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1Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes 77454

Marne-la-Vallée CEDEX 2, France.

E-mail: Minh-Tuan.Hoang@univ-paris-est.fr

J. Yvonnet1
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Abstract. In this paper, continuum multiscale models are proposed to describe the

size-dependent mechanical properties of two kinds of heterogeneous nanostructures:

radially-heterogeneous nanowires and longitudinally-heterogeneous nanolaminates. In

both cases, the continuum models involve additional surface/interface energies which

allow capturing size effects. Several models of imperfect interface models, like coherent

and spring-layer ones, are shown to respectively capture the size effects which are

reported by first-principle calculations performed on heterogeneous nanostructures. In

each case, a procedure is proposed to identify the parameters of the surface/interface

model in the continuum framework, based on first-principles calculations performed

on slab systems. The obtained continuum models allow avoiding full computations on

atomistic models which are not affordable for large sizes (diameters, layer thickness).
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An increase of the overall stiffness for both kinds of heterogeneous AlN/GaN

nanostructures with the decrease of the dimensions is evidenced. The continuum

models are then compared with full first principles calculations to demonstrate their

accuracy and their ability to capture size effects.

PACS numbers: 62.23.Hj, 63.22.Np, 68.35.bg, 68.35.Ct, 68.35.Gy

Keywords: Surfaces, Interfaces, Nanowires, Nanolaminates, Size-effects, Mechanical

properties

1. Introduction

Recently, the fabrication of axial/radial heterogeneous nanostructures like coated

nanowires or nanolaminates has attracted special attention of the scientific community

due to their multiple potential applications like energy harvesting devices. For

example, Core/Multishell nanowire heterostructures have evidenced performances for

high-efficiency light-emitting diodes [1], laser [2], high mobility electronic [3] and field

effect transistors [4]. Such nanostructures can be fabricated by several processes like

chemical vapour deposition [5] or MOCVD [3]. Tak et al. have demonstrated that

ZnO/CdS core/shell heterostructures nanowire arrays can be used in high efficiency

nanowire solar energy conversion devices [6]. Recently, Wong et al. have shown that the

electron gases in core shell GaN/AlGaN nanowires have unusual properties compared

to their bulk counterparts [7].

Besides these radially-heterogeneous nanostructures, more classical heterogeneous

structures like laminates can show unusual properties when thickness of layers decreases

to several nanometers, like giant dielectric constants [8], or improved mechanical and

electrical properties [9, 10, 11, 12, 13, 14, 15, 16, 17]. For these materials it is strongly

suggested that the unusual effects are originated from surface/interface.

Size-dependent behavior in nanostructures is usually modeled in the context of

continuum mechanics by means of surface/interface additional energy, involving surface

tension and stress effects in fluids and solids [18, 19, 20]. A classical continuum model

to explain the surface effects on the elastic properties of nanostructures was formulated

by Gurtin and Murdoch [21] and Murdoch [22] for materials interfaces. Later it was

further applied by many researchers [23, 24, 25] to analyze the elastic properties of

nanomaterials. Another widely used imperfect interface model is the spring layer

elastic model, which has been utilized to model thin interphases or interfacial damage,

and to estimate the effective elastic and thermoelastic moduli of particulate and fiber

composites with imperfectly bounded interfaces [26, 27, 28, 25, 29, 30, 31, 32]. A general

framework for defining imperfect interface models in a linear multiphysics context was

recently provided [33].



Size-dependent mechanical properties of axial and radial mixed AlN/GaN nanostructure3

In the present work, we focus on GaN-AlN axial/radial nanostructures, which

were investigated in several recent studies for potential applications to optoelectronic

devices with lower threshold current density, lower radiative recombination rate, lower

emission spectra, and reduced sensitivity to temperature [34] as compared to their bulk

counterparts. More specifically, it was shown that an AlN interlayer inserted between

AlN/GaN barrier layer and the GaN channel improves the electron mobility by reducing

alloy scattering [35, 36, 37, 38] and that the valence electron concentration had an

influence on the elastic stiffness in such composites [39]. Elastic strain relaxation in

AlN/GaN nanolaminates was calculated [34] and related interfaces were investigated by

laser-assisted APT [40]. Thin Ti3SiC2 nanolaminates were investigated using theoretical

first-principles calculations [41].

