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Interactions between moderately close inclusions

for the 2D Dirichlet-Laplacian

V. Bonnaillie-Noël, M. Dambrine and C. Lacave

February 24, 2015

Abstract

This paper concerns the asymptotic expansion of the solution of the Dirichlet-Laplace problem in

a domain with small inclusions. This problem is well understood for the Neumann condition in dimen-

sion greater than two or Dirichlet condition in dimension greater than three. The case of two circular

inclusions in a bidimensional domain was considered in [1]. In this paper, we generalize the previous

result to any shape and relax the assumptions of regularity and support of the data. Our approach uses

conformal mapping and suitable lifting of Dirichlet conditions. We also analyze configurations with

several scales for the distance between the inclusions (when the number is larger than 2).

Keywords: perforated domain, Dirichlet boundary conditions, asymptotic expansion, conformal map-

ping.
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1 Introduction

In many application fields ranging from electrical engineering to flow around obstacles, one has to

consider Poisson equation in a domain presenting holes. The presence of small inclusions or of a

surface defect modifies the solution of the Laplace equation posed in a reference domain Ω0. If the

characteristic size of the perturbation is small, then one can expect that the solution of the problem

posed on the perturbed geometry is close to the solution of the reference shape. Asymptotic expansion

with respect to that small parameter –the characteristic size of the perturbation– can then be performed.

The case of a single inclusion ω, centered at the origin 0 being either in Ω0 or in ∂Ω0, has been

deeply studied, see [18, 19, 14, 15, 20, 7, 8]. The techniques rely on the notion of profile, a normalized

solution of the Laplace equation in the exterior domain obtained by blow-up of the perturbation. It

is used in a fast variable to describe the local behavior of the solution in the perturbed domain. In

usually dealt situations that is for Neumann boundary conditions in dimension greater than two and

Dirichlet boundary condition in dimension greater than three, convergence of the asymptotic expansion

is obtained thanks to the decay of the profile at infinity.

The case of some inclusions was considered for example in the series of papers of A. Movchan

and V. Maz’ya [16, 17] where an asymptotic approximation of Green’s function is built and justified

in a domain with many inclusions. The points where the inclusions are shunk are fixed in those works.

In [2], the Neumann case where the distance between the holes tends to zero but remains large with
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respect to their characteristic size was investigated for two perfectly insulated inclusions: a complete

multiscale asymptotic expansion of the solution to the Laplace equation is obtained in a three scales

case.

Recently, V. Bonnaillie-Noël and M. Dambrine have considered in [1] the case of two circular

defects with homogeneous Dirichlet boundary conditions in a bidimensional domain. They distinguish

the cases where the distance between the object is of order 1 and the case where it is larger than the

characteristic size of the defects but small with respect to the size of the domain. They have derived

the complete expansion and built a numerical method to solve the problem. Our aim is to extend their

result to any geometry for the inclusion as well as to richer geometric configurations. Note that L.

Chesnel and X. Clayes have proposed an alternative numerical scheme in [3].

Let us make precise the problem under consideration. Let Ω0 be a bounded connected and simply

connected domain in R
2. We consider N inclusions of size ε: for any i = 1, . . . , N let ωi

ε := xiε+ εω
i

where ωi is a simply-connected compact set containing 0. The centers of the inclusions xiε are distinct,

belong to Ω0 and tend to xi0 ∈ Ω0 as ε → 0. We allow to have the same limit position xi0 = xj0 for

some i 6= j but we assume that the distance for any ε > 0 is much larger than the size of the inclusion

(see (4.1) in Section 4 for precise definitions). Therefore, for ε small enough, we have ωi
ε ⊂ Ω0 and

ωi
ε ∩ ωj

ε = ∅ for any i 6= j. The domain depending on ε is then :

Ωε := Ω0 \
( N⋃

i=1

ωi
ε

)
.

We search an asymptotic expansion for the solution uε of the Dirichlet-Laplace problem in Ωε:

{
−∆uε = f in Ωε,

uε = 0 on ∂Ωε,
(1.1)

where f ∈ H−1+µ(Ω0) with µ > 0. Since the H1-capacity of ωi
ε tends to 0 as ε tends to 0 (see e.g. [12]

for all details on the capacity), it is already clear that uε converges strongly in H1
0(Ω0) to u0 which is

the unique solution of the Laplace problem in Ω0:

{
−∆u0 = f in Ω0,

u0 = 0 on ∂Ω0.
(1.2)

In this convergence, we have extended uε by zero inside the inclusions. At order 0, we thus have

uε = u0 + r0ε where ‖r0ε‖H1(Ω0) → 0 as ε→ 0. Let us notice that the remainder r0ε satisfies





−∆r0ε = 0 in Ωε,

r0ε = 0 on ∂Ω0,

r0ε = −u0 on ∂ωi
ε, ∀1 ≤ i ≤ N.

(1.3)

The purpose of this paper is to get the lower order terms in the expansion of uε. We follow the leading

ideas of [1] and generalize their results to any geometry of the defects while simplifying the proofs.

We also relax the assumption on the regularity of f and do not more assume that f is supported far

away the inclusions. The drawback is that the correctors built in this work are less explicit but remain

numerically computable.

