASUR diagram shown in Fig. 9. For example, between the Notepad (R) and
the PageDetector (A), the information that is sent is the ‘‘page_id’’. The medium used by the interaction channel (the arrow)
to carry the information is ‘‘light’’. The modification method (the circle on the left, with a dot) is set to physical state: it
expresses how the source entity affects the medium. Conversely, the sensing mechanism (the circle on the right, with a
cross) is set to ‘‘photoSensible Sensor’’: it describes how the information on the medium is captured by the target entity.
The representation (i.e. the gray square below the interaction channel) of the information carried through the medium is an
‘‘identifier’’, characterized by a language form set to ‘‘image’’ and a dimension set to ‘‘2D’’.

The ASUR metamodel [21] provides a concise and structured definition of these different elements. Other design
considerations, such as the notion of grouping mechanisms, can be expressed with the ASUR metamodel but have been
omitted in this paper for sake of clarity. As illustrated above, ASUR can be used in a graphical form or in a textual way
using a markup language. With ASUR, the early phases of MIS design are supported and then influence the next phase of

Fig. 11.Main elements of the ASUR-IL metamodel.

the development: the implementation. Finally, previous works also demonstrated that ASUR is understandable for non-
experts [6].

5.3. ASUR-IL: modeling an abstract mixed interaction software architecture

The ASUR-Implementation Layer (ASUR-IL) model is meant to describe software architecture considerations supporting
the implementation of the system. To express this software oriented point of view, ASUR-IL first exploits the core concepts
of component-based architectures, as expressed by ACME [20]: component , port (◮) and data flow (→). This low level
specification in ASUR-IL is crucial because technologies used in MIS may require different runtime platforms. Component-
based architectures constitute a well-known support to guide several implementation technologies.

Given that ASUR-IL is targeted at interactive systems, this model also conveys the software architecture properties of
interactive systems. As expressed in the Arch model [3], there is a clear distinction between the functional core and the
interaction supports. As a result, the metamodel includes two different forms of ASUR-IL sub-assemblies: on one hand an
entity sub-assembly represents system-dependent components constituting the functional core of the system; on the other
hand an adapter sub-assembly represents system-independent components, in charge of the interaction management.
However, those sub-assemblies need to be broken down further in order to make them easily understandable and reusable.
For that reason an ultimate break down level is applied to each ASUR-IL sub-assembly and expressed in the metamodel.

Entity sub-assemblies adopt the MVC pattern [27]. They are broken down into three parts, a Model, a View and a
Controller . This breakdown promotes a clear distinction between elements of the functional core (the Model, M), actions
on these elements (Controller, C), and information rendering of these elements (View, V). Adapter sub-assemblies follow
the Arch model breakdown of interaction techniques by separating physical and logical interaction components. Adapter
sub-assemblies thus contain two types of components named device (;) and API (). An API constitutes a software
abstraction of the data provided by a device and therefore contributes to the independence of the system with regards to
the technology used; an API also increases the reusability of software components. These two high level breakdowns are
especially relevant when involving heterogeneous interaction modalities: it is therefore interesting to keep a separation
of roles (model, view, and controller) and abstraction levels (device, API) in addition to the modularity and reusability
introduced by Arch and MVC.

These elements of theASUR-ILmetamodel are summarized in the graphical representation of themetamodel (see Fig. 11).
We now illustrate its use in our case study, and draw a parallel to the ASUR model to facilitate understanding.

In the case of the ‘‘notepad assisted slideshow’’, entities of the physical world are not represented in ASUR-IL: obviously,
with physical objects, no software consideration has to be refined. From an interactive software design point of view, the left
side of Fig. 12 illustrates the ASUR-IL input adapter sub-assemblies corresponding to the ‘‘page detector’’ (A) and the ‘‘step
detector’’ (A) previously expressedwith ASUR (see Fig. 9). For each one, a device is identified to capture the input information
and an API has to be instantiated to transform it into a compatible data type. As a result the combination of the ‘‘PageSensor’’

Fig. 12. ASUR-IL modeling of the ‘‘notepad assisted slideshow’’. Below the figure the major elements of the ASUR-IL metamodel are shown: adapter made

of devices and APIs, entity made of model, views and controllers.

Fig. 13.WComp software components assembly corresponding to the implementation of the ‘‘notepad assisted slideshow’’.

(Device) and the ‘‘id_extractor’’ (API) constitutes the first ASUR-IL adapter sub-assembly. Similarly the right side of Fig. 12
depicts the ASUR-IL output adapter sub-assemblies corresponding to the private and public displays (A) identified in the
ASUR model. In-between the adapter sub-assemblies stands the ASUR-IL entity sub-assembly which corresponds to the
‘‘slideshow’’ (S) expressed in ASUR. This sub-assembly involves four components: two controllers (one for each incoming
data), onemodel and one view that groups all the data required to render the current state of the slideshow. From a software
point of view, each roundedsquare corresponds to a software component; triangles denote ports and arrows represent data
flows. An ASUR-IL model of the ‘‘notepad assisted slideshow’’ (see Fig. 12) thus provides a software point of view on the
design solution expressed with ASUR in Figs. 9 and 10.

5.4. WComp: a platform specific (meta) model (PSM)

Currently a third metamodel is used in the Guide-Me framework: WComp [10], a Platform-Specific Model (PSM). The
WComp editing environment is made of Containers and Designers. Containers provide non-functional services required
by components of an assembly at runtime (instantiation, destruction of software components and connectors); Designers
manipulate and adapt component assemblies. WCOMP offers a repository of software components which are classes with
specific properties and events. As a result, each new component must be implemented by a developer. The components’
connectors represent their available inputs/outputs. To interconnect two beans, the data types associated to their connectors
have to be compatible.