In this paper, the size-dependent elastic properties in radial (coated nanowires)

and axial (nanolaminates) AlN/GaN nanostructures are investigated by first-principles

computations. It is shown that these size effects are directly related to surface/interface

effects at the nanoscale. Continuum models involving additional surface/interface

energies are introduced to describe the nanostructures to avoid the high complexity

of first principles calculations in the case of larger systems. Procedures to identify

the parameters of the surface/interface models are provided. Comparisons between

continuum models and full first-principles calculations are provided.

2. Continuum models

In this part, the considered heterogeneous nanostrucures are presented. The objective is

to propose continuum models, able to capture size effects, to replace the fully atomistic

models, which are highly computationally demanding, to solve when increasing the

number of atoms, and able to capture the size effects.

2.1. Radially-heterogeneous nanowires

First, radially-heterogeneous AlN/GaN nanowires are considered. These structures are

composed of a wurtzite AlN core with hexagonal section and 6 faces [1010], periodic

along the [0001]-direction, coated with a monolayer of GaN. (see Fig. 1).

It has been shown in previous works (see e.g. [42, 43, 44, 45]) that such structures

show mechanical size effects, e.g. the effective stiffness of the nanowire depends on its

radius and can increase significantly for diameters below 5 nm. In the present case, the

nanostructure is heterogeneous, but the heterogeneity consists in a single layer of GaN.

We propose to capture the effects of both surface effects related to the free surfaces

and of the GaN shell by an effective surface in a Gurtin-Murdoch surface elasticity

framework. Then, the nanostructure is replaced by a bulk structure made of AlN,

coated by a surface which possesses its own behavior, in order to capture the mentioned

size-effects. The equations of this model are presented as follows.

Let S be a surface in R2. The projector operator T is introduced to define the
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Figure 1. (a) First-principles model of radially-heterogeneous AlN/GaN nanowire.

The blue, grey and yellow colors refer to N, Al and Ga atoms, respectively; (b)

continuum model, consisting of bulk solid coated with an elastic surface.

projection on a plane tangent to S in a point x ∈ S by

Tij = δij − ninj (1)

where δij is the second-order identity tensor and ni is the unitary vector normal to S in

x ∈ S. Let v a vector and A a second-order tensor, then the projected vector vs on the

surface, and the surface second-order tensors As
ij, are defined respectively by:

vs = Tijvj, As
ij = TikAkmTmj (2)

Furthermore, if Aij is differentiable, the surface divergence operator is defined as

As
ij,j = Aij,kTkj (3)

The equations describing the equilibrium of a solid equipped with an elastic surface

have been initially proposed by Gurtin and Murdoch [21]. Other justifications can be

found e.g. in [46]. A body defined in a domain Ω ⊂ R3 with boundary ∂Ω is considered,

with S ⊂ ∂Ω. The equations of this model are summarized below:

σij,j + fi = 0, in Ω (4)
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σs
kj,iTkj + [[σijnj]] = 0, on S (5)

[[u]] = 0 on S (6)

where (4) is the bulk equilibrium equation, whereas (5) defines the surface equilibrium.

In (4)-(5), σij is the stress Cauchy second-order tensor, fi is a body force vector, σs
ij

is the surface stress tensor and [[.]] = (.)(2) − (.)(1) is the jump between bulk and the

interface. The assumption of a linear elastic behavior and of small perturbations are

made. The constitutive laws for bulk and surface are given by

σij = Cijklεkl (7)

σs
ij = Cs

ijklε
s
kl + τ sij (8)

In Eqs. (7) and (8), ε is the second-order strain tensor defined by εij = 1
2
(ui,j + uj,i),

Cijkl, Cs
ijkl are the fourth-order elastic bulk and surface tensor, respectively and τ sij

denotes surface residual stress. It is worth noting that this form is a generalization

of the Shuttleworth’s law [47], the latest being restricted to isotropic surfaces. In the

present work, the surfaces are fully anisotropic due to the wurtzite symmetries of the

studied structures, which better justifies this model. Using (2), the surface stress and

strain tensors are expressed by

σs
ij = TikσkmTmj, εsij = TikεkmTmj (9)

Equations (4) - (5) are completed by Dirichlet and Neumann boundary conditions on

portions of the external boundary ∂Ωu and ∂ΩF , respectively, such that ∂Ωu∩∂ΩF = ∅,
∂Ω = ∂Ωu ∪ ∂ΩF :

σijnj = F i on SF (10)

ui = ui on Su (11)

where ui is the displacement vector, ui is a prescribed displacement on the boundary Su,

and nj is the outward normal vector to the external surface S. The surface is attached

to the bulk through (6).

