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Unilateral contact induced blade/casing vibratory
interactions in impellers: analysis for rigid casings
Alain Batailly*, Markus Meingast, Mathias Legrand

Abstract
This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its
surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall
arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending
to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main
components of the considered impeller together with the associated assumptions and modeling principles considered in this work are detailed.
Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear
framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements.
Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to
the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also
compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order
model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of
aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines
to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.

Keywords
Nonlinear dynamics, contact mechanics, aeronautical engine, rotor/stator interactions, vibrations.

Structural Dynamics and Vibration Laboratory, McGill University, 817 Sherbrooke West, McConnell Engineering Bldg, Room 122, H3A-0C3, Montréal, Québec, Canada
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Interactions générées par les contacts aubes/carter pour
un rouet centrifuge: étude avec carters rigides
Alain Batailly*, Markus Meingast, Mathias Legrand

Résumé
Cet article a pour objet l’analyse vibratoire des interactions structurelles entre un rouet centrifuge et le carter environnant engendrées par des
contacts aubes/carter. De telles structures sont notamment utilisées dans les moteurs d’hélicoptères ou les moteurs d’avion de petite taille.
L’apparition de contacts entre rouet et carter est la conséquence de jeux de fonctionnement réduits qui permettent d’optimiser le rendement du
moteur. L’étude présentée est une extension aux structures à symétrie cyclique d’une stratégie numérique existante et dédiée à la simulations
d’interactions aube/carter dans les turbomachines aéronautiques. L’article décrit notamment les différentes parties d’un rouet ainsi que l’ensemble
des hypothèses de simulation et des principes de modélisation utilisés. Les caractéristiques des structures à symétrie cyclique, comme le
phénomène d’aliasing et la haute densité fréquentielle sont présentés dans le contexte d’une analyse non-linéaire et illustrés dans les domaines
fréquentiel et temporel. Des cartes de contact permettent de mettre en évidence le lieu des contacts aube/carter sur la circonfèrence de la surface
de contact du carter sur toute une plage de vitesses de rotation. Ces dernières sont complétées par des spectres soulignant la variation des
amplitudes de vibration en fonction de la vitesse de rotation. Les résultats des simulations numériques sont confrontés à un critère simplifié
de conception; cette confrontation suggère que le critère simplifié ne permet pas de rendre compte de plusieurs zones d’interaction critiques
associées à une combinaison défavorable du phénomène d’aliasing avec des super-harmoniques de la réponse vibratoire du rouet. Finalement,
le travail présenté permet de proposer uen façon d’améliorer les règles de conception des rouets à l’aide de considérations de dynamique
non-linéaire et non régulière.
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1. Introduction

Impellers, also known as centrifugal compressors, are found in
various industrial turbomachine applications at different scales
such as aerospace centrifugal compressors in aeronautical en-
gines, automotive turbochargers and microelectromechanical sys-
tems (MEMS) micromotors, to name a few. Impellers offer very
high compression ratios and are usually more efficient than axial

compressors but shall generate undesired noise [1]. In this regard,
a majority of the existing archived publications explores possible
ways to reduce the noise generated by impellers [2, 3]. The main
interest of the present work lies in the proper characterization of
critical rotational velocities where amplitudes of motion of the
bladed impeller may reach undesired high levels induced by a
unilateral-contact driven mechanism leading to vibratory reso-
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nances. Comparable considerations could not be found in the
literature for centrifugal impellers even though unilateral contacts
and their effects on the dynamics have already been investigated
at the journal/bearing interface for small-scale micro-rotor sys-
tems [4, 5]. Overall, very few investigations have targeted the
dynamical responses of such assemblies from the structural stand-
point even though structural resonances which shall arise mostly
in automotive turbochargers due to very high rotational operating
velocities are reported in [6, 7].