In the case of the ‘‘notepad assisted slideshow’’, software components and their connections correspond to the assembly
shown in Fig. 13. Each gray link represents a link and each box with ports on their border depicts one independent software
component. From left to right, the assembly depicts the use of the WebCam device (PageSensor in ASUR-IL model Fig. 12)

linked to a QRcodeTool API. This API is linked to the controller C_index. Below, the device Touch_Sensor (d_StepDetector
in Fig. 12) is linked to the controller C_next. Both controllers are linked to the model component (M_SlideShow) which is
linked to the view (V_fTo_Slide_Slide). Then two links start from the view and are bound to different APIs (SlideToLabel
and SlideToVP). Each API is related to one display component (LabelDisplay and VideoProjector). These display components
implement the private and public displays expressed in the ASURmodel (cf. Fig. 9). Clear links are thus identifiable between
this software view and the previous design views on the same system.

5.5. Discussion: concrete metamodels and MDE benefits

Regarding the specificities of the Mixed Interactive System domain, the two first metamodels (ASUR and ASUR-IL) allow
the capture of themost relevant considerations and as a result supports designer reasoning about specific aspects ofMIS. For
example ASUR-IL modeling forms a bridge between ASUR elements and a component-based implementation withWComp;
it also contributes to the description of a software architecture which is independent of the prototyping environment used
by the developers.

From the point of view of the MDE benefits for MIS, ASUR and ASUR-IL metamodels provide a structured and detailed
description of mixed interaction (Benefit 1, Section 3.1). They also combine different representations, a graphical and a
textual notation in our case (Benefit 2, Section 3.2). In addition, the ASUR-IL perspective is definitely complementary to the
ASUR one, thus clearly separating design concerns. The combined use of these two metamodels therefore helps to support
the use of a graph of models (Benefit 3, Section 3.3).

However, both ASUR andASUR-ILmodels remain at an abstract level and independent fromany concrete implementation
platform. In order to connect the use of these two metamodels to the development process (Benefit 4, Section 3.4), ensure
that ASUR design decisions are well taken into account whenmodeling the systemwith ASUR-IL (Benefit 5, Section 3.5) and
create concrete links between these Platform-Independent Models (PIM) and a Platform-Specific Model (PSM) (i.e. the IDE
in which the system is ultimately implemented), our framework proposes a set of transformations that are presented in the
following section.

6. Transformations involved in the Guide-Me framework

To finalize the concrete instance of an MDE-based development process for MIS (overview given in Fig. 5), model
transformations are required. This second set of MDE resources has been integrated into Guide-Me to link the metamodels
presented above. This allows us to anchor each development step in prior design decisions and results.With transformations,
models become productive. Indeed, they do not simply describe the system but become actors in the development, i.e.
playing a prevalent role in the development of the system. Links between models contribute to the co-existence of the
knowledge embedded in several models.

Model transformations are composed of rules implying source and target elements. In our case, rules can be of two sorts:

– simple mappings between concepts of different models
– more complex operations involving the use of an ontology.

Our framework includes two different model bridges:

– from interaction design (ASUR) to software architecture (ASUR-IL), and
– from software architecture (ASUR-IL) to a runnable implementation (WComp).

For both bridges, a combination of simplemappings and advanced transformationmechanisms is used. Simplemappings
are presented in Section 6.1 and advanced transformation mechanisms, driving the transitions in more detailed, are
described in Section 6.2. Finally Section 6.3 presents an assistive transformation which aims to inform the designer with
ergonomic recommendations during the manipulation of our models and transformations.

6.1. Simple models mappings: linking concepts of metamodels

We first introduce the mapping between the two abstract models before presenting the mapping with the concrete
software components.

6.1.1. ASUR to ASUR-IL mapping

The mappings between these two metamodels are based on the nature of the ASUR entities. First, physical entities such
as the user (U) and the real objects (R) do not have any equivalent in ASUR-IL because they do not have to be implemented
as software components. Then, for each ASUR adapter (A), the transformation creates an ASUR-IL adapter sub-assembly,
containing one physical component (device) and potentially several logical components (API).

Finally, for each ASUR digital entity (S), an ASUR-IL entity sub-assembly is created containing onemodel (M) component,
and one or several view (V) and controller (C) components. The number of views and controllers is driven by the interaction

Fig. 14. Illustration of ASUR to ASUR-IL and ASUR-IL to WComp mappings on the ‘‘notepad assisted slideshow’’.

channels connected to each ASUR entity. Indeed interaction channels constitute an additional source of information to
perform the transformation of an ASUR model into an ASUR-IL model:

– Sensing mechanisms and modification methods are used to create and characterize controller and view components,

– Medium of a channel is used to create and characterize the corresponding device,

– Dimension and language form of a channel are used to create and characterize the corresponding API component.

In the case of the ‘‘notepad assisted slideshow’’, twoASUR-IL input adapter sub-assemblies result from the transformation
of the two ASUR input adapters (A). Similarly two ASUR-IL output adapters are generated due to the public and private
displays (A) in the ASUR model. Finally, the transformation produces only one ASUR-IL entity sub-assembly because the
ASUR model involves only one digital entity (S). To refine these five large sub-assemblies, finer ASUR-IL elements are then
identified and used to break down the sub-assemblies into devices and API or Model, View and Controller as explained
above. For example, the mapping automatically generates a default ASUR-IL device (d_PageDetector) and a default ASUR-IL
API (a_index) to break down the ASUR-IL input adapter sub-assembly corresponding to the ASUR pageDetector adapter.