Adopting Voigt’s notations, the strain and stress tensor components are

denoted by: [σ] = {σ11, σ22, σ33, σ23, σ13, σ12} = {σ1, σ2, σ3, σ4, σ5, σ6} and [ε] =

{ε11, ε22, ε33, 2ε23, 2ε13, 2ε12} = {ε1, ε2, ε3, ε4, ε5, ε6}. Indices 1, 2 and 3 are associated

to directions x, y and z, respectively. In this paper, the studied materials (ZnO, AlN,

GaN) have a crystalline wurtzite structure. In this case, the elastic tensor is described

by 5 independent constants C11, C12, C13, C33 and C44. The matrix C associated to the

fourth-order tensor Cijkl and such that [σ] = C[ε] is then expressed by:

C =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C11−C12

2


(12)
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Figure 2. a) Wurtzite unit cell; b) AlN/GaN nanolaminates with 4 bilayers stratified

on the [0001]-direction.

Table 1. Bulk lattice parameters a and c (in Å) and elastic parameters (in GPa) for

wurtzite AlN and GaN.
Material a c C11 C33 C13 C12 C44

AlN 3.124 5.007 392.1 376.6 104.5 136.5 116

GaN 3.198 5.204 357.7 393.9 93.9 130.7 92.7

2.2. Nanolaminated heterogeneous structures

In the case of heterogeneous nanolaminates (layers of different materials in one direction,

see Fig 3 (a), we propose a continuum model consisting of a periodic bi-material

composite with parallel layers separated by an imperfect interfaces, in order to capture

size effects. The microstructure is depicted in Fig. 3 (b), corresponding to an open

domain Ω ⊂ R3 whose boundary is denoted by ∂Ω.

A nanolaminate consisting of wurtzite AlN/GaN layers is considered. Each layer

is initially constructed from a unit wurtzite cell (see Fig. 2), and repeated n times in

the [0001]-direction, and infinitely in the other two orthogonal directions, as depicted

in Fig. 2(b).

The AlN material is associated with phase (1), and GaN with phase (2). The

layer (1) has a thickness h = ncAlN and the layer (2) has a thickness L − h = ncGaN

(see Table 1). The layers are assumed to be separated by imperfect interfaces. From

our first-principles observations, size-dependent elastic properties in the [0001]-direction

(normal to the interface) have been observed. This motivates the use of a spring-layer

imperfect interface model, which is described in the following. The equations of the

model are given by:
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Figure 3. (a) Continuum model of nanolaminate consisting of periodic layers

separated by an imperfect interface S; (b) associated continuum periodic elementary

cell.

σij,j = 0 in Ω (13)

σij = C
(r)
ijklεkl in Ω (14)

[[σijnj]] = 0 on S (15)

σijnj = Cs
ij[[uj]] on S (16)

where σij denotes the Cauchy stress tensor components, C
(r)
ijkl are the elastic moduli

of phase r, εij denotes the linearized strain tensor components εij = 1
2
(ui,j + uj,i)

with ui the displacements components, ni is the unit vector normal to the interface Γ,

[[.]] = (.)(2)−(.)(1) is the jump of quantities across S, and Cs
ij refers to the surface stiffness

moduli. The problem is completed by boundary conditions on ∂Ω. Eq. (13) refers to the

balance of momentum, while Eqs (15)-(16) are associated with the interfacial continuity

conditions.