Structural unilateral and frictional contact interactions cor-
respond to one type of possible nonlinear dynamical coupling—
usually referred to as rotor/stator interactions [8]—within turbo-
machines. They are in a vast majority generated due to minimal
operating clearances between rotating and stationary components
and shall be split into two main categories: (1) contact occurs
at the journal/bearing interface [9, 10] in supporting devices, or
(2) between blade tips and surrounding casings [11, 12]. The
present works aims at modeling impeller/casing interactions that
may be observed in aeronautical engines and intends to provide
a comprehensive analysis of the possible nonlinear mechanisms
induced by blade-tip/casing contact interactions for elaborate
geometries such as the one depicted in Figure 1. The proposed
methodology is also relevant to axial compressors.

impeller

low pressure
compressor

combustion
chamber

turbine stages

Figure 1. Cut view of an aeronautical engine

Recent experimental investigations [13] highlighted the sever-
ity of blade-tip/casing interactions in axial compressors and blade
failures were observed. Accordingly, a thorough comprehension
of these undesired events is crucial for manufacturers. Numerical
developments [12, 14] shed light on the corresponding involved
nonlinear dynamics, but for axial compressors only. Impellers
feature additional numerical difficulties mainly because of the
sophisticated complexity of the blade geometry. Furthermore
and contrary to axial compressors, relatively low frequency free
vibration modes of impellers usually exhibit disk modes which
provoke significant vibratory levels evenly distributed over the
entire assembly. Such assemblies are typically blisks which are
machined from a single piece of material. Their sensitivity to
mistuning [15, 16] goes beyond the scope of this study and it is
assumed that the impeller is perfectly tuned or cyclically symmet-
ric.

Cyclically symmetric structures support high modal density
as well as frequency clustering [17] and adequate post-processing
tools in the frequency domain are required to efficiently conduct
proper analyses of the dynamics. These post-processing tools are
extensively detailed in the paper and include interaction maps
obtained through dedicated two-dimensional Fourier transforms,

contact areas maps on the casing and systematic harmonic track-
ing. Additionally, special attention is paid to the existence of
super-harmonics in the vibratory response of the impeller as well
as their spatial distribution along the circumference: accordingly,
focus is also made on the so-called aliasing effect.

As previously mentioned, one distinct feature of centrifugal
compressors is the blade-tip geometry and the high curvature—of
commonly 90ı—between the inlet and the outlet, as detailed in
Figure 2, requires a precise three-dimensional contact detection
procedure. Such curvature implies both significant axial and
radial deformations as opposed to axial compressors for which
axial deformations are commonly ignored. Based on a dedicated
explicit time integration procedure [11], a configuration of in-
terest inducing contact without friction between the centrifugal
compressor and its surrounding casing is explored. The casing is
assumed to be rigidly distorted along a two- or three-nodal diam-
eter shape. The interest mainly lies in the detection of vibratory
resonances emerging at rotational velocities said to be critical.

casing

impeller

clearance

outlet

inlet
�

Figure 2. Impeller cross section

The system is described in the second section of the article.
The linear criterion commonly considered for the prediction of
interactions is briefly introduced in the third section. The fourth
section summarizes the proposed modelling and the methodology
employed for the numerical simulations. Associated challenges
due to the cyclic symmetry are extensively reviewed in the fifth
section. Finally, in the last section, two case studies are proposed
for two distinct casing distortions.

Note Amplitudes are normalized with respect to reference data
for confidentiality purposes.

2. Aeronautical engine: main features and as-
sumptions
The present numerical investigation centers on the contact-induced
vibratory response of the centrifugal compressor of an aeronau-
tical engine such as the one depicted in Figure 1. The centrifu-
gal compressor is located between the low pressure compressor
stages and the combustion chamber of the engine, and advanta-
geously allows for compact dimensions. The assembly includes
ten identical main blades and associated splitter blades, as pic-
tured in Figure 3, and is thus recognized as a cyclically symmetric
structure with N D 10 elementary sectors. Based on both ex-
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main blade

splitter blade

� �

Figure 3. Elementary sector of the impeller

perimental evidence and industrial experience, a few simplifying
assumptions are considered to maintain a reasonable computa-
tional cost in the simulations:
Axis of rotation The shaft supporting the impeller is assumed

to be perfectly rigid. Boundary areas where the impeller is
clamped are depicted in red in Figure 3. Additionally, the
angular velocity � of the impeller is constant.

Rigidly distorted casing This work extends the methodology
proposed in [11] to any structure exhibiting cyclic sym-
metry. The casing undergoes a static distortion to a rigid
configuration which induces unilateral contact. By choice,
the deformed casing features two or three privileged evenly
distributed contact areas (also named lobes in the remain-
der) along its circumference.

Blade contact interface Contact essentially occurs at the tip of
the main blades while the stiffer splitter blades are not
prone to interaction. As a matter of fact, the frequencies
of eigenmodes for which splitter blades feature significant
amplitudes of vibration are high enough to be neglected in
this study. Accordingly, numerical treatment of the contact
conditions is handled along the chord of the main blades
only [see blue nodes in Figure 3]; ten contact locations
along the chord ensure convergence.