The top part of Fig. 14 illustrates this mapping in the part of the case-study corresponding to the page sensing (step
detector is left apart for clarity reasons). It particularly highlights the important influence of the attributes of different ASUR
elements and the fact that the user and the physical notepad have no equivalent in ASUR-IL.

6.1.2. ASUR-IL to PSM mapping

Our transformation from ASUR-IL to WComp metamodels is implemented as trivial mappings. These mappings mainly
rely on the three concepts of component, port and data flow.

As shown on the bottom part of Fig. 14, in most cases, an ASUR-IL component will be transformed into one
WComp software component. Its component signature (input/output interface) is necessarily conforming to the ASUR-IL
specification (port, data type). However, the resulting component can either be an existing component or a newone to create.
In the first case, the component has to be chosen from the set of already implemented components. In the second case, the
component can just be partially generated by the transformation. Only the structure of the component is generated with
respect to the expected signatures. The implementation of the component behavior remains the developer’s responsibility.

As a result, a set of WComp components (fully implemented or just skeleton) is identified and the transformation is also
in charge of creating the appropriate connections between those WComp components. The transformation therefore ends
with the creation of a WComp assembly containing the chosen or partially generated components and the links between
them.

6.2. Advanced model transformations: using an ontology

For many reasons, such as performance, reliability or usability problems, further design iterations may lead to the
identification and to the choice of alternative solutions such as the use of a different device (e.g. IR camera, Kinect). To

Fig. 15. Ontology excerpt used in the ASUR to ASUR-IL transformation.

ease the identification of multiple solutions and increase the reuse of solutions already considered in past design processes,
we have defined an ontology describing a set of solutions linking classes or attributes of the source and target models. The
ontology also contains some explicit links between devices and APIs that can be combined.

During the transformation, designers have a choice of whether or not to use the ontology. If the ontology is used,
designers may select from several solutions suggested by the ontology. For instance, properties of an ASUR interaction
channel (medium, dimension and language form) influence the identification of ASUR-IL devices and APIs. Therefore, on
the basis of these ASUR properties, the ontology is used to determine if existing pairs of device and API components present
in the ontology are compatible with the considered values of the ASUR model properties being transformed. Similarly, the
ontology assists the transformation from ASUR-IL to WComp.

Fig. 15 highlights a compatibility example of the ASUR-IL device ‘‘WebCam’’ with the ASUR-IL API ‘‘QRCodeTool’’. This
combination also complies with the description of the ASUR adapter and related channels provided in the interaction design
model: medium and language formsmatch the initial design decisions expressed in ASUR (light, image). This pair of ASUR-IL
components is therefore one of the solutions proposed by the ASUR to ASUR-IL transformation.

In order to embed the ontology in the transformation mechanism, we developed a repository of existing components
for each model. The resulting advanced transformation mechanism constitutes an additional source of information to drive
the design process. Indeed, Fig. 15 also suggests that the pair of ASUR-IL components (‘‘Camera3D’’, ‘‘PositionExtractor’’)
complies with the initial design decisions expressed within the ASUR model, thus offering several possibilities. In this way,
transformations do not automatically create one unique solution but let designers chose the model(s) which best fit(s).

6.3. Ergonomic recommendations to inform transformations

The transformations presented above assist the development process of MIS by ensuring that design decisions are well
forwarded in subsequent development steps. In order to help developers reason about problems related to the usability of
MIS [2], we enriched the transformation with ergonomic recommendations.

Indeed, Guide-Me provides access to a list of ergonomic recommendations called RESIM. When editing a model, a
designer can access a repository of Usability Recommendations (UR) dedicated to MIS. Each recommendation conforms
to a template composed of the domain, modalities, physical objects used, experimental measures and protocol [9]. The list
of recommendations can therefore be sorted by these different attributes [16].

Access to these recommendations is integrated into the Guide-Me model editors. A click on a graphical element of an
ASUR or ASUR-IL model automatically raises a set of known recommendations related to this type of element. For example,
one click on an ASUR USER displays a list of recommendations related to a user’s task; double clicking on one of them opens
a pop-up window with the complete text of the recommendation. Additional options are available to browse and sort the
list.

6.4. Discussion: concrete transformations and MDE benefits

Regarding the specificities of Mixed Interactive Systems, these different forms of transformation contribute to the reuse
of existing design and software solutions. This is particularly interesting in the MIS context to ease the implementation of
solutions combining multiple and diverse sensors and effectors.

In addition, Guide-Me transformations support cross-platform implementations. The ontology we developed allows
the use of software components from different platforms, thus supporting interoperability. Interoperability is currently
supported in Guide-Me across two implementation platforms, WComp and Open-Interface (OI) [36]. Hence developers
can select existing OI or WComp components that best fit the requirements without having to consider any problem of
compatibility. The underlying interoperability mechanisms are based on standard communication protocols such as UPnP
[48] or OSC [40].

More specific to interaction design, these transformations also explicitly base the implementation on early design
decisions that have been understood and formalized by software non-experts. This is particularly relevant to interactive
systems design where end-users are involved in the development process. Transformation mechanisms ensure that the
participation of end-users is correctly taken into account and integrated into subsequent design steps.

In addition, software structures advocated by human-centered design approach are preserved by these transformations.
The resulting running application is thus highly flexible, offering great opportunities to easily move from one interaction
modality to another without modifying the core of the application. Our approach is indeed particularly robust to the change
of device and API involved.

