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Abstract

In many of the large-scale physical and social complex systems phe-
nomena fat-tailed distributions occur, for which different generating mech-
anisms have been proposed. In this paper, we study models of generating
power law distributions in the evolution of large-scale taxonomies such
as Open Directory Project, which consist of websites assigned to one of
tens of thousands of categories. The categories in such taxonomies are
arranged in tree or DAG structured configurations having parent-child re-
lations among them. We first quantitatively analyse the formation process
of such taxonomies, which leads to power law distribution as the station-
ary distributions. In the context of designing classifiers for large-scale
taxonomies, which automatically assign unseen documents to leaf-level
categories, we highlight how the fat-tailed nature of these distributions
can be leveraged to analytically study the space complexity of such clas-
sifiers. Empirical evaluation of the space complexity on publicly available
datasets demonstrates the applicability of our approach.

1 Introduction

With the tremendous growth of data on the web from various sources such as so-
cial networks, online business services and news networks, structuring the data
into conceptual taxonomies leads to better scalability, interpretability and visu-
alization. Yahoo! directory, the open directory project (ODP) and Wikipedia
are prominent examples of such web-scale taxonomies. The Medical Subject
Heading hierarchy of the National Library of Medicine is another instance of
a large-scale taxonomy in the domain of life sciences. These taxonomies con-
sist of classes arranged in a hierarchical structure with parent-child relations
among them and can be in the form of a rooted tree or a directed acyclic graph.
ODP for instance, which is in the form of a rooted tree, lists over 5 million
websites distributed among close to 1 million categories and is maintained by
close to 100,000 human editors. Wikipedia, on the other hand, represents a
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more complicated directed graph taxonomy structure consisting of over a mil-
lion categories. In this context, large-scale hierarchical classification deals with
the task of automatically assigning labels to unseen documents from a set of
target classes which are represented by the leaf level nodes in the hierarchy.

In this work, we study the distribution of data and the hierarchy tree in large-
scale taxonomies with the goal of modelling the process of their evolution. This
is undertaken by a quantitative study of the evolution of large-scale taxonomy
using models of preferential attachment, based on the famous model proposed
by Yule [33] and showing that throughout the growth process, the taxonomy
exhibits a fat-tailed distribution. We apply this reasoning to both category sizes
and tree connectivity in a simple joint model. Formally, a random variable X
is defined to follow a power law distribution if for some positive constant a, the
complementary cumulative distribution is given as follows:

P (X > x) ∝ x−a

Power law distributions, or more generally fat-tailed distributions that decay
slower than Gaussians, are found in a wide variety of physical and social complex
systems, ranging from city population, distribution of wealth to citations of
scientific articles [23]. It is also found in network connectivity, where the internet
and Wikipedia are prominent examples [27, 7]. Our analysis in the context
of large-scale web-taxonomies leads to a better understanding of such large-
scale data, and also leveraged in order to present a concrete analysis of space
complexity for hierarchical classification schemes. Due to the ever increasing
scale of training data size in terms of the number of documents, feature set size
and number of target classes, the space complexity of the trained classifiers plays
a crucial role in the applicability of classification systems in many applications
of practical importance.

The space complexity analysis presented in this paper provides an analytical
comparison of the trained model for hierarchical and flat classification, which can
be used to select the appropriate model a-priori for the classification problem
at hand, without actually having to train any models. Exploiting the power
law nature of taxonomies to study the training time complexity for hierarchical
Support Vector Machines has been performed in [32, 19]. The authors therein
justify the power law assumption only empirically, unlike our analysis in Section
3 wherein we describe the generative process of large-scale web taxonomies more
concretely, in the context of similar processes studied in other models. Despite
the important insights of [32, 19], space complexity has not been treated formally
so far.

The remainder of this paper is as follows. Related work on reporting power
law distributions and on large scale hierarchical classification is presented in
Section 2. In Section 3, we recall important growth models and quantitatively
justify the formation of power laws as they are found in hierarchical large-scale
web taxonomies by studying the evolution dynamics that generate them. More
specifically, we present a process that jointly models the growth in the size of
categories, as well as the growth of the hierarchical tree structure. We derive
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from this growth model why the class size distribution at a given level of the
hierarchy also exhibits power law decay. Building on this, we then appeal to
Heaps’ law in Section 4, to explain the distribution of features among categories
which is then exploited in Section 5 for analysing the space complexity for hier-
archical classification schemes. The analysis is empirically validated on publicly
available DMOZ datasets from the Large Scale Hierarchical Text Classification
Challenge (LSHTC)1 and patent data (IPC) 2 from World Intellectual Property
Organization. Finally, Section 6 concludes this work.