3. Linear criterion for interaction free designs
Current design guidelines for safe impellers are shortly reminded.
The angular velocity is critical when contact interactions between
the impeller and the surrounding casing lead to high amplitudes
of vibration. Such a condition is typically satisfied when both
the impeller and the casing are vibrating along a corresponding
free vibration mode. Additionally, identical nodal diameters
nd—see section 4.2 for details—allows geometrically compatible
vibratory modeshapes. These two aspects shall be cast as follows:

f
nd

i .�/ D ˙f nd
c ˙ nd� (1)

where f nd
i .�/ is the eigenfrequency associated to a nd-nodal

diameter free vibration mode of the impeller calculated at � and
f nd

c is the eigenfrequency of a corresponding nd-nodal diame-
ter free vibration mode of the casing. However, the directional
friction forces prohibit the impeller from inducing a backward
rotating wave on the casing. Similarly, the impeller cannot expe-
rience a forward travelling wave due to contact. In the end, the
interaction condition (1) becomes:

f
nd

i .�/ D ˇ̌�f nd
c C nd�

ˇ̌
(2)

Equation (2) does not account for potential super- and sub-harmonics
that may arise in the nonlinear dynamics and is accordingly
named the linear interaction condition. Currently, condition (2)

is the main tool available to designers for the quick prediction of
critical velocities. However, recent numerical investigations [18]
have emphasized the limitations of this criterion in the context
of highly nonlinear interactions initiated by structural unilateral
contact occurrences.

4. Unilateral contact interactions modelling

4.1 Finite element discretization
The finite element model of an elementary sector contains about
120,000 degrees-of-freedom (dof) so that the finite element model
of the full impeller involves about a million dof. The mesh
comprises 20-node quadratic brick elements and complies with
the common industrial standards recommending at least two
elements across the blade thickness, three elements along the
blade root, and three elements across the disk thickness.

4.2 Cyclic symmetry
The impeller of interest is numerically perfectly tuned, i.e. the
ten elementary sectors are identical. This cyclic symmetry yields
block-circulant mass M and stiffness K matrices in polar coordi-
nates:

Y D

2666664
Y0 Y>1 0 0 : : : Y1
Y1 Y0 Y>1 0 : : : 0
0 Y1 Y0 Y>1 0 : : :
:::

: : :

Y>1 0 : : : 0 Y1 Y0

3777775 ; Y D K or M (3)

where Y0 and Y1 correspond to an elementary sector1 and the
coupling term between two adjacent sectors, respectively. The
Fourier matrix F block-diagonalizes such matrices as follows [19,
20]:

OY D F>YF D

2666664
OY.0/

OY.1/ 0
OY.2/

0
: : :

OY.bN
2 c/

3777775 (4)

Each block OY.nd/, nd D 0; : : : ; bN
2
c is called a nodal diameter

matrix and refers to a spatial harmonic of the structure [20]. The
term nodal diameter is here preferred to spatial harmonic to avoid
potential confusion with the time harmonics introduced later.
Accordingly, the governing equations of cyclic structures are
block-uncoupled in the Fourier space. The free vibration modes
of the impeller of interest may exhibit Nh D bN2 c C 1 D 6

distinct nodal diameter matrices: OY.nd/, nd D 0; : : : ; 5. The
eigenfrequencies of the impeller may be plotted with respect to
their associated nodal diameter in a veering diagram as depicted
in Figure 4. Eigenmodes of cyclically symmetric structures,
such as the ones depicted in Figure 5, are clustered in modal
families [20], each consisting of N sector modes of a given
pattern: blade bending, blade torsion, disk mode, etc. It has a
single nd D 0 mode (that is a standing wave) as well as a pair of
two modes for every higher nodal diameter2.

Each modal family features analogous mode shapes for a
given sector: for instance, in the first modal family, the main

1More details on these matrices are provided in Eq. (5).
2With the exception of the nodal family associated to the nodal diameter

nd D Nh � 1 when there is an even number of blades for which there is only
one mode in the corresponding modal family.
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Figure 4. Veering diagram of the first five modal families of the impeller
at rest. Modes marked with a blue dot [ ] are displayed in Figure 5

(a) nd D 1 (b) nd D 2

(c) nd D 4 (d) nd D 5
Figure 5. Free vibration modes of the first modal family

blades only vibrate along their first bending mode as depicted in
Figure 5. For higher modal families, free-vibration modes may
involve the splitter blades or the disk as well. As an example,
two free-vibration modes of the sixth modal family are pictured
in Figure 6 where one can observe non negligible vibration of
the disk in the vicinity of the trailing edge. The modes pictured
in Figs. 5 and 6 were computed from a computationally efficient
reduced model detailed in the following section.