In absence of body forces and external traction, the related energy of the system is

given by:

E =
∫
V

1

2
εijC

(r)
ijklεkldV +

∫
S

1

2
[[ui]]C

s
ij[[uj]]dΓ (17)

Identifying C
(1)
ijkl, C

(2)
ijkl, C

s
ij, Eqs. (13)-(16) with appropriate boundary conditions

uniquely define the local displacement ui(z), strain εij(z) and stress σij(z) fields within

each layer of the nanolaminate. An elementary cell is considered, as depicted in Fig. 3

(b), which is assumed to be subject to a homogeneous strain εij through:

ui = εijxj + ũi on ∂Ω (18)

where xi is a coordinate in Ω and ũi is a periodic function over Ω. For such a condition,

Eqs. (13)-(16) can be solved in closed form and yield piece-wise linear components
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of the displacements along the z−axis. The related constants can be determined by

considering the boundary conditions (18) at (z = 0) and (z = L), and the continuity

conditions (15)-(16) at (z = h). In the case of AlN/GaN nanolaminates in the [0001]-

direction, the elastic matrix for wurtzite is given in each phase by (12) and their values

are provided in Table 1.

The interface stiffness tensor is assumed in the form:

Cs =


0 0 Cs

13

0 0 Cs
23

Cs
13 Cs

23 Cs
33

 (19)

For this case, the resulting displacement field expression is provided in the Appendix

od section 7.

Given the displacement field uz(z) within the nanolaminate, a localization tensor

Aijkl(z) can be constructed such that:

εij(z) = Aijkl(z)εkl (20)

Using the constitutive equation (14) and averaging over Ω, we obtain the effective

constitutive law for the homogenized nanolaminate as:

σij = Cijklεkl (21)

with σij =
1
V

∫
Ω σij(z)dΩ and

Cijkl =
1

V

∫
Ω
C

(r)
ijmp(z)Ampkl(z)dV (22)

with V the volume of Ω. We provide the expressions of the effective coefficients as

follows:

C33 =
C1

33C
2
33C

s
33L

C2
33C

s
33h+ C1

33 (C
2
33 + Cs

33 [L− h])
(23)

C13 =
Cs

33 (C
1
13C

2
33h+ C2

13C
1
33 [L− h])

C2
33C

s
33h+ C1

33 (C
2
33 + Cs

33 [L− h])
(24)

C44 =
Cs

13C
1
44C

2
44L

C1
44C

2
44 + Cs

13C
2
44h+ Cs

13C
1
44 (L− h)

(25)

and

C55 =
Cs

23C
1
44C

2
44L

C1
44C

2
44 + Cs

23C
2
44h+ Cs

23C
1
44 (L− h)

(26)

We note that when Cs
13, Cs

23 and Cs
33 tend to infinity, corresponding to a

perfectly bounded (infinitely rigid) interface, the effective coefficients tend to finite

values corresponding to the behavior of the homogenized composite without imperfect

interface.
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3. Identification of surface/interface coefficients from first-principle

calculations

3.1. Radially-heterogeneous nanowires

To evaluate the surface elastic coefficients Cs
ijkl and τ sij in (8), the procedure described

in details in [42, 43] is employed and briefly reviewed as follows. First-principles

calculations are conducted on the CRYSTAL code [48] with the periodic DFT method.

The employed basis sets are: 86-21G* for Al[49], 86-4111 d416 for Ga [50, 51] and G31

d16 for N [52]. The functional used in the calculations is PWGGA.

Firstly, we consider several slab models are consisting of n layers of AlN elementary

cells, coated with a layer of a single elementary cell of GaN on its external surface (see

Fig. 4). The elementary cell is repeated periodically in the x (1) and z (3) directions,

Direction 3 corresponding to the growth direction of the nanowire (see Fig. 1).