Finally, the way the transformations are integrated into Guide-Me ensures a smoothness of use. The display of multiple
solutions resulting from the transformation process allows the designer to interact with the transformation process.
Furthermore, the coupling of the Guide-Me environment with the ergonomic recommendations constitutes another strong
benefit of our framework in the development process. The current implementation has been created to provide designers
with a set of relevant ergonomic recommendations, but does not constrain them to apply or respect one recommendation
more than another.

From the point of view of the MDE benefits for MIS, the simple transformation mappings from ASUR to ASUR-IL allow
the automatic generation of a partial ASUR-IL model. This generated model is fully consistent with the initial ASUR model,
but will have to be fine-tuned and finalized by the developer. The same applies when mapping the ASUR-IL model to a
platform specific model such as WComp. In order to apply these mappings, sufficient information must be expressed in the
source metamodel. Mappings therefore drive the development process (Benefit 4, Section 3.4), by encouraging the designer
to reason about different aspects in an appropriate order.

Finally, if elements of an ASUR model are altered, modifications are taken into account when the transformation
mappings are applied. Therefore it induces modifications on the corresponding ASUR-IL models, and subsequently on
WComp implementations. In addition, the ontology used in the advanced transformations contributes to increase software
component reusability and the generation of multiple solutions. These two aspects of the transformations therefore help to
explicitly anchor design decisions in the development process and also strengthen coherence in the design process (Benefit 5,
Section 3.5).

Beyond these benefits, MDE also includes numerous tools for supporting the exploitation of these metamodels and
transformations. The following section briefly introduces the Guide-Me toolset, a graphical environment supporting the
interactive use of our MDE-based framework to develop MIS. This toolset has been developed as a set of fully integrated
plugins into the Eclipse environment.

7. A tool supporting our MDE-based framework for MIS development

The latest advances in MDE lead to capitalize the results into efficient and modular frameworks and standardized
common definitions. We summarize the choices that guided the definition of the toolset supporting our framework and
finally present the toolset.

7.1. MDE tools choice

To express each metamodel, the first step consists of choosing the appropriate meta-metamodel. In addition to these
technologies for model persistence, the MetaObject Facility (MOF) specification from OMG [35] is the most recognized
and widespread standard. In addition, Ecore from the Eclipse Modeling Project (EMP [17]) represents the most accurate
implementation of the MOF. Therefore, the ASUR, ASUR-IL, WComp, Open-Interface and UPnP metamodels have been
expressed in Ecore and the corresponding editing tools have been developed with EMP.

ATL is now themost evolved transformation engine of EMP. Even if it does not fit the QVT specification of OMG entirely, it
fits at least our requirements. The need for exogenous transformations, i.e. transformations betweenmetamodels expressing
different contents, also argues in favor of ATL because it promotes declarative and imperative transformation modes. The
possibility to deal with multiple source models and the facility to move towards the XML technical space, which is required
by WComp and Open-Interface, are also reasons for this choice.

Finally, the Xpand engine was chosen for code generation because it is now also integrated to EMP.

7.2. Framework functionalities

As already mentioned, Guide-Me is integrated into the Eclipse environment. Its use does not require any programming
knowledge about the Eclipse platform. This tool-set has been developed for MIS designers and not specifically for

Fig. 16. ASUR graphical editor and wizard of the ASUR to ASUR-IL transformation.

MDE specialists. In addition, Guide-Me benefits from all the basic functionalities offered by the Eclipse platform (e.g.
dependencies, editing facilities, plugins interconnection).

In practice, thanks to EMF, a first Eclipse plugin has been directly generated from ECore metamodels for basic models
management: creation, back-up, modification and validation. We used GMF as a supplement in order to create graphical
editors with customized graphical syntax. We also developed several additional plugins to offer a graphical support for
managing and editing ASUR andASUR-ILmodels. The result is two editors embedded in the Eclipse environment (see Fig. 16),
providing elementary functionalities on models: creation, saving of models, diagrams arrangement, attributes edition,
auto-completion of attribute values, zooming, and validation. To document all of these models, we developed additional
functionalities such as repository management and textual, XML or HTML export of models.

We also included additional plugins in the Guide-Me tool-set to support the transformation mechanisms. They consist
of wizards offering step-by-step interfaces. Such a progressive process enables Guide-Me users to set up the parameters for
each transformation, perform the transformations, interact with the transformations when required and visualize logs and
the resulting models.

The Guide-Me tool-set, including all the developed plugins, can be directly downloaded from the internet [23]. It is a
flexible tool that can easily be adapted and extended: for example additional transformations towards other models, new
models such as a more detailed user’s model can easily be added and interconnected with the existing components of
Guide-Me.

Guide-Me is used for multiple purposes: to design systems such as the ‘‘notepad assisted slideshow’’, to study MIS
challenges, to evaluate resulting designs, to study complementary model transformations, or to assess the understanding of
models by designers. Such a collaborative development is made easier by the Eclipse extensions mechanisms, opening the
way to collaborations with other models dealing with MIS or HCI development.

8. Discussion and perspectives

In this paper, we have presented a successful use of Model Driven Engineering techniques, standards, tools and
approaches to assist in the design and engineering ofMixed Interactive Systems, advanced and complex interactive systems.

The framework we developed, Guide-Me, exploits MDE resources and benefits to support a human-centered software
engineering development process by:

Fig. 17. Assessing the Guide-Me Framework with regards to the five benefits of MDE for MIS development. The value below the text shows our position in

exploiting the five benefits.

(1) Being anchored on ASUR, a human-centered approach to MIS design,

(2) Supporting the development process through transformations betweenmodels. It aims to accelerate the iterative design
cycles and thus expand the opportunities for evaluation,

(3) Including a set of ergonomic recommendations and thus facilitate their use and access during the different design phases
(interaction design, software design, software implementation).