The paper is organized as follows. In Section 2, we present the basic tools essentially of complex

analysis required for the sequel. Section 3 is devoted to the presentation of the strategy on the model

case of a single hole, while Section 4 deals with a finite number of holes separated by various distance.
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2 Basic tools

In this section, we introduce basic material which will be used in the following sections. The explicit

solution to the Laplace problem is well known in the full plane, and we can also find in literature the

Green function in or outside the unit disk. Conformal mapping is a convenient change of variable for

the Laplace problem in order to get a formula inside or outside any simply connected compact set. In

the sequel, we identify R
2 and C through (x1, x2) = x1 + ix2 = z.

2.1 Conformal mapping and Green function

By the Riemann mapping theorem, there exists a unique biholomorphism T i from R
2 \ ωi to B(0, 1)c

such that

T i(∞) = ∞ and arg(T i)′(∞) = 0,

which reads in the Laurent series decomposition as

T i(z) = βiz +
∑

k∈N

βik
zk
, ∀z ∈ B(0, R)c, (2.1)

with βi ∈ R+
∗ is called the transfinite diameter (or logarithmic capacity) of ωi. In the previous equality,

the radius R is chosen large enough such that ωi ⊂ B(0, R). For example, a consequence of such a

decomposition is the existence of a constant C > 0 such that:

‖T i(z)− βiz‖L∞(R2\ωi) ≤ C. (2.2)

For the Dirichlet problem in an open set Ω, the Green function is a function GΩ from Ω× Ω to R

such that

GΩ(x, y) = GΩ(y, x), GΩ(x, y) = 0 if x ∈ ∂Ω, ∆xGΩ(x, y) = δ(x − y),

where δ is the Dirac measure centered at the origin. In the full plane, we haveGR2(x, y) = 1
2π ln |x−y|

and outside the unit disk we have

G
B(0,1)

c(x, y) =
1

2π
ln

|x− y|
|x− y∗||y| ,

with the notation

y∗ =
y

|y|2 .

Thanks to the conformal mapping T i we deduce the Green function in the exterior of ωi:

GR2\ωi(x, y) =
1

2π
ln

|T i(x)− T i(y)|
|T i(x)− T i(y)∗||T i(y)| .

Inside Ω0, let us introduce the function G defined by

G[ϕ](x) :=
∫

∂Ω0

∂nGΩ0
(x, y)ϕ(y) dσ(y), ∀x ∈ Ω0, (2.3)

where GΩ0
can be defined as in GR2\ωi replacing T i by T 0 a biholomorphism from Ω0 to B(0, 1).

This function satisfies {
−∆G[ϕ] = 0 in Ω0,

G[ϕ] = ϕ on ∂Ω0.
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Remark 2.1 For any shape Ω0 and ωi we can compute numerically T 0, T i, only by solving once a

Laplace problem. This is discussed in [11, Chapter 16, section 5]. We can also explicit the conformal

mapping for some geometries.

In the particular case where ωi is a segment, then the Joukowski function h(z) = (z + 1/z)/2 gives

an explicit formula for T i. Indeed, h maps the exterior of the unit disk to the exterior of the segment

[−1, 1] × {0}. Then, up to a translation, dilation and rotation, we find that T i(z) = z ±
√
z2 − 1

(where ± is chosen in order that |T i(z)| > 1, depending on the definition of
√

) sends the exterior of

the segment to the exterior of the unit disk.

When ωi is an ellipse {(x, y) ∈ R
2, a2x2 + b2y2 ≤ c2} with a, b, c > 0, then we find

(T i)−1(z) =
c

a

z + 1/z

2
+ i

c

b

z − 1/z

2i
, and T i(z) =

c−1z ±
√
c−2z2 + b−2 − a−2

a−1 + b−1
.

2.2 Dirichlet problem in exterior domain

Even if the main goal of the Green function is to produce an explicit solution of the Laplace problem,

we only use these functions to prove the following Lemma.

Lemma 2.2 Let ω be a smooth compact set of R2. If F ∈ H1/2(∂ω), then the boundary value problem

{
−∆Ψ = 0 in R

2 \ ω,
Ψ = F on ∂ω,

admits a unique weak solution Ψ in the variational space

H1
log =

{
Φ;

Φ

(1 + |X|) ln(2 + |X|) ∈ L2(R2 \ ω) and ∇Φ ∈ L2(R2 \ ω)
}
.

Furthermore, we have the following properties:

1. For any n ∈ N, the solution Ψ can be decomposed as

Ψ(X) =

n∑

k=0

Ψk(X) +Rn+1(X) (2.4)

where Ψ0 is constant, Ψk(r, θ) =
ak cos(kθ) + bk sin(kθ)

rk
and

|X|n|Rn(X)| ≤ Cn‖F‖L∞(∂ω) (2.5)

for some Cn > 0 independent of F .

2. Let T be the biholomorphism from R
2\ω onto the exterior of the unit disk (such that T (∞) = ∞

and arg T ′(∞) = 0), we have

Ψ0 = Ψ0[F ] =
1

2π

∫ 2π

0
F ◦ T −1

(
cos θ
sin θ

)
dθ =

1

2π

∫

∂ω
F (Y )

√
detDT (Y ) dσ(Y ). (2.6)

3. Ψ0 = 0 if and only if there exist R > 0 and Ψ̂ ∈ H(R2 \ B(0, R)) such that

Ψ = Re Ψ̂ and

∫

∂B(0,R)

Ψ̂

z
dz = 0.
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Proof: The well-posedness in the variational space is a standard result coming from Lax-Milgram

theorem (see e.g. [10]).