4.3 Modal synthesis reduction
Due to its very large size, the finite element model cannot be
implemented as such in the contact algorithm. Accordingly, is
employed a component mode synthesis technique based on an
extension [21] of the Craig-Bampton method [22] which embeds
centrifugal stiffening in the reduced order model (ROM) directly
computed in the Fourier basis [20]. The procedure requires three
stiffness matrices calculated at three distinct angular velocities:
K.0/, K.�max=2/ and K.�max/ as well as the mass matrix M of
an elementary sector:
1. Matrix reorganization: rows and columns of Ys are sorted

(a) nd D 2 (b) nd D 5
Figure 6. Two free vibration modes of the sixth modal family

as follows:

Ys D
24Yi i Yib Yic

Ybi Ybb Ybc
Yci Ycb Ycc

35 and u D
0@ui

ub
uc

1A (5)

with:

Y0 D
�

Yi i Yib
Ybi Ybb

�
and Y1 D

�
Yic 0ni ;ni�ncCnb

Ybc 0nb ;ni�ncCnb

�
where Y D K or M and vectors ui , ub , and uc respectively
stand for the internal, boundary, and cyclic nodal displace-
ments as pictured in Figure 7. 1

ub

ui

uc
x

y

z

˛

Figure 7. Partition of the nodes of an elementary sector

2. Computation of the nodal diameter matrices: each nodal
diameter matrix is computed from the finite element matrices
as follows [20]:

OY.nd/D
�

Y0C .Y1CY>1 / cos.nd˛/ .Y1 �Y>1 / sin.nd˛/

.Y>1 �Y1/ sin.nd˛/ Y0C .Y1CY>1 / cos.nd˛/

�
(6)

where ˛ is the angular span of a sector as depicted in Figure 7.
3. Centrifugal stiffening: the three stiffness matrices account-

ing for centrifugal stiffening [21] are expressed as:

OK.nd/
0 D OK.nd/

s .0/

OK.nd/
1 D 1

3�2max

�
16 OK.nd/

s

��max

2

�
� OK.nd/

s .�max/�15 OK.nd/
s .0/

�
OK.nd/
2 D 4

3�4max

�
OK.nd/
s .�max/�4 OK.nd/

s

��max

2

�
C3 OK.nd/

s .0/
� (7)
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4. Modal reduction: for each of the three considered values of
�, the modal reduction basis Ô

.nd/
.�/ is:

Ô
.nd/
.�/ D

"
I 0

O‰
.nd/

s .�/ O‰
.nd/

co .�/

#�

(8)

in which � constraint modes are computed for every angu-
lar velocity, all stored column-wise in O‰

.nd/

co .�/. For each
harmonic, the global reduction basis O‡ .nd/ may be then rear-
ranged as:

O‡
.nd/ D

"
I 0

O‰
.nd/

s .0/ ‰ .nd/;�

#
(9)

where ‰ .nd/;� contains an orthonormal basis generated from
the static and constraint modes given in Eq. (8). The compu-
tation of the reduced harmonic mass and stiffness matrices is
expressed as:

K.nd/
0;r D O‡

.nd/;> OK.nd/
0

O‡
.nd/

K.nd/
1;r D O‡

.nd/;> OK.nd/
1

O‡
.nd/

K.nd/
2;r D O‡

.nd/;> OK.nd/
2

O‡
.nd/

M.nd/
r D O‡

.nd/;> OM.nd/ O‡
.nd/

(10)

5. �-dependent reduced-order model: the final reduced ma-
trices become:

Kr .�/DF>Bdiag
�
ŒK.nd/
0;r C�2K.nd/

1;r C�4K.nd/
2;r �;ndD0;:::;bN

2 c
�

F

Mr .�/DF>Bdiag
�
ŒM.nd/
r �

;ndD0;:::;bN
2 c
�

F (11)

where Bdiag refers to a block-diagonal matrix:

Bdiag
�
ŒAnd �;ndD0;:::;ic

� D
26664

A0
A1

: : :

Ai

37775 (12)

Matrices (10) are computed only once. They are multiple
orders of magnitude smaller in size than the original finite
element matrices. The stiffness matrix Kr .�/ of the reduced
model is simply denoted Kr in the remainder.