This framework allowsdealingwith interaction design concerns thanks to the presence of theASURmodel. The repository
of ergonomic recommendations provides a support to take into account usability concerns. Then, aspects of software
architecture focusing on interaction can be addressed through the ASUR-IL model. Finally rapid prototyping is supported
through the use of WComp. All those considerations thus contribute to the development of Mixed Interactive Systems with
an iterative and user-centered approach.

The framework includes several metamodels and their graphical editors that assist MIS design developments with, for
example, a detailed description of a designed solution, the export and visualization of these designs through different
formats or even the co-existence of models covering different and complementary dimensions of the design. These
considerations take advantage of the three first benefits of MDE for the design and engineering of MIS that we summarized
at the beginning of this paper. Simple mappings and more advanced transformation mechanisms introduced in Guide-Me
ensure consistency in the development of MIS and promote the reusability of existing solutions. This contributes to benefits
4 and 5 defined in this paper.

However,wenowprovide a critical reviewof our framework because it does not fully exploit the benefits ofMDE (Fig. 17).
First of all, our solution is somewhat limited in the generation of multiple representations (benefit 2). Indeed, we propose
four representations: diagrams, runtime application, textual and XML descriptions. Some representations could be added
in order to contribute to the usability of this tool for people with different backgrounds. For example, an ergonomist would
prefer a 3D simulation of the interactive situation to a graphical diagram or an XML representation. Similarly a developer
would findmore advantages in generated code documentation than in a classic textual representation and a designer would
probably prefer a video rendering of the design decisions to an HTML representation. Further improvements to better take
advantage of this benefit are therefore required. Of course, it would not be realistic to consider that this is the role of MDE to
provide the entire support for such new representations. Such improvements should rather rely on specific transformations
or links with external applications. Such mechanisms have been illustrated in SIMBA [1], an extension of Guide-Me that
simulate, in a virtual 3D environment, a solution designed with a MDE-based approach. Here model transformations do not
help refine the design but just lead to new forms of representations. Indeed this might require the identification of specific
attributes and/or form of expression.

Furthermore, the transformations from onemodel to another present in our solution do not support reverse engineering.
Indeed, our transformations correspond to top-down (fromabstract requirements to concrete implementation) or horizontal
transformations (links between models of similar abstraction level). However bottom-up transformations are not yet
supported and therefore benefit 4, structuring the development process, is only partially exploited.

In addition, during each transformation some of the information is lost. Most of this lost information is related to design
options. For example, between an ASUR diagram and an ASUR-IL diagram, all the information relative to physical elements is
lost. The user and real object information disappear. The information ‘‘user must stands by a window’’ will not be considered
in an ASUR-IL diagram. So we cannot ensure that the developer will take this recommendation into account during the
implementation. This may lead, for instance, to a badly calibrated light sensor or to the selection of an inappropriate set-up
parameter. The notion of a graph of models (benefit 3) needs to be strengthened.

Regarding benefit 1 (identifying and characterizing entities), we have identified an intrinsic problem, related to model-
based approaches: how do we assess whether the model, its concepts and its associated notation will be easy to use and
understand?Wedemonstrated in [6] that participants fromdifferent backgrounds are able to use the ASURmodel in creative
sessions, as a reference language and as generative tool. But a deeper understanding of its understandability is still necessary.

Then, the integration of previous design decisions (benefit 5) during the engineering process of MIS is only partly
addressed in our framework. Indeed, during the transformation between ASUR and ASUR-IL, entities can be automatically
generated. However, in the ASUR-IL diagram, designers are allowed to replace these entities with others or edit the related
attributes to refine their definition: no flag is then raised to mention that themodifications are affecting elements that were

bound to design decisions taken or expressed in other models. Furthermore, the ontology provides a support for the reuse
of existing design solutions, but the content of the ontology is still limited (i.e. approximately 50 items of each metamodel)
and has to be enriched manually.

Based on our experience with Guide-Me, we made additional observations about the use of MDE in the design and
implementation of advanced HCI. First, regarding the transformation mechanisms, we observed that the source of our
transformations is not always totally exploited and transformed into the terms of the target model (e.g. ‘‘user must stands

by a window’’). Conversely, our targeted model is not necessarily entirely defined after the use of the transformation. Some
attributes cannot be automatically derived from the source model (e.g. data type of each port in ASUR-IL cannot be inferred
from the abstract description provided in ASUR). Finally, we also observed that some attributes of the targeted model can
be initialized by the transformation but with a lack of precision. It thus leads to a lack of accuracy in the resulting model.
Additional work is thus required to strengthen the completeness of transformations of one model into another. As a result,
reversing or undoing one of our transformations will depend of the completeness and accuracy of transformation.

Along the transformation itself, the use of ontology reveals several options, thus offering some flexibility to the designer.
On the contrary transformations may result in one and only one solution. For example in our transformation mechanism
leading to the concrete implementation of the prototype, this happen if only one component exists in the repository. This
somehowconstrains the designer by adding rigidity in the transformation. Flexibility is thus depending of the transformation
itself and of the already existing components.

More globally, the overall activity of designing a MIS involves a set of models creations and transformations. Over the
whole design process, we experienced the need to have an overview of the manipulated design resources: iterative design
cycles induce the need to refer to the different models iteratively and not only in a sequential order. It would therefore be
very helpful when editing a model to be able to visualize the elements of the current models involved in transformations
connected to this model. This would help the designer in anticipating the impact his/her current changes may infer on
the other models. In terms of MDE, this raises a challenge related to the way the graphical editor of models is built.
Indeed, current approaches strongly anchor a graphical editor of a model in its metamodel. Obviously taking into account
transformations connected to the metamodel should be considered to help create a graphical editor better integrated in the
context of use of the metamodel.