Next, we note that ∇Ψ =

(
∂1Ψ
∂2Ψ

)
is divergence and curl free, so

∇̂Ψ(z) := ∂1Ψ(x, y)− i∂2Ψ(x, y)

is holomorphic because it verifies the Cauchy-Riemann equations. Hence, ∇̂Ψ admits a Laurent series

decomposition on B(0, R)c, withR such that ω ⊂ B(0, R), and as ∇Ψ is square integrable, we deduce

that

∇̂Ψ(z) =

+∞∑

k=2

ck
zk
, for all z /∈ B(0, R).

Obviously, the function

g(z) :=

+∞∑

k=1

−ck+1

kzk

is a holomorphic primitive of ∇̂Ψ. Decomposing the function g in real and imaginary part

g(z) = g1(x, y) + ig2(x, y),

we verify that

dg

dz
(z) = 1

2

(
∂1g1 +

1
i ∂2g1

)
+ i

2

(
∂1g2 +

1
i ∂2g2

)
= ∂1g1 − i∂2g1,

where we have used the Cauchy-Riemann equations on g. Therefore, there exists Ψ0 ∈ R such that

Ψ(x, y) = Ψ0 + g1(x, y) = Ψ0 +Re g(z) = Ψ0 +Re
( +∞∑

k=1

−ck+1

kzk

)
= Ψ0 +

+∞∑

k=1

Ψk(x), (2.7)

where

ak = −Re
ck+1

k
, and bk = −Im

ck+1

k
.

This ends the proof of the decomposition of Point 1. We establish (2.5) at the end of this proof.

We use (2.7) to prove the third point. If Ψ0 = 0, then Ψ(x, y) = Re g(z) with g ∈ H(C\B(0, R))
and we compute by the Cauchy residue theorem that

∫

∂B(0,R)

g

z
dz = 0.

At the opposite, assume that there exist R and Ψ̂ ∈ H(C \ B(0, R)) such that

Ψ = Re Ψ̂ and

∫

∂B(0,R)

Ψ̂

z
dz = 0.

We decompose Ψ̂ in Laurent series Ψ̂ =
∑

k∈Z dkz
−k, and the condition

∫

∂B(0,R)

Ψ̂

z
dz = 0
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reads as d0 = 0. As Ψ = Re Ψ̂, we conclude that Ψ0 = Re d0 = 0 which establishes the Point 3.

Concerning the second statement, we write the expression of the solution Ψ in terms of the Green

function:

Ψ(X) =

∫

∂ω
∂nG(Y,X)F (Y ) dσ(Y ), (2.8)

where n is the outgoing normal vector of R2 \ ω. Thanks to the explicit formula of G, we compute:

Ψ(X) =
1

2π

∫

∂ω
F (Y )n(Y ) ·DT T (Y )

( T (Y )− T (X)

|T (Y )− T (X)|2 − T (Y )− T (X)∗

|T (Y )− T (X)∗|2
)
dσ(Y ).

When X → ∞, T (X) → ∞ and T (X)∗ → 0, hence it is clear that

Ψ0 = − 1

2π

∫

∂ω
F (Y )n(Y ) ·DT T (Y )

T (Y )

|T (Y )|2 dσ(Y ).

A parametrization of ∂ω can be

Y = γ(θ) = T −1

(
cos θ
sin θ

)
for θ ∈ [0, 2π].

Hence, (γ′(θ))⊥ = −DT −1(T (Y ))T (Y )where we have used the Cauchy-Riemann equations. Hence,

we compute again by the Cauchy-Riemann equations that

|γ′(θ)|2 = T (Y )·(DT −1(T (Y )))TDT −1(T (Y ))T (Y ) = detDT −1(T (Y ))|T (Y )|2 = 1

detDT (Y )
.

We deduce that

n(Y ) =
(γ′(θ))⊥

|γ′(θ)| = −
√

detDT (Y )DT −1(T (Y ))T (Y ) = −
√
detDT (Y )(DT (Y ))−1T (Y )

=−
√

detDT (Y )
(DT (Y ))T

detDT (Y )
T (Y ) = − (DT (Y ))T√

detDT (Y )
T (Y ).

Hence, we get

n(Y ) ·DT T (Y )
T (Y )

|T (Y )|2 = − T (Y )√
detDT (Y )

·DT (Y )DT T (Y )
T (Y )

|T (Y )|2 = −
√

detDT (Y ).

This allows to conclude:

Ψ0 =
1

2π

∫

∂ω
F (Y )

√
detDT (Y ) dσ(Y )

=
1

2π

∫ 2π

0
F (γ(θ))

√
detDT (γ(θ))|γ′(θ)| dθ = 1

2π

∫ 2π

0
F ◦ T −1

(
cos θ
sin θ

)
dθ.

An important consequence of this equality is the following estimate:

|Ψ0[F ]| ≤ ‖F‖L∞(∂ω). (2.9)

Now, we note by the Laurent series decomposition (2.7) that there exists R large enough such that

‖Ψ(X)‖ ≤ |Ψ0[F ]| + ‖F‖L∞(∂ω) for all X ∈ B(0, R)c. Therefore, Ψ is bounded by 2‖F‖L∞(∂ω)

outside this ball, and in B(0, R) \ ω we use the maximum principle to state that

‖Ψ(X)‖ ≤ ‖Ψ‖L∞(∂ω∪∂B(0,R)) ≤ 2‖F‖L∞(∂ω) ∀X ∈ B(0, R) \ ω,
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hence

‖Ψ‖L∞(R2\ω) ≤ 2‖F‖L∞(∂ω).