4.4 Modal analysis and convergence
The degrees of freedom at the impeller-shaft interface are clamped
as depicted in Figure 3. The associated Campbell diagram is dis-
played in Figure 8 in the relative frame.

It shows the first two modal families of the impeller. The
ten eigenfrequencies associated with the first modal family are
clustered around f D 10 while the ten eigenfrequencies of the
second modal family are more clearly distinguishable between
f D 18 and f D 20:5 at rest.

As pictured in Figure 9, � D 150 leads to a satisfactory com-
promise between accuracy and computational cost since results
obtained for higher � are almost perfectly superimposed. The
corresponding error between the first 50 eigenfrequencies of the
ROM and the their counterparts extracted from the full model is
less than 1 %. The computed ROM contains 900 dof—300 physi-
cal dof for contact treatment and 600 component modes—which
is about 0:09 % of the model full size. A similar convergence
analysis has been carried out over the full angular velocity range
in order to confirm the robustness of the proposed approach;
asymptotic convergence is also achieved in time.

0 1 2 3 4
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y
f

f1 to f10
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Figure 8. Campbell diagram in the relative frame
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Figure 9. Convergence plot of the radial displacement: � D 50 ( ),
� D 100 ( ), � D 150 ( ), � D 200 ( ), and � D 250 ( )

4.5 Unilateral contact conditions
The time-domain solution method presented in [11] is briefly
recalled for the sake of clarity. Friction is not accounted for.The
procedure involves the explicit central differences scheme com-
bined with a Lagrange multiplier-based contact algorithm [23]
implemented on the ten contact interface nodes per sector. At
each time step q C 1, the procedure is divided into three steps:
1. Prediction at time step q C 1 of the displacements ur :

uqC1;pr D
hMr

h2
CDr
2h

i�1��2Mr

h2
�Kr

�
uqrC

�Dr
2h
�Mr

h2

�
uq�1r

�
(13)

2. Determination of the gap function and detection of the
blade contacting nodes.

3. Correction of the predicted displacements to cancel the pre-
dicted penetrations:

gqC1 D CN
>uqC1;cr C gp D 0 (14)

Lagrange multipliers, i.e. contact forces, and updated dis-
placements are:8̂<̂
:
� D

�
CN
>
hMr

h2
C Dr
2h

i�1
CN

��1
gp

uqC1r D uqC1;pr C
hMr

h2
C Dr
2h

i�1
CN�

(15)

5. Analysis method
As explained in section 3, there is a need for a more comprehen-
sive approach for the determination of critical angular velocities
of the impeller. Beside its restriction to linear considerations,
fulfilling condition (2) may not result in effective high vibratory
amplitudes. Based on the aforementioned theoretical and numer-
ical developments, the systematic detection of critical angular
velocities is now established.
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5.1 Challenging aspects
Concerning the numerical predictions of nonlinear interactions
in modern turbomachines, the greatest challenge lies in the vali-
dation of the results with existing experimental data or industrial
evidence. The unaffordable cost of turbomachinery full-scale ex-
periments combined with the hurdle to properly simulate modal
interactions makes it particularly arduous for manufacturers to
acquire meaningful data. To the authors’ knowledge, only a very
few publications with detailed experimental results on full-scale
engines are available [13], and no data could be found in rela-
tion with impellers. Consequently, no attempt to correlate the
results presented in this article to experimental data has been
undertaken. However, the proposed contact treatment has been
numerically validated in a previous work [11] and consistent re-
sults with industrial data have been obtained in the context of a
single blade/casing interaction within axial compressors [12].

The investigated system also features additional attributes
such as frequency clustering and the aliasing effect: both are
described in the following subsections.