2 Related Work

Power law distributions are reported in a wide variety of physical and social
complex systems [22], such as in internet topologies. For instance [11, 7] showed
that internet topologies exhibit power laws with respect to the in-degree of the
nodes. Also the size distribution of website categories, measured in terms of
number of websites, exhibits a fat-tailed distribution, as empirically demon-
strated in [32, 19] for the Open Directory Project (ODP). Various models have
been proposed for the generation power law distributions, a phenomenon that
may be seen as fundamental in complex systems as the normal distribution in
statistics [25]. However, in contrast to the straight-forward derivation of normal
distribution via the central limit theorem, models explaining power law forma-
tion all rely on an approximation. Some explanations are based on multiplicative
noise or on the renormalization group formalism [28, 30, 16]. For the growth
process of large-scale taxonomies, models based on preferential attachment are
most appropriate, which are used in this paper. These models are based on the
seminal model by Yule [33], originally formulated for the taxonomy of biological
species, detailed in section 3. It applies to systems where elements of the system
are grouped into classes, and the system grows both in the number of classes,
and in the total number of elements (which are here documents or websites). In
its original form, Yule’s model serves as explanation for power law formation in
any taxonomy, irrespective of an eventual hierarchy among categories. Similar
dynamics have been applied to explain scaling in the connectivity of a network,
which grows in terms of nodes and edges via preferential attachment [2]. Recent
further generalizations apply the same growth process to trees [17, 14, 29]. In
this paper, describe the approximate power-law in the child-to-parent category
relations by the model by Klemm et al. [17]. Furthermore, we combine this
formation process in a simple manner with the original Yule model in order to
explain also a power law in category sizes, i.e. we provide a comprehensive expla-
nation for the formation process of large-scale web taxonomies such as DMOZ.
From the second, we infer a third scaling distribution for the number of features
per category. This is done via the empirical Heaps’s law [10], which describes
the scaling relationship between text length and the size of its vocabulary.

Some of the earlier works on exploiting hierarchy among target classes for

1http://lshtc.iit.demokritos.gr/
2http://web2.wipo.int/ipcpub/
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the purpose of text classification have been studied in [18, 6] and [8] wherein
the number of target classes were limited to a few hundreds. However, the work
by [19] is among the pioneering studies in hierarchical classification towards ad-
dressing web-scale directories such as Yahoo! directory consisting of over 100,000
target classes. The authors analyse the performance with respect to accuracy
and training time complexity for flat and hierarchical classification. More re-
cently, other techniques for large-scale hierarchical text classification have been
proposed. Prevention of error propagation by applying Refined Experts trained
on a validation set was proposed in [4]. In this approach, bottom-up information
propagation is performed by utilizing the output of the lower level classifiers in
order to improve classification at top level. The deep classification method pro-
posed in [31] first applies hierarchy pruning to identify a much smaller subset
of target classes. Prediction of a test instance is then performed by re-training
Naive Bayes classifier on the subset of target classes identified from the first
step. More recently, Bayesian modelling of large-scale hierarchical classifica-
tion has been proposed in [15] in which hierarchical dependencies between the
parent-child nodes are modelled by centring the prior of the child node at the
parameter values of its parent.

In addition to prediction accuracy, other metrics of performance such as pre-
diction and training speed as well as space complexity of the model have become
increasingly important. This is especially true in the context of challenges posed
by problems in the space of Big Data, wherein an optimal trade-off among such
metrics is desired. The significance of prediction speed in such scenarios has
been highlighted in recent studies such as [3, 13, 24, 5]. The prediction speed
is directly related to space complexity of the trained model, as it may not be
possible to load a large trained model in the main memory due to sheer size.
Despite its direct impact on prediction speed, no earlier work has focused on
space complexity of hierarchical classifiers.

Additionally, while the existence of power law distributions has been used for
analysis purposes in [32, 19] no thorough justification is given on the existence
of such phenomenon. Our analysis in Section 3, attempts to address this issue
in a quantitative manner. Finally, power law semantics have been used for
model selection and evaluation of large-scale hierarchical classification systems
[1]. Unlike problems studied in classical machine learning sense which deal
with a limited number of target classes, this application forms a blue-print on
extracting hidden information in big data.