The free surfaces correspond to [1010] surfaces. Strains are prescribed along the

plane (x, z) to compute the surface elastic coefficients and surface residual stress by the

relationship:

Cslab
ij =

1

S

∂2Eslab

∂εi∂εj
(27)

τ slabi =
1

S

∂Eslab

∂εi
(28)

were S = ac is the area of an elementary cell. The derivatives are computed numerically

by fitting a polynomial to several discrete points, corresponding to small increments

(±0.005) of the prescribed strain components. Let us note at that point that these

coefficients are those of the complete slab system, including both bulk and surface

energies (expressed in Hartree/atom), which allows to sum them:

Eslab = Eb + Es (29)

These coefficients do not correspond to the actual surface elastic coefficients:

Cslab
ij ̸= Cs

ij, τ slabi ̸= τ si (30)

To separate surface and bulk energy contributions, we propose to conduct a series

of several computations for different number of layers n. The following decomposition

is introduced:

Eslab
i (w) = wEs

i + (1− w)Eb
i (31)

suggested by preliminary computations which have shown a linear dependency of

coefficients Cslab
ij with respect to w, where w denotes the surface weight, defined as

the ratio of surface atoms on the number of bulk atoms:

w =
2

n
(32)
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Eq. (31) can be rewritten as:

Eslab
i (w) = wEs

i + (1− w)Eslab
i (w → 0) (33)

From (27), we obtain:

Cslab
ij (w) = wCs

ij + (1− w)Cslab
ij (w → 0) (34)

where Cs
ij denote the surface elastic coefficients. Limit (bulk) values Cslab

ij (w → 0)

can be computed from bulk coefficients by relaxing ε2 and by fixing ε1 and ε3.

Minimizing the energy (see [42]) then leads to:

Cslab
11 (w → 0) =

(Cb
11)

2 − (Cb
12)

2

Cb
11

(35)

Cslab
13 (w → 0) =

Cb
13(C

b
11 − Cb

12)

Cb
11

(36)

Cslab
33 (w → 0) =

Cb
33C

b
11 − (Cb

13)
2

Cb
11

(37)

Cslab
55 (w → 0) = Cb

44 (38)

The procedure consists in computing the values of Cslab
ij (w) for several values of w

(by increasing the number of layers n). The values computed numerically through first-

principles calculations are then fitted by a linear function. Eq. (34) can be rewritten

as:

Cslab
ij (w) = Cslab

ij (w → 0) + w r (39)

where r is the slope of the linear function which is given by

r = Cs
ij − Cslab

ij (w → 0) (40)

From the estimation of r, the expression of the surface elastic parameters can be

established by

Cs
ij = r + Cslab

ij (w → 0) (41)

To evaluate the surface residual stress, the relationship is used:

τ slabi = wτ si (42)

To convert surface elastic coefficients from Hartree/atom into N/m, the following

relationship can be used:

C(N/m) = C(Hartree/atom) ∗ 4

S(Å2)
∗ 435.974 (43)

Practically, the 4 elastic and the 2 stress coefficients (Cs
11, C

s
13, C

s
33, C

s
55, τ

s
1 and τ s3 )

are obtained by conducting 3 computations associated with 3 deformation modes.

The values of the elastic parameters of the slab system as a function of the thickness

are presented in Table 2.

After fitting data in Figs. 5 and 6 by a linear function, the parameters (Cs
ij and

τ s) in N/m are provided in Table 3.
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Figure 4. Slab model associated to an AlN surface coated with a monolayer of GaN,

for n = 8 elementary cells in the layer. The blue, grey and yellow colors refer to N, Al

and Ga atoms, respectively

Table 2. Effective elastic parameters of the slab system (in Hartree/atom), computed

with PWGGA functional.

n Cslab
11 Cslab

33 Cslab
13 Cslab

55 τ slab1 τ slab3

4 0.89356 0.72625 0.15994 0.29300 0.0220 0.0119

6 0.87580 0.76813 0.16258 0.28921 0.0146 0.0078

8 0.86656 0.78925 0.16331 0.28744 0.0110 0.0059

10 0.86097 0.80147 0.16390 0.28640 0.0088 0.0047

20 0.84998 0.82579 0.16503 0.28430 0.0044 0.0024

∞ 0.8392 0.85115 0.1664 0.28205 0 0

Table 3. Surface parameters of the effective surface of AlN coated with a monolayer

of GaN (in N/m).

Cs
11 Cs

33 Cs
13 Cs

55 τ s1 τ s3
PWGGA 120.642 56.192 24.546 40.828 1.26 1.47

3.2. Nanolaminated structures

Given the bulk values C1
ij and C2

ij in (23), the interface parameters Cs
ij must be identified

for the AlN/GaN nanolaminate. For this purpose, several bi-layers slab models are

constructed, as depicted in Fig. 7, where each layer contains n elementary cell along

the z−axis.