5.1.1 Frequency clustering
As mentioned in section 4.4, the first ten eigenfrequencies of the
bladed assembly correspond to the first leading edge bending
mode of the main blade and are clustered around f D 10. This
phenomenon is named frequency clustering and is a well-known
property of cyclically symmetric structures [17]. Consequently,
a Fourier transform of time domain displacements may exhibit
closely agglomerated peaks of vibration for a given frequency
and modal participations shall not be accurately identified. This
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Figure 10. Steady-state response of the ten sectors: main blade leading
edge radial displacement (the angular position of the bladed disk is used
instead of time for the sake of clarity)

frequency clustering issue may be efficiently tackled by taking
advantage of the structure spatial periodicity. Owing to the geom-
etry of a cyclic structure, a steady state response will be periodic
both in the time and in the space domains. This is exemplified
through a 2-lobe interaction: the impeller response on all sec-
tors, see Figure 10, is transformed to obtain the two-dimensional
spectrum in Figure 11. For the example of interest, significant
amplitudes of vibration are detected on even nodal diameters
only: nd D 0, 2, and 4. Clustered vibration peaks on a regular
one-dimensional spectrum are, in fact, associated with distinct
nodal diameters that can be distinguished with an appropriate 2D
Fourier transform.

5.1.2 Forced-response aliasing effect
Two continuous sine waves of order n and N � n and sampled at
N points cannot be distinguished: this mathematical feature is
termed aliasing. In general, there will be coupling between orders

0 0.5 1 1.50
1

2
3

4
5

0.5

1

frequency (kHz)

n
d

am
p.

ky
k(

µm
)

Figure 11. Two-dimensional Fourier transform of the impeller response.
Red peaks on nodal diameters 0 and 2 along the dashed line are fictitious
and added to illustrate the frequency clustering phenomenon

n;N�n;NCn; 2N�n; 2NCn; : : :A similar situation arises for
a N -blade assembly externally forced by a sinus wave in space.
The potential high harmonics will be aliased by the sampling gen-
erated by theN blades. This is illustrated in Figs. 12(a) and 12(b)
where two continuous external forcing functions cos.n�/, with
n D 6 and n D 8 respectively, act on N D 10 evenly spaced
blades located at � D 2k�=N , k D 1; : : : ; N . When n D 6,
then N � n D 4 and the forcing is seen by the blades as the
function cos.4�/. Since the free-vibration modes of a cyclically

0

�=2

�

3�=2

(a) waves cos.6�/ and cos.4�/

0

�=2

�

3�=2

(b) waves cos.8�/ and cos.2�/

Figure 12. Aliasing effect: continuous external forcing waves and its
corresponding sampled counterpart acting on the blades

symmetric structure exhibit a finite number of nodal diameters
(see section 4.2), any forcing acting on the structure along high
spatial harmonics will be aliased back onto the actual nodal di-
ameters of the structure. With N D 10 sectors, the impeller free
vibration modes feature nd D 0; : : : ; Nh � 1 nodal diameters
and any forcing of the form F cos.n�/ with n > Nh � 1 will be
reflected as a spatial harmonic cos.m�/ with m 2 Œ0 INh � 1�.
5.1.3 Space-time coupling with a rigid casing
If the impeller rotates at angular velocity � within a rigid casing
statically deformed on Nl lobes—meaning Nl forced contact
areas—each blade will be in contact with the casing probably Nl
times per revolution. Indeed, because of the significant amplitude
of the casing deformation and the fact that the casing is perfectly
rigid, potential sub-harmonics are neglectedThus, the fundamen-
tal excitation frequency of the external forcing due to contact is
given by

f D Nl� (16)

thereby coupling the spatial pattern Nl and the fundamental fre-
quency of the contact forcing f . This indicates that the contact-
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induced external forcing on the impeller is a time-dependent
forcing with frequency Nl� and a space-dependent forcing with
frequency Nl . In the following, the term engine order, denoted
EO refers to the time harmonics of this contact forcing. EO j

corresponds to the time harmonic of frequency jf , j 2 N. Be-
cause of the coupling between time and space induced by the
rigid casing, the aliasing effect applies to the space harmonics
of the contact forcing and sum up to the graph depicted in Fig-
ure 13. Collectively, this is equivalent to the modal appropriation
equation:

˛N ˙ nd D kNl ; ˛ 2 N; k 2 N�; nd 2 Œ0 INh � 1� (17)

where kNl is the expected EO on which significant amplitudes
of vibration may be observed.
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Figure 13. Aliasing effect for Nh � 1 D 5: nodal diameters in terms of
engine order for a 2-lobe fundamental EO ( ) and the aliasing effect
on its higher harmonics ( )