Finally, we identified two additional improvements that the design of MIS might expect from MDE. In practice, once
a design of MIS has been finalized and implemented, users’ experiments are performed. From the analysis of the results,
issues might be identified. A phase of re-engineering is then required to modify parts of the system. Further assistance
from MDE tools might be useful to support the re-engineering such as a versioning and documentation support. Secondly,
we mentioned that the use of ontologies is a way to add flexibility to transformations and promote reusability of existing
solutions. Unfortunately itwas rather hard to technically integrate an ontologymanager, Protégé in our case,with the Eclipse
Modeling Framework. Simplifying the integration and use of ontology with MDE based environment is clearly required.

9. Conclusion

In this paper, we proposed to take advantage of MDE to support the engineering of MIS, an advanced and complex form
of interactive system. We first provided an overview of different uses of MDE in HCI. We gave a summary of previously
identified benefits of MDE for the engineering of HCI and their anticipated usefulness in the MIS context. We added to this
summary the identification of relevant MDE resources for supporting each of these benefits.

Based on these analyses, we proposed a generic overview of an MDE based development process for MIS in which
we highlighted the place of each identified MDE benefit for MIS and the role of appropriate MDE resources. We then
presented our framework, called Guide-Me, a concrete instance of the proposed MDE-based development process, thus
taking advantage of the MDE benefits and resources. Guide-Me is useful right from the user’s interaction design through
to the concrete implementation of the system. An existing model, ASUR, is used in a first stage; a second model, ASUR-IL,
has been introduced and justified in this paper; three different forms of transformation have also been introduced, justified
and illustrated; finally an interactive graphical environment supporting the whole process has been described. Models and
transformations have been discussed with regards to the specific domain and the MDE benefits. The whole approach has
then been discussed in the context of the five benefits of MDE to the design and engineering of MIS and further perspectives
have been raised. Fig. 18 summarizes the different components forming the Guide-Me framework: it constitutes an instance
of the generic approach introduced in Section 4, based on the use of two existing design models for MIS and two existing
implementation platforms presented in the literature.

So far, the Guide-Me framework has been used to develop multiple Mixed Interactive Systems, with different groups,
in four different application domains (homecare, museum, telescope monitoring, aeronautics). All these developments are
available and illustrated on a web repository [23]. However, to date, no comparative study between a classic development
and a Guide-Me based development has been conducted. In order to increase the usability of Guide-Me we have already
conducted an ergonomic evaluation of the editor. This led us to several enhancements of the tool interface. With regard to
other existing uses of MDE in HCI, our framework is dedicated and fine-tuned to fit the MIS domain. It covers the whole
engineering process, address the four levels already highlighted by the Cameleon framework under [8] and also includes a
tight couplingwith a structured ergonomic knowledge providing recommendations in theMIS domain. But so far, it does not
support runtime adaptation of systems; neither is it particularly well designed to support multi-user system engineering.

Fig. 18. Overview of Guide-Me: our instance of a MDE-based development approach for Mixed Interactive Systems (see in Fig. 5 the generic version).

This framework thus contributes to the HCI domain by expressing (1) elements encouraging the use of models to assist
the development of Mixed Interactive Systems, (2) elements helping model insertion into a development process, and
(3)mechanisms to accelerate the development ofMIS, through the partial automation of the process fromconceptualmodels
to an executable application. It thus also contributes to MDE by providing a concrete illustration of use of MDE in a human
centered design approach and explicitly linking MDE resources to MDE benefits.

More specifically, MIS is an emerging field in which the use of models is still mainly limited to experts. We believe that
a framework such as that presented in this paper will work in favor of the use of such models and of an increasing use
of MDE approaches in the development of interactive systems. Indeed, it facilitates the use of models, semi-automatically
interconnects different models and supports the integration of previous design and implementation results. In addition, it
anchors the implementation in early design decisions thus explicitly demonstrating the benefits of abstract design models
and the added value for designers.

Although this framework relies on specific models and transformations, the same philosophy can be applied with
differentmetamodels, evenmodels specific to other domains. In fact, to adopt an approach in linewith the generic overview
of the framework provided in Fig. 5 is a way to support human centered software engineering and make use of the
advantages and resources of MDE. This generic overview and approach would also help the integration of additional design
considerations such as non-functional requirements, network or traceability considerations.

Beyond the practical use of MDE for HCI, its progressive and complete definition and, its illustration in the case of MIS,
we also provided practitioners with a list of identified MDE benefits that can be used as a relevant list of considerations for
assessing or comparing frameworks supporting software engineering of interactive systems: this could be used to assess the
extent to which a framework takes advantage of the listed MDE benefits. In this work we have even used this list to identify
some required improvements in the Guide-Me framework.

Finally, this approach and the five benefits raised a set of research perspectives related to the use of MDE in advanced
HCI. With regard to the expression of metamodels, it might be necessary to offer mechanisms that support the fact that an
attribute of a metamodel entity is an instance of another metamodel. Representation supports might then be developed to
offer a layered representation, allowing easy navigation between the different models involved. To better assist the notion
of graph ofmodel, traceabilitymight be extended so that it includes physical and digital considerations. More globally, when
starting an MDE-based environment, a set of suggested design resources might be displayed with the existing associated
transformations: for example this could be similar to the notion of templates in PowerPoint. Finally with regards to the
transformations, we observed that elements of the metamodels involved in a transformation are mandatory while others
are optional. Transformations seem to bemore or less rigid,more or less undo-able and seem to provide resultswith variable
accuracy and completeness. To better understand the use and impact of such transformations on a design process, the
characterizing transformations and the results they trigger should be carefully investigated.