Next, we consider R0 > 1 such that ω ⊂ B(0, R0 − 1). By harmonicity of Ψ, the mean value formula

implies

‖∇Ψ‖L∞(∂B(0,R0)) ≤ 2‖Ψ‖L∞(B(0,R0−1)c) ≤ 4‖F‖L∞(∂ω).

This estimate together with the Cauchy formulas gives that

|ck| =
∣∣∣ 1

2iπ

∫

∂B(0,R0)
∇̂ψ(z)zk−1 dz

∣∣∣ ≤ 4Rk
0‖F‖L∞(∂ω).

Therefore, for any |X| ≥ 2R0 and any n ≥ 1, we have

|X|n|Rn(X)| ≤
∞∑

k=n

|ck+1|
k|X|k−n

≤ 4‖F‖L∞(∂ω)

∞∑

k=n

Rk+1
0

(2R0)k−n
≤ 8Rn+1

0 ‖F‖L∞(∂ω).

In B(0, 2R0) \ ω, it is clear that

|X|n|Rn(X)| ≤ |X|n|Ψ(X)| + |X|n|Ψ0|+
n−1∑

k=1

|ck+1|
k

|X|n−k ≤ C(n,R0)‖F‖L∞(∂ω).

This ends the proof of (2.5).

Remark 2.3 The previous lemma is still available assuming less regularity on ω. It is enough to

assume that ω is C1,α with a finite number of corners with openings in (0, 2π) [13, p. 20].

If ω is less regular (with crack, for example), the main difficulty is to establish (2.6) or (2.8), see [4].

Nevertheless, to justify our construction for any inclusion, we only need (2.4) and (2.5). In the case

of domain with cracks, decomposition (2.4) is still valid but it requires more sophistical tools to prove

estimates like (2.5) (see [4]) and we do not want to enter in this special feature.

Remark 2.4 When ω is the unit ball B, then we recover the statement of [1, Lemma 2.1 (3)] and

∫

∂ω
F = 0 =⇒ Ψ0 = 0.

The property of the zero mean value is crucial in [1] in the case of circular inclusions : it implies the

profile decay at infinity and allows to construct the terms of the expansion. In the present paper, even

if the boundary condition has the zero mean value, the associated profile does not decay at infinity and

we have to lift Ψ0 suitably (see Section 3).

We end this section by recalling the following classical elliptic estimate (see e.g. [9, Theorem 2.10]).

Lemma 2.5 Let x0 ∈ Ω0 and δ > 0 such that B(x0, δ) ⊂ Ω0. Then, for any n ∈ N, there exists

Cn(δ) > 0 such that

‖Dnu‖L∞(B(x0,δ/2)) ≤ Cn‖u‖L∞(B(x0,δ))

for any harmonic u (i.e. such that ∆u = 0 on B(x0, δ)).
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3 One inclusion

In the case of one inclusion, we omit the index 1 and denote ω, xε, Tε, . . .

3.1 One iteration

To deal with Equation (1.3) satisfied by r0ε , we consider the more general boundary values problem:





−∆vε = 0 in Ωε,

vε = ϕ on ∂Ω0,

vε = f on ∂ωε.

(3.1)

At the first order, vε is approximated by v0 = G[ϕ], see (2.3), and is solution of

{
−∆v0 = 0 in Ω0,

v0 = ϕ on ∂Ω0.

In order to gain one order in the remainder of the asymptotic expansion of uε, we need to introduce

some notations. For any function f ∈ H1/2(∂ωε), we define F ∈ H1/2(∂ω) by

F (X) = f(x), ∀X =
x− xε
ε

∈ ∂ω.

By Lemma 2.2, there exists a unique function Ψ ∈ H1
log solution of

{
−∆Ψ = 0 in R

2 \ ω,
Ψ = F on ∂ω.

(3.2)

This solution will be denoted by

Fω[F ] := Ψ. (3.3)

Outside ωε, we can consider the associated problem

{
−∆ψ = 0 in R

2 \ ωε,

ψ = f on ∂ωε.

Then we have for any x ∈ R
2 \ ωε

Fωε [f ](x) := ψ(x) = Ψ(X) = Fω[F ](X), with X =
x− xε
ε

∈ R
2 \ ω.

The function Ψ can be decomposed in polar coordinates (see (2.4)) as

Ψ(r, θ) = Ψ0 + Ψ̃(r, θ) with Ψ̃(r, θ) =
∑

k≥1

dk(θ)r
−k and dk ∈ Span(sin(k·), cos(k·)). (3.4)

Note that Ψ̃ = R1 and then satisfies estimate (2.5). Let us define

Tε(x) := εT
(x− xε

ε

)
= εT

(
X
)
, (3.5)
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which maps the exterior of ωε to the exterior of the disk B(0, ε).

Inspired by the case of the ball [1], we define the two main ingredients of our construction. The

first one is adapted to lift a constant function on ∂ωε. A trivial solution of the problem

{
−∆v = 0 in R

2 \ ωε,

v = c on ∂ωε

could be v = c. But this generates a constant term on ∂Ω0 and the unique solution of

{
−∆V = 0 in Ω0,

V = c on ∂Ω0

is the constant c itself. Hence, we can’t reduce the remainder with this procedure.