3 Power Law in Large-Scale Web Taxonomies

We begin by introducing the complementary cumulative size distribution for
category sizes. Let Ni denote the size of category i (in terms of number of
documents), then the probability that Ni > N is given by

P (Ni > N) ∝ N−β (1)
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where β > 0 denotes the exponent of the power law distribution.3 Empirically,
it can be assessed by plotting the rank of a category’s size against its size
(see Figure 1) The derivative of this distribution, the category size probability
density p(Ni), then also follows a power law with exponent (β+ 1), i.e. p(Ni) ∝
N

−(β+1)
i .

Two of our empirical findings are a power law for both the complementary
cumulative category size distribution and the counter-cumulative in-degree dis-
tribution, shown in Figures 1 and 2, for LSHTC2-DMOZ dataset which is a
subset of ODP. The dataset4 contains 394, 000 websites and 27, 785 categories.
The number of categories at each level of the hierarchy is shown in Figure 3.
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Figure 1: Category size vs rank distribution for the LSHTC2-DMOZ dataset.

We explain the formation of these two laws via models by Yule [33] and a
related model by Klemm [17], detailed in sections 3.1 and 3.2, which are then
related in section 3.3.

3.1 Yule’s model

Yule’s model describes a system that grows in two quantities, in elements and in
classes in which the elements are assigned. It assumes that for a system having
κ classes, the probability that a new element will be assigned to a certain class

3To avoid confusion, we denote the power law exponents for in-degree distribution and
feature size distribution γ and δ.

4http://lshtc.iit.demokritos.gr/LSHTC2 datasets

5



 1

 10

 100

 1000

 10000

 1  10  100  1000

#
 o

f 
c
a
te

g
o
ri
e
s
 w

it
h
 d

g
i>

d
g

# of indegrees dg

γ  =  1.9

Figure 2: Indegree vs rank distribution for the LSHTC2-DMOZ dataset.
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Figure 3: Number of categories at each level in the hierarchy of the LSHTC2-
DMOZ database.

is proportional to its current size,

p(i) =
Ni∑κ
i′=1Ni′

(2)
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Variables

Ni Number of elements in class i
dgi Number of subclasses of class i
di Number of features of class i
κ Total number of classes
DG Total number of in-degrees (=subcate-

gories)
pN,κ Fraction of classes having N elements

when the total number of classes is κ

Constants

m Number of elements added to the system
after which a new class is added

w ∈ [0, 1] Probability that attachment of
subcategories is preferential

Indices

i Index for the class

Table 1: Summary of notation used in Section 3

It further assumes that for every m elements that are added to the pre-existing
classes in the system, a new class of size 1 is created5.

The described system is constantly growing in terms of elements and classes,
so strictly speaking, a stationary state does not exist [20]. However, a stationary
distribution, the so-called Yule distribution, has been derived using the approach
of the master equation with similar approximations by [26, 23, 17]. Here, we
follow Newman [23], who considers as one time-step the duration between cre-
ation of two consecutive classes. From this follows that the average number of
elements per class is always m+ 1, and the system contains κ(m+ 1) elements
at a moment where the number of classes is κ. Let pN,κ denote the fraction of
classes having N elements when the total number of classes is κ. Between two
successive time instances, the probability for a given pre-existing class i of size
Ni to gain a new element is mNi/(κ(m + 1)). Since there are κ pN,κ classes of
size N , the expected number such classes which gain a new element (and grow
to size (N + 1)) is given by :

mN

κ(m+ 1)
κ pN,κ =

m

(m+ 1)
N pN,κ (3)

The number of classes with N websites are thus fewer by the above quantity,
but some which had (N − 1) websites prior to the addition of a new class have
now one more website. This step depicting the change of the state of the system

5The initial size may be generalized to other small sizes; for instance Tessone et al. consider
entrant classes with size drawn from a truncated power law [29] .
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from κ classes to (κ + 1) classes is shown in Figure 4. Therefore, the expected
number of classes with N documents when the number of classes is (κ + 1) is
given by the following equation:

(κ+ 1)pN,(κ+1) = κ pN,κ +
m

m+ 1
[(N − 1)(p(N−1),κ)

−NpN,κ]
(4)

The first term in the right hand side of Equation 4 corresponds to classes with
N documents when the number of classes is κ. The second term corresponds
to the contribution from classes of size (N − 1) which have grown to size N ,
this is shown by the left arrow (pointing rightwards) in Figure 4. The last
term corresponds to the decrease resulting from classes which have gained an
element and have become of size (N + 1), this is shown by the right arrow
(pointing rightwards) in Figure 4. The equation for the class of size 1 is given
by:

(κ+ 1)p1,(κ+1) = κ p1,κ + 1− m

m+ 1
p1,κ (5)

As the number κ of classes (and therefore the number of elements κ(m+1)) in
the system increases, the probability that a new element is classified into a class
of size N , given by Equation 3, is assumed to remain constant and independent
of κ. Under this hypothesis, the stationary distribution for class sizes can be
determined by solving Equation 4 and using Equation 5 as the initial condition.
This is given by

pN = (1 + 1/m)B(N, 2 + 1/m) (6)

where B(., .) is the beta distribution. Equation 6 has been termed Yule distri-
bution [26]. Written for a continuous variable N , it has a power law tail:

p(N) ∝ N−2− 1
m

From the above equation the exponent of the density function is between 2 and
3. Its cumulative size distribution P (Nk > N), as given by Equation 1, has an
exponent given by

β = (1 + (1/m)) (7)

which is between 1 and 2. The higher the frequency 1/m at which new classes
are introduced, the bigger β becomes, and the lower the average class size. This
exponent is stable over time although the taxonomy is constantly growing.

3.2 Preferential attachment models for networks and trees

A similar model has been formulated for network growth by Barabási and Albert
[2], which explains the formation of a power law distribution in connectivity
degree of nodes. It assumes that the networks grow in terms of nodes and
edges, and that every newly added node to the system connects with a fixed
number of edges to existing nodes. Attachment is again preferential, i.e. the
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Figure 4: Illustration of Equation 4. Individual classes grow constantly i.e.,
move to the right over time, as indicated by arrows. A stationary distribution
means that the height of each bar remains constant.

probability for a newly added node i to connect to a certain existing node j is
proportional to its number of existing edges of node j.

A node in the Barabási-Albert (BA) model corresponds a class in Yule’s
model, and a new edge to two newly assigned element. Every added edge counts
both to the degree of an existing node j, as well as to the newly added node i.
For this reason the existing nodes j and the newly added node i grow always
by the same number of edges, implying m = 1 and consequently β = 2 in the
BA-model, independently of the number of edges that each new node creates.

The seminal BA-model has been extended in many ways. For hierarchical
taxonomies, we use a preferential attachment model for trees by [17]. The au-
thors considered growth via directed edges, and explain power law formation
in the in-degree, i.e. the edges directed from children to parent in a tree struc-
ture. In contrast to the BA-model, newly added nodes and existing nodes do
not increase their in-degree by the same amount, since new nodes start with an
in-degree of 0. Leaf nodes thus cannot attract attachment of nodes, and pref-
erential attachment alone cannot lead to a power-law. A small random term
ensures that some nodes attach to existing ones independently of their degree,
which is the analogous to the start of a new class in the Yule model. The
probability v that a new node attaches as a child to the existing node i of with
indegree dgi becomes

v(i) = w
di − 1

DG
+ (1− w)

1

DG
, (8)

where DG is the size of the system measured in the total number of in-degrees.
w ∈ [0, 1] denotes the probability that the attachment is preferential, (1 − w)
the probability that it is random to any node, independently of their numbers of
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indegrees. As it has been done for the Yule process [26, 23, 14, 29], the stationary
distribution is again derived via the master Equation 4. The exponent of the
asymptotic power law in the in-degree distribution is β = 1+1/w.This model is
suitable to explain scaling properties of the tree or network structure of large-
scale web taxonomies, which have also been analysed empirically, for instance
for subcategories of Wikipedia [7]. It has also been applied to directory trees in
[14].

3.3 Model for hierarchical web taxonomies

We now apply these models to large-scale web taxonomies like DMOZ. Empir-
ically, we uncovered two scaling laws: (a) one for the size distribution of leaf
categories and (b) one for the indegree (child-to-parent link) distribution of cat-
egories (shown in Figure 2). These two scaling laws are linked in a non-trivial
manner: a category may be very small or even not contain any websites, but
nevertheless be highly connected. Since on the other hand (a) and (b) arise
jointly, we propose here a model generating the two scaling laws in a simple
generic manner. We suggest a combination of the two processes detailed in sub-
sections 3.1 and 3.2 to describe the growth process: websites are continuously
added to the system, and classified into categories by human referees. At the
same time, the categories are not a mere set, but form a tree structure, which
grows itself in two quantities: in the number nodes (categories) and in the num-
ber of in-degrees of nodes (child-to-parent links, i.e. subcategory-to-category
links). Based on the rules for voluntary referees of the DMOZ how to classify
websites, we propose a simple combined description of the process. Altogether,
the database grows in three quantities:

(i) Growth in websites. New websites are assigned into categories i, with
probability p(i) ∝ Ni (Figure 5). This assignment happens independently
of the hierarchy level of category. However, only leaf categories may receive
documents.