Acknowledgments

The authors wish to thank the reviewers for the very fruitful comments and suggestions. The authors also wish to thank
Cheryl Savery, Maxwell Graham and Glenn Alderman for proofreading the paper.

References

[1] W. Abou Moussa, N. de Bonnefoy, I. Verhaeghe, J.-P. Jessel, E. Dubois, Model-driven multi-user realistic prototyping of mobile augmented reality,
in: Dans: Virtual Reality International Conference, VRIC 2007, Laval-FR, April 2007, pp. 293–296.

[2] C. Bach, D.L. Scapin, Obstacles andperspectives for evaluatingmixed reality systemsusability, in: Proceedings of the International ACM— IUI-CADUI’04
Workshop on Exploring the Design and Engineering of Mixed Reality Systems, 2004, pp. 72–79.

[3] L. Bass, A metamodel for the runtime architecture of an interactive system, in: User Interface Developers’ Workshop, SIGCHI Bulletin 24 (1) (1992).
[4] M. Bauer, B. Bruegge, G. Klinker, et al., Design of a component-based augmented reality framework, in: Proceedings of the IEEE and ACM International

Symposium on Augmented Reality, 2001, pp. 45–54.
[5] J. Bezivin, On the unification power of models, Software and System Modeling 4 (2) (2005) 171–188.
[6] C. Bortolaso, C. Bach, E. Dubois, MACS: combination of a formal mixed interaction model with an informal creative session, in: Proceedings EICS’11,

Pisa, Italy, ACM, New York, USA, 2011, pp. 63–72.
[7] G. Botterweck, AModel-Driven Approach to the engineering ofmultiple user interfaces, in: T. Kühne (Ed.), Models in Software Engineering, in: Lecture

Notes in Computer Science, vol. 4364, Springer, 2006, pp. 2–14.
[8] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Vanderdonckt, A unifying reference framework formulti-target user interfaces, Interacting

With Computers 15 (2003) 289–308.
[9] S. Charfi, E. Dubois, D.L. Scapin, Usability recommendations in the design of Mixed Interactive Systems, in: Philip Gray, Gaelle Calvary (Eds.), ACM

SIGCHI Conference Engineering Interactive Computing Systems, EICS 2009, Pittsburgh, PA, USA, 14/07/09–17/07/09, ACM, 2009, pp. 231–236.
[10] D. Cheung, J. Tigli, S. Lavirotte,M. Riveill,Wcomp: amulti-design approach for prototyping applications usingheterogeneous resources, in: Proceedings

of the Seventeenth IEEE International Workshop on Rapid System Prototyping, IEEE Computer Society, 2006, pp. 119–125.
[11] C. Coutrix, L. Nigay, An integrated framework formixed systems, in: The Engineering ofMixedReality Systems, Springer-Verlag, London, 2010, pp. 9–32

(Chapter 2).
[12] A. Demeure, D. Masson, G. Calvary, Graphs of models for exploring design spaces in the engineering of Human Computer Interaction, in: Proceeding

of the 2nd SEMAIS Workshop of the IUI 2011 Conference, 2011, p. 4.
[13] E. Dubois, L. Nigay, J. Troccaz, O. Chavanon, L. Carrat, Classification space for augmented surgery, an augmented reality case study, in: Conf. Proc. of

Interact’99, 1999, pp. 353–359.
[14] E. Dubois, P. Gray, A design-oriented information-flow refinement of the ASUR interaction model, in: Proceedings of the International Conference

Engineering Interactive Systems: EIS 2007, Springer, Berlin, Heidelberg, 2007, pp. 465–482.
[15] E. Dubois, P. Gray, L. Nigay, ASUR++: a design notation for mobile mixed systems, Interacting with Computers 15 (4) (2003) 497–520.
[16] E. Dubois, D.L. Scapin, S. Charfi, C. Bortolaso, Usability recommendations forMixed Interactive Systems: extraction and integration in a design process,

in: T. Huang, L. Alem, M. Livingston (Eds.), Human Factors in Augmented Reality Environments, Springer, USA, 2012.
[17] Eclipse Foundation, Eclipse Modeling Project, 2006. http://www.eclipse.org/modeling/.
[18] J.-M. Favre, Foundations of Model (Driven) (Reverse) Engineering: models episode 1 stories of the Fidus Papyrus and of the Solarus,

in: J. Bézivin, R. Heckel (Eds.), in: Language Engineering for ModelDriven Software Development, vol. 4101, 2004, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany. Retrieved from http://dblp.uni-trier.de/db/conf/dagstuhl/P4101.html#Favre04.

[19] J.D. Foley, History, results and bibliography of the User Interface Design Environment (UIDE): an early model-based system for user interface design
and implementation, in: F. Paterno (Ed.), Proc. Eurographics Workshop Design, Specification, Verification of Interactive Systems, 1995, pp. 3–10.

[20] D. Garlan, R. Monroe, D. Wile, Acme: an architecture description interchange language, in: Proceeding of GASCON’97, 1997, pp. 169–183.
[21] G. Gauffre, E. Dubois, Taking advantage of Model-Driven Engineering Foundations for Mixed Interaction Design, in: H. Hussmann, G. Meixner,

D. Zuehlke (Eds.), Model Driven Development of Advanced User Interfaces, in: Studies in Computational Intelligence, 1, vol. 340, Springer-Verlag,
2011, pp. 219–240. 4.1.3.