When ω is the unit ball, another way to lift the constant c in R
2 \ ωε is to consider the function

x 7→ c ln |x−xε|
ln ε . Inspired by this lifting, we introduce, for general inclusion ω, the function

ℓε(x) := ln |Tε(x)|,

which is the solution of {
−∆ℓε = 0 in R

2 \ ωε,

ℓε = ln ε on ∂ωε.

Thus the function ℓε allows to find non trivial harmonic extension of constant into ωc
ε. The trace of the

function ℓε is non zero trace on the outer boundary ∂Ω0 and it is described by the behaviour at infinity

of the Riemann mapping (2.1), and one gets thanks to (2.2)

‖ℓε − ln β| · −xε|‖L∞(∂Ω0) ≤Mε. (3.6)

The second ingredient is to correct the main order of the traces on the outer boundary ∂Ω0. For this,

we consider the function wω := G[ln β| · −xε|] (see (2.3)) verifying

{
−∆wω = 0 in Ω0,

wω = ln β| · −xε| on ∂Ω0.

Unfortunately this function wω produces a trace on the small inclusion ∂ωε. To reduce it, we have to

determine a suitable combination of the profiles ℓε and wω.

Remark 3.1 The function wω encodes two informations: the shape of ω via the transfinite diameter

β and the location of the inclusion via xε.

The main idea of the construction is that an appropriate linear combinaison of these two functions

ℓε and wω allows to reduce the error on both ∂ωε and ∂Ω0.

In order to build an asymptotic expansion of the solution uε, we first prove a technical proposition

allowing to start and iterate the construction of the expansion.

Proposition 3.2 Let vε be solution of (3.1). There is an harmonic function rε defined on Ωε such that

vε(x) = v0(x) + Fω[F ]

(
x− xε
ε

)
−Ψ0[F ] +

v0(xε)−Ψ0[F ]

wω(xε)− ln ε
wε,ω(x) + εrε(x), (3.7)
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with v0 = G[ϕ] defined in (2.3), Ψ0[F ] in (2.6), Fω[F ] in (3.2)–(3.3) and, with Tε given in (3.5),

wε,ω := ℓε − wω with ℓε = ln |Tε| and wω = G[ln β| · −xε|].
Thus we have

‖rε‖L∞(∂Ω0∩∂ωε) ≤ C
[
‖F‖L∞(∂ω) + ‖ϕ‖L∞(∂Ω0)

]
.

Proof: The harmonicity of the remainder rε follows from the harmonicity of v0, Fω[F ], wω and

ℓε. In order to establish the L∞ estimate, we compute the traces of the function rε on each componant

∂ωε and ∂Ω of the boundary.

• On the outer boundary ∂Ω0, one has for any x ∈ ∂Ω0

εrε(x) = ϕ(x)−
[
ϕ(x) + Fω[F ]

(
x− xε
ε

)
−Ψ0 +

v0(xε)−Ψ0

wω(xε)− ln ε

(
ℓε(x)− ln β|x− xε|

)
]

= −
[
Ψ̃

(
x− xε
ε

)
+

v0(xε)−Ψ0

wω(xε)− ln ε

(
ℓε(x)− lnβ|x− xε|

)
]
,

with Ψ̃(= R1) defined in (3.4) and Ψ0 = Ψ0[F ]. Therefore, one has according to (3.6) and (2.5),

ε‖rε‖L∞(∂Ω0) ≤ C1ε‖F‖L∞(∂ω) + εhεM (|v0(xε)|+ |Ψ0|) , with hε =
1

wω(xε)− ln ε
.

Since |Ψ0| ≤ ‖F‖L∞(∂ω) (cf. (2.9)) and |v0(xε)| ≤ ‖ϕ‖L∞(∂Ω0) (by the maximum principle), we get

‖rε‖L∞(∂Ω0) ≤ C
[
‖F‖L∞(∂ω) + hε‖ϕ‖L∞(∂Ω0)

]
.

• On the boundary of the inclusion ∂ωε, one has for x ∈ ∂ωε

εrε(x) = f(x)−
[
v0(x) + F

(
x− xε
ε

)
−Ψ0 +

v0(xε)−Ψ0

wω(xε)− ln ε
(ln ε− wω(x))

]

= −
[
v0(x)−Ψ0 +

v0(xε)−Ψ0

wω(xε)− ln ε
(ln ε−wω(x))

]

= −(v0(x)− v0(xε))−
v0(xε)−Ψ0

wω(xε)− ln ε
(wω(xε)− wω(x)) .

As soon as ε is small enough, there exists δ > 0 such that ωε ⊂ B(xε, δ2) ⊂ B(xε, δ) ⊂ Ω0. Using the

mean value formula and Lemma 2.5, we get

ε‖rε‖L∞(∂ωε) ≤ |x− xε| ‖∇v0‖L∞(B(xε,
δ
2
)) + hε (|v0(xε)|+ |Ψ0|) |x− xε| ‖∇wω‖L∞(B(xε,

δ
2
))

≤ C
[
ε‖ϕ‖L∞(∂Ω0) + εhε‖F‖L∞(∂ω)

]
.