Figure 5: (i): A website is assigned to existing categories with p(i) ∝ Ni.

(ii) Growth in categories. With probability 1/m, the referees assign a website
into a newly created category, at any level of the hierarchy (Figure 6).

This assumption would suffice to create a power law in the category size
distribution, but since a tree-structure among categories exists, we also
assume that the event of category creation is also attaching at particular
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places to the tree structure. The probability v(i) that a category is created
as the child of a certain parent category i can depend in addition on the
in-degree di of that category (see Equation 9).

2

2 3

0 0 0 0 0
0

Figure 6: (ii): Growth in categories is equivalent to growth of the tree structure
in terms of in-degrees.

(iii) Growth in children categories. Finally, the hierarchy may also grow in
terms of levels, since with a certain probability (1 − w), new children
categories are assigned independently of the number of children, i.e. its
in-degree di of the category i. (Figure 7). Like in [17], the attachment
probability to a parent i is

v(i) = w
dgi − 1

DG
+ (1− w)

εi
DG

. (9)

2

2 4

0 0 0 01

0

3

Figure 7: (iii): Growth in children categories.

Equation 8, where εi = 1, would suffice to explain power law in-degrees
dgi and in category sizes Ni.

To link the two processes more plausibly, it can be assumed that the second
term in Equation 9 denoting assignment of new ‘first children’ depends on
the size Ni of parent categories,

εi =
Ni
N

, (10)

since this is closer to the rules by which the referees create new categories,
but is not essential for the explanation of the power laws. It reflects that
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the bigger a leaf category, the higher the probability that referees create
a child category when assigning a new website to it.

To summarize, the central idea of this joint model is to consider two measures
for the size of a category: the number of its websites Ni (which governs the
preferential attachment of new websites), and its in-degree, i.e. the number of
its children dgi, which governs the preferential attachment of new categories.
To explain the power law in the category sizes, assumptions (i) and (ii) are the
requirements. For the power law in the number of indegrees, assumptions (ii)
and (iii) are the requirements. The empirically found exponents β = 1.1 and
γ = 1.9 yield a frequency of new categories 1/m=0.1 and a frequency of new
indegrees (1− w) = 0.9.

3.4 Other interpretations

Instead of assuming in Equations 9 and 10 that referees decide to open a single
child category, it is more realistic to assume that an existing category is restruc-
tured, i.e. one or several child categories are created, and websites are moved
into these new categories such that the parent category contains less websites
or even none at all. If one of the new children categories inherits all websites
of the parent category (see Figure 8), the Yule model applies directly. If the
websites are partitioned differently, the model contains effective shrinking of
categories. This is not described by the Yule model, and the master Equation
4 considers only growing categories. However, it has been shown [29, 21] that
models including shrinking categories also lead to the formation of power laws.
Further generalizations compatible with power law formation are that new cat-
egories do not necessarily start with one document, and that the frequency of
new categories does not need to be constant.

Figure 8: Model without and with shrinking categories. In the left figure, a
child category inherits all the elements of its parent and takes its place in the
size distribution.

3.5 Limitations

However, Figures 1 and 2 do not exhibit perfect power law decay for several
reasons. Firstly, the dataset is limited. Secondly, the hypothesis that the as-
signment probability (Equation 2) depends uniquely on the size of a category

12



 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000  100000

#
 o

f 
c
a

te
g

o
ri
e

s
 w

it
h

 N
i>

N

category size N

Level 2
Level 3
Level 4
Level 5

Figure 9: Category size distribution for each level of the LSHTC2-DMOZ
dataset.

might be too strong for web directories, neglecting the change in importance of
topics. In reality, big categories can exist which receive only few new documents
or none at all. Dorogovtsev and Mendes [9] have studied this problem by intro-
ducing an assignment probability that decays exponentially with age. For a low
decay parameter they show that the stronger this decay, the steeper the power
law; for strong decay, no power law forms. A last reason might be that referees
re-structure categories in ways strongly deviating from the rules (i) - (iii).