In the calculations, the following basis sets were used: 82-126 for Al, 86-4111 d416

for Ga and G-31 d16 for N the same procedure as in the case AlN/GaN radial. For

DFT Hamiltonian, the PWGGA with exchange-correlation functional was chosen. The
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Figure 5. First-principles computed values of Cslab
11 , Cslab

33 , Cslab
13 and Cslab

55 with

respect to the surface weight (in Hartree/atom).

initial lattice parameters for AlN and GaN are reported in Table 1. Note that these

parameters have rather close values for both materials. The effective elastic properties

of the system are

C
ab

ij (n) =
1

V

∂2E (ε)

∂εi∂εj
(44)

where E is the energy of the system for an overall prescribed strain ε and V denotes

the volume of the slab. The calculated values for C
ab

ij (n) for n = 2, 3, ..., 8 are reported
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Figure 6. First-principles computed values of τslab1 and τslab3 with respect to the

surface weight (in Hartree/atom).

Table 4. Overall elastic effective moduli (in GPa) of the composite using PWGGA

functional.

n C
ab
11 C

ab
33 C

ab
13 C

ab
12 C

ab
55

2 374.7 388.8 99.2 135.7 102.5

3 374.6 387.4 99.7 135.8 102.7

4 374.6 387.0 99.8 135.8 102.8

5 374.5 386.7 99.9 135.7 102.8

6 374.5 386.6 99.9 135.8 102.9

8 374.4 386.0 100.0 135.7 102.9

in Table 4 and graphically depicted in Fig. 8.

We can note that the values of C
ab
ij depend on n and are thus size-dependent with

respect to L, according to:

L = n
(
cAlN + cGaN

)
(45)

The values of Cs
33, C

s
13 = Cs

23 are then identified to fit the curves C
ab

ij (n) in Fig 8.
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[0001]

zAlN GaN

Figure 7. AlN/GaN nanolaminates comprising n cells in each layer.

Table 5. AlN/GaN interface stiffness parameters (in N/nm).

Cs
13 4.879.104

Cs
33 −2.072.104

The obtained values of the components are reported in Table 5.

We report negative values for the Cs
33 coefficient, which is surprising at first glance.

However, we provide an argument to explain it as follows. For the present spring layer

model (23)-(26), the maximal stiffness C33 is obtained for a positive, infinite value of

the interface coefficient Cs
33. Then, introducing an interface stiffness coefficient with any

positive value can only reduce the effective stiffness. Nevertheless, in the present case,

we have evidenced a stiffening effect by first-principles calculations associated with the

interface, which can only occur for a negative value of the interface stiffness coefficient

Cs
33. Note that negative values for interface elastic coefficients have been reported in

other situations [53, 23, 54].
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Figure 8. Effective elastic moduli C
ab

13, C
ab

33 and C
ab

55 of the slab as function of 2/n.

4. Validation and comparison between full computations and continuum

models

4.1. Radially-heterogeneous nanowires

To validate the model, we have constructed several full continuum and atomistic models

of AlN nanowires coated with a monolayer of GaN, comprising 108, 192, 300, 432, 588

and 768 atoms in one unit cell, corresponding to n = 3, 4, 5, 6, 7, 8 (see Fig. 9). Results

with (n− 1) layers of AlN and one layer of GaN are provided in Table 6.



Size-dependent mechanical properties of axial and radial mixed AlN/GaN nanostructure16

C

n=3

D

n=4

E

n=5

F

n=6

G

n=7

H

n=8

n

Figure 9. First-principles full models of radially-heterogeneous nanowires AlN/GaN

for n = 3, ..., 8.