5.1.4 Case study
Consider the contact force corresponding to the displacements
plotted in Figure 10 forNl D 2. The contact force—purely radial
in this article since no friction is accounted for—on the leading
edge of sector 1 main blade is pictured in Figure 14. The asso-
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Figure 14. Radial contact force on sector 1 main blade leading edge once
steady state is established

ciated spectrum in the frequency domain, in Figure 15, reveals
significant peaks of vibration for frequencies f D kNl�. The
fundamental harmonic is f D Nl� in agreement with Eq.(16).
The engine orders of interest are EO j for j D kNl D 2k,
k 2 N. Additionally, the 2D Fourier transform of the space-time
contact force computed using the contact force extracted from all
separate sectors is displayed in Figure 16. The spectra obtained
for each nodal diameter are plotted in Figure 17 where even nodal
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Figure 15. Fourier transform of the contact force depicted in Figure 14

diameters only feature significant amplitude of vibrations: this is
in agreement with the fact that all even engine orders are aliased
back onto even nodal diameters, as depicted in Figure 13.
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Figure 16. Steady-state radial contact force on the ten leading edges (the
angular position of the bladed disk is used instead of time for clarity)
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Figure 17. 2D Fourier transform of the radial contact force

5.2 Detection of critical angular velocities

Monitoring both vibration and stress levels within blades may be
beneficial in order to prevent crack initiation and maximize im-
peller lifespan. The employed numerical methodology provides
straightforward access to the blade-tip displacements. Displace-
ment and stress fields within the full finite element model are
thus easily retrieved using the reduction basis given in section 4.3.
Supplementary interaction and contact areas maps may also sup-
ply useful insight on the impeller dynamics as well as the angular
velocities for which maximum stress levels in the structure are
reached.
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5.2.1 Interaction maps
As previously mentioned, unilateral contact interactions are highly
nonlinear and maximum vibration levels are thus nonlinear func-
tions of �. In order to identify critical angular velocities, a
four-step procedure in the frequency domain is performed:

1. A contact configuration is defined with Nl lobes on the
casing and an evenly distributed set of angular velocities
are considered within the range � 2 Œ�min I�max�;

2. For each angular velocity �, explicit time-stepping simu-
lations are run over a sufficiently long interval of time to
reach steady state;

3. Fourier transforms of the calculated displacements are com-
puted for every � and organized in a waterfall diagram
similar to the one in Figure 18(a);

4. Vibratory amplitudes are displayed as color maps rang-
ing from blue/low to red/high amplitude as depicted in
Figure 18(b).

Subsequent response frequencies involving significant amplitudes
are graphically captured. The location of these peaks may then
be compared with the crossing of engine order lines f D k�

and modal lines f .�/ for which the linear criterion (2) predicts
interactions.
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Figure 18. Contact simulation post-processing tools. Engine order lines
are displayed as white lines: (a) waterfall diagram, (b) interaction map

5.2.2 Contact areas maps
Relevant information concerning the interaction also involve the
locations on the casing of the contact occurrences. A particular
attention is paid to the following questions:
� Are the contact areas evolving from one revolution to the

next one?
� How long are the contact occurrences or, equivalently, how

wide are the associated contact areas on the casing?
� Does a vibratory synchronization arise at angular velocities

for which the blades repeatedly always impact the casing
at the same locations?

To answer these questions, the casing circumference is divided
into 200 identical areas associated to a corresponding counter.
When one area is impacted by the blade of the sector of interest,
its counter is incremented. The counter array is then converted
into a grayscale colour code, from white (no contact) to dark blue
(highly impacted area) pictured in the form of a contact map in
Figure 19 for the first sector. The contact areas are evidenced
by the contrast for a given �. A gray column indicates that
contact is neither localized nor repetitive. On the contrary, a clear
contrast between white and dark blue areas shows that the blade
systematically rubs with the casing at the same location. Six
dark areas are clearly distinguishable in area 1 in Figure 19: a
spatial synchronization occurs between the blade vibration within
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Figure 19. Contact areas map of the first sector of the impeller

the distorted casing. Opposite conclusions may be drawn from
the grey areas observed in area 2. One interesting feature of
the contact areas maps are the abrupt transitions from one area
to a neighbour and an analogy may be drawn with bifurcation
diagrams where the transition between one type of solution to
another one is similarly sudden. In the context of the targeted
application, the clear physical interpretation of the contact maps
is attractive.