Remark 3.3 As in [1], the coefficients (α, β) in front of ℓε and wω in (3.7) are uniquely determined

when we try to reduce the trace boundaries on ∂Ω0 and ∂ωε. This gives respectively the two equations

of the following system {
α+ β = 0,

α ln ε+ βwω(xε) = −v0(xε) + Ψ0,

so that α = −β =
v0(xε)−Ψ0

wω(xε)− ln ε
. The scale hε =

1
wω(xε)−ln ε is analogous to those appearing in the

case of circular inclusion in [1, Relation (2.6)].
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3.2 Recursive construction

Let us come back to the initial problems (1.1)–(1.2). As previously, we consider r0ε = uε − u0 which

satisfies (1.3). This problem has the form (3.1) with

ϕ = 0, f = −u0.
Thus the function v0 = G[ϕ] = 0. Recall that we denote F (X) = f(x) for any x = xε + εX ∈ ∂ωε.

Let us consider Ψ0 = Ψ0[F ] determined in Lemma 2.2. Applying Proposition 3.2, we have

uε(x)− u0(x) = r0ε(x) = Fω[F ]
(
x−xε

ε

)
−Ψ0 −

Ψ0

wω(xε)− ln ε
wε,ω(x) + εr1ε(x), (3.8)

and

‖r1ε‖L∞(∂Ω0∩∂ωε) ≤ C‖u0‖L∞(∂ωε).

Notice that here

Fω[F ]
(
x−xε

ε

)
= −Fωε [u0](x).

By applying iteratively Proposition 3.2 with
{
ϕk(x) = rkε (x), ∀x ∈ ∂Ω0,

F k(X) = rkε (x), ∀x = xε + εX ∈ ∂ωε,

we build a sequence of functions ϕk defined on ∂Ω0 and F k defined on ∂ω such that, for any N ≥ 1,

uε(x) = u0(x) +
N∑

k=0

εk
[
G[ϕk](x) + Fω[F

k]
(
x−xε

ε

)
−Ψ0[F

k] +
G[ϕk](xε)−Ψ0[F

k]

wω(xε)− ln ε
wε,ω(x)

]

+ εN+1 rN+1
ε (x), (3.9)

where

‖rk+1
ε ‖L∞(∂Ω0∩∂ωε) ≤ C‖rkε‖L∞(∂ωε) ≤ Ck+1‖u0‖L∞(∂ωε).

Since f ∈ H−1+µ(Ω0) (see (1.2)), then u0 ∈ H1+µ(Ω0) and ‖u0‖L∞(Ω0) ≤ c‖f‖H−1+µ(Ω0).

An important point to notice is that we obtain estimates of the remainders in the L∞-norm by this

method. By properties of harmonic functions, it means convergence in the energy norm H1 on any

compact subset of Ω0. Such a restriction also appears in the method developed by M. Dalla Riva and

P. Musolino in [5, 6].

Nevertheless, estimates in the energy norm in the full domain can be obtained following the stra-

tegy used in [2, 1] where one decomposes the correctors on homogeneous harmonic functions. Using

[2, Proposition 3.2], one estimates trace of functions on the singular boundary ∂ωε.

Remark 3.4 In [1], the support of f is assumed to be far away the inclusions. With this assumption,

the first term of the expansion can be simplified since the term Fω[F
0]
(
x−xε

ε

)
−Ψ0[F

0] in (3.9) is of

the same order of the remainder ε r1ε(x) and then can be removed. Indeed, using Lemma 2.5, we have

∀x ∈ ∂ωε,
∣∣Fω[F

0]
(
x−xε

ε

)
−Ψ0[F

0]
∣∣ =

∣∣∣∣−u0(x) +
1

2π

∫ 2π

0
u0

(
xε + εT −1

(
cos θ
sin θ

))
dθ

∣∣∣∣
≤ ε‖∇u0‖L∞(B(x0,δ/2)) ≤ Cε‖u0‖L∞(B(x0,δ)),

∀x ∈ ∂Ω0,
∣∣Fω[F

0]
(
x−xε

ε

)
−Ψ0[F

0]
∣∣ ≤ ε‖u0‖L∞(Ω0).
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In the same way, we also have

| − u0(xε)−Ψ0[F
0]| ≤ Cε‖u0‖L∞(Ω0).

Therefore we recover the expansion in [1]:

uε(x) = u0(x) +
u0(xε)

wω(xε)− ln ε
wε,ω(x) + ε r1ε(x).

4 N inclusions well separated

We come back now to the framework of the introduction, that is we consider N inclusions (ωi
ε)1≤i≤N

of size ε centered at points xiε. We shall consider two cases depending on the limits of the distance

between centers xiε when ε→ 0:

dε := min
i 6=j

|xiε − xjε|.

1. The first case is the fixed limit centers: when ε→ 0, the centers tend to xi0 ∈ Ω0 and there exists

C > 0 such that

dε ≥ C.

2. The second case presents a third scale η(ε) between ε and 1 such that

dε ≥ Cη(ε),

with a positive constant C . This scale η(ε) is assumed to satisfy

η(ε) → 0 and
η(ε)

ε
→ +∞ as ε→ 0. (4.1)

A typical choice for η(ε) is εα with α ∈ [0, 1) as made in [2, 1].

Our aim is to apply the strategy introduced in the case of a single defect in this geometric con-

figuration. For any 1 ≤ i ≤ N , we associate wi and wε,i as we have introduced wω and wε,ω in

Proposition 3.2 in the case of a single inclusion1 :

wε,i := ln |T i
ε | − G[ln βi| · −xiε|],

with βi the transfinite diameter of the conformal map T i
ε which sends R2 \ ωi

ε onto R
2 \ B(0, ε). We

aim at constructing an asymptotic expansion of the solution uε of (1.1).