3.6 Statistics per hierarchy level

The tree-structure of a database allows also to study the sizes of class belonging
to a given level of the hierarchy. As shown in Figure 3 the DMOZ database
contains 5 levels of different size. If only classes on a given level l of the hierar-
chy are considered, we equally found a power law in category size distribution
as shown in Figure 9. Per-level power law decay has also been found for the
in-degree distribution. This result may equally be explained by the model in-
troduced above: Equations 2 and 9 respectively, are valid also if instead of p(k)

one considers the conditional probability p(l)p(i|l), where p(l) =
∑κ
i′=1,l

Ni′,l∑κ
i′=1

Ni′

is the probability of assignment to a given level, and p(i|l) =
Ni,l∑κ

i′=1,l
Ni′,l

the

probability of being assigned to a given class within that level. The formation
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process may be seen as a Yule process within a level if
∑κ
i′=1,lNi′,l is used for

the normalization in Equation 2, and this formation happens with probability
p(l) that a website gets assigned into level l. Thereby, the rate at ml at which
new classes are created need not be the same for every level, and therefore the
exponent of the power law fit may vary from level to level. Power law decay
for the per-level class size distribution is a straightforward corollary of the de-
scribed formation process, and will be used in Section 5 to analyse the space
complexity of hierarchical classifiers.

4 Relation between category size and number of
features

Having explained the formation of two scaling laws in the database, a third one
has been found for the number of features di in each category, G(d) (see Figures
11 and 12). This is a consequence of both the category size distribution, shown
(in Figure 1) in combination with another power law, termed Heaps’ law [10].
This empirical law states that the number of distinct words R in a document is
related to the length n of a document as follows

R(n) = Knα , (11)

where the empirical α is typically between 0.4 and 0.6. For the LSHTC2-DMOZ
dataset, Figure 10 shows that for the collection of words and the collection of
websites, similar exponents are found. An interpretation of this result is that
the total number words in a category can be measured approximately by the
number of websites in a category, although not all websites have the same length.

Figure 10 shows that bigger categories contain also more features, but this
increase is weaker than the increase in websites. This implies that less very
‘feature-rich’ categories exist, which is also reflected in the high decay exponent
δ = 1.9 of a power-law fit in Figure 11, (compared to the slower decay of
the category size distribution shown in figure 1 where β = 1.1). Catenation
of the size distribution measured in features and Heaps’ law yields again size
distribution measured in websites: P (i) = R(G(di)), i.e. multiplication of the
exponents yields that δ · α = 1.1 which confirms our empirically found value
β = 1.1.

5 Space Complexity of Large-Scale Hierarchical
Classification

Fat-tailed distributions in large-scale web taxonomies highlight the underlying
structure and semantics which are useful to visualize important properties of the
data especially in big data scenarios. In this section we focus on the applications
in the context of large-scale hierarchical classification, wherein the fit of power
law distribution to such taxonomies can be leveraged to concretely analyse the
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Figure 10: Heaps’ law: number of distinct words vs. number of words, and vs
number of documents.

space complexity of large-scale hierarchical classifiers in the context of a generic
linear classifier deployed in top-down hierarchical cascade.

In the following sections we first present formally the task of hierarchical
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Figure 11: Number of features vs rank distribution.

classification and then we proceed to the space complexity analysis for large-
scale systems. Finally, we empirically validate the derived bounds.

5.1 Hierarchical Classification

In single-label multi-class hierarchical classification, the training set can be rep-
resented by S = {(x(i), y(i))}Ni=1. In the context of text classification, x(i) ∈ X
denotes the vector representation of document i in an input space X ⊆ Rd.

The hierarchy in the form of rooted tree is given by G = (V, E) where V ⊇ Y
denotes the set of nodes of G, and E denotes the set of edges with parent-to-
child orientation. The leaves of the tree which usually form the set of target
classes is given by Y = {u ∈ V : @v ∈ V, (u, v) ∈ E}. Assuming that there are
K classes, the label y(i) ∈ Y represents the class associated with the instance
x(i). The hierarchical relationship among categories implies a transition from
generalization to specialization as one traverses any path from root towards the
leaves. This implies that the documents which are assigned to a particular leaf
also belong to the inner nodes on the path from the root to that leaf node.

5.2 Space Complexity

The prediction speed for large-scale classification is crucial for its application
in many scenarios of practical importance. It has been shown in [32, 3] that
hierarchical classifiers are usually faster to train and test time as compared to
flat classifiers. However, given the large physical memory of modern systems,
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what also matters in practice is the size of the trained model with respect to
the available physical memory. We, therefore, compare the space complexity
of hierarchical and flat methods which governs the size of the trained model in
large scale classification. The goal of this analysis is to determine the conditions
under which the size of the hierarchically trained linear model is lower than that
of flat model.