[22] S. Greenberg, C. Fitchett, Phidgets: easy development of physical interfaces through physical widgets, in: Proceedings of the 14th Annual ACM
Symposium on User Interface Software and Technology, ACM, 2001, pp. 209–218.

[23] Guide-Me, Editor of MIS specific models. Last update 2012, www.irit.fr/recherches/ELIPSE/Guide-Me/.
[24] R.J. Jacob, A. Girouard, L.M. Hirshfield, et al., Reality-based interaction: a framework for post-WIMP interfaces, in: Proceeding of the Twenty-Sixth

Annual SIGCHI Conference on Human Factors in Computing Systems, ACM, 2008, pp. 201–210.
[25] H. Kato, M. Billinghurst, Marker tracking and HMD calibration for a video-based augmented reality conferencing system, in: International Workshop

on Augmented Reality IWAR’99, IEEE Computer Society, 1999, pp. 85–95.
[26] S.R. Klemmer, J. Li, J. Lin, J.A. Landay, Papier-Mache: toolkit support for tangible input, in: Proceedings of CHI’2004, ACM, 2004, pp. 399–406.
[27] G.E. Krasner, S.T. Pope, A cookbook for using the model-view-controller user interface paradigm in smalltalk-80, Journal of Object-Oriented

Programming 1 (3) (1988) 26–49.
[28] P. Lamata, et al., Augmented reality for minimally invasive surgery: overview and some recent advances, in: Augmented Reality, 2010, pp. 73–98.
[29] F. Ledermann, D. Schmalstieg, APRIL: a high-level framework for creating augmented reality presentations, in: Virtual Reality, VR’05, IEEE, 2005,

pp. 187–194.
[30] W. Mackay, A. Fayard, L. Frobert, L. Medini, Reinventing the familiar: exploring an augmented reality design space for air traffic control, in: CHI’98,

1998, pp. 558–573.
[31] A. Mahfoudi, W. Bouchelligua, M. Abed, M. Abid, Towards a new approach of model-based HCI conception, in: Proceedings of the 6th WSEAS

International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22–24, 2006, pp. 517–581.
[32] D. McGee, P. Cohen, Creating tangible interfaces by augmenting physical objects with multimodal language, in: Proc. of the International Conference

on Intelligent User Interfaces, 2001, pp. 113–119.
[33] G. Mori, F. Paterno, C. Santoro, Design and development of multidevice user interfaces through multiple logical descriptions, IEEE Transactions on

Software Engineering 30 (8) (2004) 507–520.
[34] D.A. Norman, S.W. Draper, User Centered System Design; New Perspectives on Human–Computer Interaction, Lawrence Erlbaum Associates, Inc.,

1986.
[35] OMG. Meta Object Facility 2.0. http://www.omg.org/spec/MOF/2.0/.
[36] Open Interface. STREP. http://www.oi-project.org/ (last accessed 24/09/2012).
[37] F. Paternò, ConcurTaskTrees: an engineered notation for task models, in: The Handbook of Task Analysis for Human–Computer Interaction, 2003,

pp. 483–503.
[38] Protégé ontology (Ed.), http://protege.stanford.edu/ (last accessed 24/02/2012).
[39] C. Sandor, T. Reicher, CUIML: a language for the generation of multimodal human–computer interfaces, in: Proceedings of the European {UIML}

Conference, 2001, p. 124.
[40] A. Schmeder, A. Freed, Features and future of open sound control version 1.1 for NIME, in: Proc. of the International Conference on New Interfaces for

Musical Expression, 2009.

[41] E. Serral, P. Valderas, V. Pelechano, A Model Driven Development method for developing context-aware pervasive systems, Ubiquitous Intelligence
and Computing (2010) 662–676.

[42] O. Shaer, R.J. Jacob, A specification paradigm for the design and implementation of tangible user interfaces, ACM Transactions on Computer–Human
Interaction 16 (4) (2009) 1–39.

[43] O. Shaer, E. Hornecker, Tangible user interfaces: past, present, and future directions, Foundations and Trends in Human–Computer Interaction 3 (1–2)
(2009) 1–137.

[44] C. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379–423.
[45] J. Sottet, G. Calvary, J. Coutaz, J. Favre, A Model-Driven Engineering approach for the usability of plastic user interfaces, in: Conf. Proc. of Engineering

Interactive Systems, in: LNCS, 4940, 2008, pp. 140–157.
[46] J. Sottet, V. Ganneau, G. Calvary, et al., Model-driven adaptation for plastic user interfaces, in: Proc. of the 11th IFIP TC13 Int. Conf. onHuman–Computer

Interaction, Springer-Verlag, 2007, pp. 397–410.
[47] B. Ullmer, H. Ishii, R.J.K. Jacob, Token + constraint systems for tangible interaction with digital information, ACM Transactions on Computer–Human

Interaction 12 (1) (2005) 81–118.
[48] UPnP Forum. UPnP Specifications, 2008. http://www.upnp.org/.
[49] F. Valverde, I. Panach, N. Aquino, O. Pastor, Dealing with abstract interaction modeling in an MDE development process: a pattern-based approach,

in: J.A. Macías, A. Granollers Saltiveri, P.M. Latorre (Eds.), New Trends on Human–Computer Interaction, Springer, London, 2009, pp. 119–128.
[50] M. Wittkaemper, W. Broll, A mixed reality user interface description language, ACM SIGGRAPH 2006 Research posters, 2006, p. 20.
[51] C.Wolfe, T.C. Graham,W.G. Phillips, An incremental algorithm for high-performance runtimemodel consistency, in: Proceedings of the 12th Int. Conf.

on Model Driven Engineering Languages and Systems, Springer-Verlag, 2009, pp. 357–371.