To catch the second term of the asymptotic expansion, we superpose the contribution of each

inclusion:

uε(x) = u0(x) +
N∑

i=1

(
Fωi [F ]

(
x−xi

ε

ε

)
−Ψ0,i

)
+

N∑

i=1

aε,iwε,i(x) + εr1ε(x),

where

Fωi [F ]
(
x−xi

ε

ε

)
= −Fωi

ε
[u0](x),

1For shortness, we replace the index ωi by i
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which behaves at infinity as Ψ0,i +O(1/|x|). We look for coefficients aε,i such that the remainder r1ε
is of smaller order than the first two terms on ∂Ωε.

• Let us first consider the boundary ∂Ω0. By construction, we have

εr1ε(x) = −
N∑

i=1

(
Fωi [F ]

(
x−xi

ε

ε

)
−Ψ0,i

)
−

N∑

i=1

aε,iwε,i(x) = O
((

1 +max
i

|aε,i|
)
ε

)
.

• Let 1 ≤ i ≤ N . We have for any x ∈ ∂ωi
ε

εr1ε(x) =− u0(x)− (−u0(x)−Ψ0,i)− aε,iwε,i(x)

−
∑

j 6=i

(
Fωj [F ]

(
x−xj

ε

ε

)
−Ψ0,j

)
−
∑

j 6=i

aε,jwε,j(x)

=Ψ0,i − aε,i(ln ε− wi(x)) +O
(
ε

dε

)
−
∑

j 6=i

aε,j

(
ln
∣∣∣εT j

(
x−xj

ε

ε

)∣∣∣−wj(x)
)

=Ψ0,i − aε,i
(
ln ε− wi(x

i
ε) +O(ε)

)
+O

(
ε

dε

)

−
∑

j 6=i

aε,j

(
ln
∣∣∣εT j

(
x−xj

ε

ε

)∣∣∣− wj(x
i
ε) +O(ε)

)

=Ψ0,i − aε,i(ln ε− wi(x
i
ε))−

∑

j 6=i

aε,j
(
ln βj |xiε − xjε| − wj(x

i
ε)
)

+

(
1 +max

j
|aε,j|

)
O
(
ε

dε

)
.

Then, one cancels the leading terms (up to the order ε) by solving

Mε



aε,1

...

aε,N


 =




Ψ0,1
...

Ψ0,N


 , (4.2)

with

Mε =




ln ε− w1(x
1
ε) ln βj |xiε − xjε| − wj(x

i
ε)

. . .

ln βj|xiε − xjε| − wj(x
i
ε) ln ε− wN (xNε )


 .

In the following, we distinguish several configurations according to the behavior of dε and the confi-

gurations of the inclusions. In each case, we prove that the matrix Mε is invertible. Then we deduce

the existence of coefficients aε,i and a good estimate for the remainder r1ε .

Remark 4.1 For a single inclusion (N = 1), we recover that aε =
Ψ0,1

ln ε−w1(x1
ε)

, see (3.8).

4.1 First case: N inclusions at distance O(1)

Let us first assume that dε = O(1): there exists c > 0 such that

|xiε − xjε| ∈
[
c−1, c

]
, ∀i 6= j.
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Note that ln βj |xiε − xjε| − wj(x
i
ε) = O(1), then the matrix Mε reads

Mε = ln ε IN +O(1),

which is invertible and verifies

M−1
ε =

1

ln ε
IN +O

(
1

ln2 ε

)
.

Consequently, the coefficients aε,j satisfy

max
j

|aε,j| = O
(

1

ln ε

)
.

For the asymptotic construction, we do not use the main term of the inverse of Mε otherwise the

remainder would be in O(1/ ln ε). Solving exactly (4.2) gives convenient coefficients aε,j so that the

remainder is in O(ε):

uε = u0 +

N∑

i=1

(
Fωi [F ]

(
·−xi

ε

ε

)
−Ψ0,i

)
+

N∑

i=1

aε,iwε,i +O(ε) on ∂Ωε.

We can adapt the construction at any order using the inverse M−1
ε to construct a suitable linear

combination of the lifting terms and decrease the order of the remainder terms.

Remark 4.2 Let us consider N = 2. Then M−1
ε is given by

M−1
ε =

1

δ(ε)

(
ln ε− w2(x

2
ε) − ln β2|x1ε − x2ε|+ w2(x

1
ε)

− lnβ1|x1ε − x2ε|+w1(x
2
ε) ln ε− w2(x

2
ε)

)
,

with

δ(ε) =
(
ln ε− w1(x

1
ε)
) (

ln ε− w2(x
2
ε)
)
−
(
ln β1|x1ε − x2ε| − w1(x

2
ε)
) (

ln β2|x1ε − x2ε| − w2(x
1
ε)
)
.

If ω1 and ω2 are unit ball, then β1 = β2 = 1 and we recover the expressions obtained in [1, p. 211]

when f is supported far away the inclusions. Indeed, Remark 3.4 allows to replace Ψ0,i by −u0(xiε)
and to remove Fωi [F ]

(
·−xi

ε

ε

)
−Ψ0,i.

4.2 Second case: N inclusions at distance O(η(ε))

We assume now that the distance between any two inclusions is of order η(ε): there exists c > 0 such

that

η(ε)|xiε − xjε| ∈
[
c−1, c

]
, ∀i 6= j.