As a prototypical classifier, we use a linear classifier of the form wTx which
can be obtained using standard algorithms such as Support Vector Machine
or Logistic Regression. In this work, we apply one-vs-all L2-regularized L2-
loss support vector classification as it has been shown to yield state-of-the-
art performance in the context of large scale text classification [12]. For flat
classification one stores weight vectors wy,∀y and hence in a K class problem
in d dimensional feature space, the space complexity for flat classification is:

SizeFlat = d×K (12)

which represents the size of the matrix consisting of K weight vectors, one for
each class, spanning the entire input space.

We need a more sophisticated analysis for computing the space complexity
for hierarchical classification. In this case, even though the total number of
weight vectors is much more since these are computed for all the nodes in the
tree and not only for the leaves as in flat classification. Inspite of this, the size
of hierarchical model can be much smaller as compared to flat model in the
large scale classification. Intuitively, when the feature set size is high (top levels
in the hierarchy), the number of classes is less, and on the contrary, when the
number of classes is high (at the bottom), the feature set size is low.

In order to analytically compare the relative sizes of hierarchical and flat
models in the context of large scale classification, we assume power law be-
haviour with respect to the number of features, across levels in the hierarchy.
More precisely, if the categories at a level in the hierarchy are ordered with
respect to the number of features, we observe a power law behaviour. This has
also been verified empirically as illustrated in Figure 12 for various levels in the
hierarchy, for one of the datasets used in our experiments. More formally, the
feature size dl,r of the r-th ranked category, according to the number of features,
for level l, 1 ≤ l ≤ L− 1, is given by:

dl,r ≈ dl,1r−βl (13)

where dl,1 represents the feature size of the category ranked 1 at level l and
β > 0 is the parameter of the power law. Using this ranking as above, let bl,r
represent the number of children of the r-th ranked category at level l (bl,r is
the branching factor for this category), and let Bl represents the total number
of categories at level l. Then the size of the entire hierarchical classification
model is given by:

SizeHier =

L−1∑
l=1

Bl∑
r=1

bl,rdl,r ≈
L−1∑
l=1

Bl∑
r=1

bl,rdl,1r
−βl (14)
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Here level l = 1 corresponds to the root node, with B1 = 1.
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Figure 12: Power-law variation for features in different levels for LSHTC2-
a dataset, Y-axis represents the feature set size plotted against rank of the
categories on X-axis

We now state a proposition that shows that, under some conditions on the
depth of the hierarchy, its number of leaves, its branching factors and power law
parameters, the size of a hierarchical classifier is below that of its flat version.

Proposition 1 For a hierarchy of categories of depth L and K leaves, let β =
min1≤l≤L βl and b = maxl,r bl,r. Denoting the space complexity of a hierarchical
classification model by Sizehier and the one of its corresponding flat version by
Sizeflat, one has:

For β > 1, if β >
K

K − b(L− 1)
(> 1), then

Sizehier < Sizeflat

(15)

For 0 < β < 1, if
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β
b

K, then

Sizehier < Sizeflat

(16)

As dl,1 ≤ d1 and Bl ≤ b(l−1) for 1 ≤ l ≤ L, one has, from Equation 14 and the
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definitions of β and b:

Sizehier ≤ bd1
L−1∑
l=1

b(l−1)∑
r=1

r−β

One can then bound
∑b(l−1)

r=1 r−β using ([32]):

b(l−1)∑
r=1

r−β <

[
b(l−1)(1−β) − β

1− β

]
for β 6= 0, 1 (17)

leading to, for β 6= 0, 1:

Sizehier < bd1

L−1∑
l=1

[
b(l−1)(1−β) − β

1− β

]

= bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)
− (L− 1)

β

(1− β)

]
(18)

where the last equality is based on the sum of the first terms of the geometric
series (b(1−β))l.

If β > 1, since b > 1, it implies that b(L−1)(1−β)−1
(b(1−β)−1)(1−β) < 0. Therefore, Inequal-

ity 18 can be re-written as:

Sizehier < bd1(L− 1)
β

(β − 1)

Using our notation, the size of the corresponding flat classifier is: Sizeflat =
Kd1, where K denotes the number of leaves. Thus:

If β >
K

K − b(L− 1)
(> 1), then Sizehier < Sizeflat

which proves Condition 15.
The proof for Condition 16 is similar: assuming 0 < β < 1, it is this time

the second term in Equation 18 (−(L− 1) β
(1−β) ) which is negative, so that one

obtains:

Sizehier < bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)

]
and then:

If
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β
b

K, then Sizehier < Sizeflat

which concludes the proof of the proposition.
It can be shown, but this is beyond the scope of this paper, that Condition

16 is satisfied for a range of values of β ∈]0, 1[. However, as is shown in the
experimental part, it is Condition 15 of Proposition 1 that holds in practice.
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The previous proposition complements the analysis presented in [32] in which
it is shown that the training and test time of hierarchical classifiers is impor-
tantly decreased with respect to the ones of their flat counterpart. In this work
we show that the space complexity of hierarchical classifiers is also better, under
a condition that holds in practice, than the one of their flat counterparts. There-
fore, for large scale taxonomies whose feature size distribution exhibit power law
decay, hierarchical classifiers should be better in terms of speed than flat ones,
due to the following reasons:

1. As shown above, the space complexity of hierarchical classifier is lower
than flat classifiers.

2. For K classes, only O(logK) classifiers need to be evaluated per test
document as against O(K) classifiers in flat classification.

In order to empirically validate the claim of Proposition 1, we measured the
trained model sizes of a standard top-down hierarchical scheme (TD), which
uses a linear classifier at each parent of the hierarchy, and the flat one.

We use the publicly available DMOZ data of the LSHTC challenge which
is a subset of Directory Mozilla. More specifically, we used the large dataset
of the LSHTC-2010 edition and two datasets were extracted from the LSHTC-
2011 edition. These are referred to as LSHTC1-large, LSHTC2-a and LSHTC2-
b respectively in Table 2. The fourth dataset (IPC) comes from the patent
collection released by World Intellectual Property Organization. The datasets
are in the LibSVM format, which have been preprocessed by stemming and
stopword removal. Various properties of interest for the datasets are shown in
Table 2.

Dataset #Tr./#Test #Classes #Feat.

LSHTC1-large 93,805/34,880 12,294 347,255
LSHTC2-a 25,310/6,441 1,789 145,859
LSHTC2-b 36,834/9,605 3,672 145,354
IPC 46,324/28,926 451 1,123,497

Table 2: Datasets for hierarchical classification with the properties: Number of
training/test examples, target classes and size of the feature space. The depth
of the hierarchy tree for LSHTC datasets is 6 and for the IPC dataset is 4.

Table 3 shows the difference in trained model size (actual value of the model
size on the hard drive) between the two classification schemes for the four
datasets, along with the values defined in Proposition 1. The symbol 5 refers
to the quantity K

K−b(L−1) of condition 15.

As shown for the three DMOZ datasets, the trained model for flat classifiers
can be an order of magnitude larger than for hierarchical classification. This
results from the sparse and high-dimensional nature of the problem which is
quite typical in text classification. For flat classifiers, the entire feature set
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Dataset TD Flat β b 5
LSHTC1-large 2.8 90.0 1.62 344 1.12
LSHTC2-a 0.46 5.4 1.35 55 1.14
LSHTC2-b 1.1 11.9 1.53 77 1.09
IPC 3.6 10.5 2.03 34 1.17

Table 3: Model size (in GB) for flat and hierarchical models along with the
corresponding values defined in Proposition 1. The symbol 5 refers to the
quantity K

K−b(L−1)

participates for all the classes, but for top-down classification, the number of
classes and features participating in classifier training are inversely related, when
traversing the tree from the root towards the leaves. As shown in Proposition
1, the power law exponent β plays a crucial role in reducing the model size of
hierarchical classifier.

6 Conclusions

In this work we presented a model in order to explain the dynamics that exist in
the creation and evolution of large-scale taxonomies such as the DMOZ direc-
tory, where the categories are organized in a hierarchical form. More specifically,
the presented process models jointly the growth in the size of the categories (in
terms of documents) as well as the growth of the taxonomy in terms of cate-
gories, which to our knowledge have not been addressed in a joint framework.
From one of them, the power law in category size distribution, we derived power
laws at each level of the hierarchy, and with the help of Heaps’s law a third scal-
ing law in the features size distribution of categories which we then exploit for
performing an analysis of the space complexity of linear classifiers in large-scale
taxonomies. We provided a grounded analysis of the space complexity for hi-
erarchical and flat classifiers and proved that the complexity of the former is
always lower than that of the latter. The analysis has been empirically validated
in several large-scale datasets showing that the size of the hierarchical models
can be significantly smaller that the ones created by a flat classifier.

The space complexity analysis can be used in order to estimate beforehand
the size of trained models for large-scale data. This is of importance in large-
scale systems where the size of the trained models may impact the inference
time.
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