Table 6. Reference first-principles computations on radially-heterogeneous nanowires

computed with PWGGA functional: overall C̄33 and Young’s modulus coefficients, and

relaxed value of the spacing constant c denoted by copt.

n N = 12n2 C33 Young modulus copt
(Hartree/atom) (GPa) (Å)

3(C) 108 0.743880 586.234 5.128715

4(D) 192 0.756938 492.719 5.098882

5 (E) 300 0.766267 449.865 5.080366

6 (F) 432 0.772546 425.413 5.068043

7 (G) 588 0.777677 409.468 5.059255

8 (H) 768 0.747490 389.401 5.052847

The values of the effective Young modulus are provided in Table 6 as a function

of the number of layers. The continuum model is described by Eqs. (4)-(5)-(6). The

surface parameters are the one obtained by the procedure described in section 3.1. The

continuum equations are solved by the finite element method (FEM) [43]. The FEM

procedure has been implemented in a house-made code developed at MSME Lab and

employs linear 4-node tetrahedral elements for the bulk, and 3-node surface elements

for the boundary.

Results are presented in Fig. 10. A very good agreement between both models is

noticed. The main advantage of the present continuum model is that is allows studying

more complex configurations (loads, geometries) without limitations regarding sizes,
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Figure 10. Comparison between heterogeneous nanowire fully described and solved

by first-principles calculations and the continuum with equivalent surface energy for

radially-heterogeneous AlN/GaN nanowires: effective Young modulus.

and with computational times which are of several order of magnitudes lower when

solved with Finite Elements, as compared to full first-principles computations. In what

follows,simulations using the FEM-continuum model are presented. Nanowires with

the surface model identified above, equivalent to the radially-heterogeneous AlN/GaN

nanowire with different diameters d = 1 nm, d = 10 nm and d = 100 nm are fixed at

one end and are free to relax. Due to the surface residual stress, the nanowires deform,

as shown in Figure 11. We can note that size effects are accurately captured, and

vanish as expected when the diameter increases. It is worth noting that first-principles

simulations of such configurations for diameters larger than a few nanometers cannot

be afforded by most of nowadays computers.

We note that the present model is very satisfying for axial stretching of nanowires.

The technique might also be applied when more than one layer of external coating is

involved without modification in that case, but then volume elements might be more

appropriate to model the coating. The proposed methodology could also be applied

to surface elasticity introduced by roughness of the surface at the nanoscale (see e.g.

[55, 56, 57]). However, in the case of bending, it has been shown that the Gurtin-

Murdoch can introduce shortcomings. In that case, advanced surface elasticity theories

might be required [58].

4.2. Nanolaminated structures

To evaluate the accuracy between our model and the first-principles calculations, we first

compute the values of the effective coefficients Cij as a function of L (or n, according to

(45)). Results are reported in Fig 12, showing a good agreement between both models.
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Figure 11. Magnified strain (10 times) in the heterogeneous nanowires fixed at one

end for different diameters : a) d = 1 nm; b) d = 10 nm; c) d = 100 nm, simulated by

FEM.

5. Conclusion

In this work, size effects on the mechanical properties of AlN/GaN heterogeneous

nanostructures have been reported, namely in coated (core-shells) nanowires and

nanolaminates. For both cases, first principles calculations have shown that these

effects are directly related to the surface/interface effects. Continuum models have been

proposed to replace the costly first-principles calculations while capturing accurately the

size effects, as well as procedures to identify to surface coefficients. The comparisons

between the continuum models and reference first-principles computations have proved

a very good accuracy of the proposed models.
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Figure 12. Effective elastic moduli of the AlN/GaN nanolaminate: comparison

between the continuum model with imperfect interface and first-principles calculations.
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7. Appendix: expression of the z−component of the displacements in the

nanolaminate

The closed-form of the z−component of the displacement field obtained by solving the

problem (13)-(16) with continuity conditions (15) and (16) and boundary conditions

(18) is provided as:{
uz(z) = F ′

1z, z ∈ ]0, h[

uz(z) = E ′
2 + F ′

2z, z ∈ ]h, L[
(46)

with

F ′
1 =

C2
33C

s
33ε33L

C2
33C

s
33h+ C1

33 (C
2
33 + Cs

33 [L− h])
(47)

E ′
2 =

(C2
33C

s
33h+ C1

33 [C
2
33 − Cs

33h]) ε33L

C2
33C

s
33h+ C1

33 (C
2
13 + Cs

33 [L− h])
(48)

and

F ′
2 =

C1
33C

s
33ε33L

C2
33C

s
33h+ C1

33 (C
2
13 + Cs

33 [L− h])
(49)
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