Since ln βj |xiε − xjε| = ln η(ε) +O(1) for any i 6= j and wj(x
i
ε) = O(1) for any i, j, the matrix Mε

satisfies

Mε = ln ε IN + ln η(ε)( HN − IN ) +O(1) = M0
ε +O(1),

where M0
ε = (ln ε − ln η(ε)) IN + ln η(ε) HN and HN is the square matrix of size N with every

coefficients equal to 1. Since the rank of HN is one, there exists an orthogonal matrix P such that

HN =



1 . . . 1
...

...

1 . . . 1


 = P




N 0
0

. . .

0 0


P−1.
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Thus

M0
ε = P

(
ln ε+ (N − 1) ln η(ε) 0

0 (ln ε− ln η(ε)) IN−1

)
P−1,

which is clearly invertible for ε small with inverse

(M0
ε)

−1 = P

(
1

ln ε+(N−1) ln η(ε) 0

0 1
ln ε−ln η(ε) IN−1

)
P−1

=
1

ln ε− ln η(ε)
IN +

1

N

[
1

ln ε+ (N − 1) ln η(ε)
− 1

ln ε− ln η(ε)

]
HN .

Consequently, Mε is invertible and, by Neumann series, we can remark

M−1
ε =

1

ln ε

(
1

1− ln η(ε)
ln ε

IN +
1

N

[
1

1 + (N − 1) ln η(ε)
ln ε

− 1

1− ln η(ε)
ln ε

]
HN

)
+O

(
1

ln2 ε

)
.

The asymptotic expansion of uε is thus given by

uε(x) = u0(x) +
N∑

i=1

(
Fωi [F ]

(
x− xiε
ε

)
−Ψ0,i

)

+

〈
M−1

ε




Ψ0,1
...

Ψ0,N


 ,




wε,1(x)
...

wε,N(x)



〉

+O
(

ε

η(ε) ln ε

)
,

where we have expressed the coefficients aε,j according to the resolution of the system (4.2).

In order to compute the leading corrector, one has to consider the limit of ln εM−1
ε when ε → 0.

The limit matrix depends on the ratio ln η(ε)/ ln ε. If this ratio has a finite limit l, then l ∈ [0, 1)
according to (4.1) and

M−1
ε ∼ 1

ln ε

(
1

1− l
IN +

1

N

[
1

1 + (N − 1)l
− 1

1− l

]
HN

)
. (4.3)

As an example, the model case η(ε) = εα yields l = α. For N = 2, one has

uε(x) = u0(x) +

2∑

i=1

(
Fωi [F ]

(
x−xi

ε

ε

)
−Ψ0,i

)

+
1

(1− α2) ln ε

〈(
1 −α
−α 1

)(
Ψ0,1

Ψ0,2

)
,

(
wε,1(x)
wε,2(x)

)〉
+O

(
1

ln2(ε)

)
.

If f is supported far away the inclusions, we obtain, using Remark 3.4, the expansion of [1, Section

4.2]:

uε(x) = u0(x)−
u0(x

1
0)

(1 + α) ln ε
(wε,1(x) +wε,2(x)) +O

(
1

ln2(ε)

)
.

4.3 More complex geometrical settings

There are many and many situations which can be dealt by our approach. In order to show that the

method is versatile let us shortly consider two more complex geometrical setting.
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4.3.1 Two inclusions at distance O(εα) and the others at distance O(1)

We assume N ≥ 3 and, with a possible renumbering, that the first two inclusions are at distance O(εα)
whereas the others are at distance O(1), namely there exists c > 0

ε−α|x1ε − x2ε| ∈ [c−1, c] and |xiε − xjε| ∈ [c−1, c], ∀i < j, (i, j) 6= (1, 2).

In this case, Mε has the expansion

Mε = ln ε




1 α 0
α 1

. . .

0 1


+O(1),

with inverse satisfying

M−1
ε =

1

ln ε(1− α2)




1 −α 0
−α 1

. . .

0 1


+O

(
1

ln2 ε

)
.

Remark 4.3 If we use the expansion of M−1
ε , we have the weak asymptotic expansion for uε with a

worse remainder:

uε =u0 +

N∑

i=1

(
Fωi [F ]

(
.−xi

ε

ε

)
−Ψ0,i

)

+
Ψ0,1 − αΨ0,2

ln ε(1 − α2)
wε,1 +

Ψ0,2 − αΨ0,1

ln ε(1− α2)
wε,2 +

N∑

j=3

Ψ0,j

ln ε(1 − α2)
wε,j +O

(
1

ln2 ε

)
.

This expansion sheds light the fact that at the first order, there is only an interaction between the

first two inclusions.

4.3.2 Particular case with 3 inclusions

Let us analyze a last situation with three inclusions and three scales. We consider 0 < β < α < 1 and

c > 0 such that

ε−α|x1ε − x2ε| ∈ [c−1, c], ε−β |xiε − x3ε| ∈ [c−1, c], for i = 1, 2.

The matrix Mε is such that

Mε = ln ε Mα,β +O(1) with Mα,β =



1 α β
α 1 β
β β 1


 .

Computing the determinant of Mα,β , we have

detMα,β = (α− 1)(2β2 − α− 1),
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which does not vanish when 0 < β < α < 1 (since the trinomial function α 7→ 2α2−α−1 is negative

on (0, 1)). Consequently Mε is invertible and there exists an orthogonal matrix P such that

M−1
α,β = P




2

α+2+
√

α2+8β2
0 0

0 2

α+2−
√

α2+8β2
0

0 0 1
1−α


P−1.

When α = β, we recover the main term in (4.3) for N = 3.
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