5.2.3 Harmonic tracking

Equation (16) shows that a coupling is expected between spatial
patterns Nl and the excitation frequency f . As mentioned above,
obvious considerations and relationships between time (engine
orders) and space (nodal diameters) only stand for a limited num-
ber Nl of lobes on the casing as well as for the fundamental
harmonics of the vibratory response of the impeller. The alias-
ing phenomenon must be accounted for in more sophisticated
configurations and the interaction map in section 5.2.1 allows
for a clarification of the relationship between engine orders and
nodal diameters but misses insight on the modal participations.
Consequently, an harmonic tracking procedure able to target a
given mode as well as a full set of modes for a given nodal di-
ameter is implemented. A 2D-Fourier transform of the sector
responses is carried out to highlight the participating harmonics,
see Figs. 20(a) and 20(b). The harmonic tracking procedure
follows the amplitude associated to a given point .nd;EO/—for
instance, the height of a bar in Figs. 20(a) or 20(b)—with respect
to � and two trackings are suggested:
Nodal diameters tracking Tracking of the amplitude of the nodal

diameters in the response for a given EO (mean amplitude
of the six bars for a given EO in Figure 20(a)).

Engine order tracking Tracking of each nodal diameter nd for
a range of EO (mean amplitude of the first six bars for a
given nd in Figure 20(b)).

6. Application: unilateral contact interaction be-
tween a flexible impeller and a rigidly distorted
casing

The proposed contact configurations involve the two casing pro-
files depicted in Figure 21: Nl D 2 and Nl D 3. Industrial
observations suggest that a two-lobe deformation may stem from
a thermal gradient in the structure while the three-lobe configura-
tion is assumed to reflect unexpected: manoeuvre loads.
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(a)

(b)

Figure 20. Blade response 2D-Fourier transform at � D 5:2: (a) nd
tracking for EO D 4, (b) EO tracking for nd D 4

(a) (b)

Figure 21. Simplified representation of the casing distortions over its
finite element mesh, (a) 2-lobe deformation, (b) 3-lobe deformation

6.1 Two-lobe interaction
When the casing is ovalized, Figure 21(a), there are two privi-
leged contact areas along the circumference of the casing. An
interaction map is constructed from the Fourier spectrum of the
predicted impeller steady-state response.

6.1.1 Interaction maps
Following the procedure described in section 5.2.1, the interac-
tion map associated to the six nodal diameters of the impeller is
depicted in Figure 22(a): a major participation of nodal diameters
nd D 2 and nd D 4 is found, as opposed to a minor partici-
pation of nd D 1, nd D 3 and nd D 5. Indeed, the dominant
blue colour of the interaction maps associated with odd nodal

diameters—Figs. 22(c), 22(e) and 22(g)—highlights that no sig-
nificant participation is found throughout the angular velocity
range. The addition of the amplitudes in Figs. 22(b) to 22(g)
yields the interaction map in Figure 22(a).

Because of the two privileged contact areas, a blade of the
impeller is in contact with the casing at least twice per revolution
and the expected fundamental engine order is EO D 2. Had the
number of privileged contact areas been higher than Nh � 1, the
fundamental engine order would be obtained through Figure 13.
Surprisingly, the highest amplitudes in Figure 22 are located
along EO D 6 which can only be associated with the fourth
nodal diameter nd D 4, see Figure 22(f).

The fact that the fundamental EO and the EO supporting
the highest amplitudes are distinct brings to light the nonlinear
nature of the interaction. This partly explains why the linear
interaction condition given in Eq. (2) is unable to predict most
interactions. Additionally, this example shows that the impeller
shall mostly exhibit a two- and four-nodal diameter response
within an ovalized casing. Also, since the impeller response is
a nonlinear contribution of several linear modes, the concept of
nonlinear normal modes [24] may be suitable for an improved
comprehension of the dynamics.

6.1.2 Displacement and stress fields

Full three-dimensional displacement and stress fields can be re-
trieved from the time-domain reduced-order response. Exemplary,
displacement fields with unilateral contact occurring on the lead-
ing edge are displayed in Figs. 23(a) and 23(b), respectively for
the blades and the disk. The associated stress fields are pictured
in Figs. 23(c) and 23(d). To a symmetric two-lobe contact config-
uration on the casing corresponds a symmetric displacement field
on the impeller. Maximum stress or displacement at a critical

(a) displacement field (blades) (b) displacement field (disk)

(c) stress field (blades) (d) stress field (disk)

Figure 23. Displacement and stress fields at a given time step of a contact
simulation with a 2-lobe casing distortion (colour fields are adjusted in
order to highlight displacements and stresses for the disk)
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Figure 22. Interaction maps for a 2-lobe casing distortion, (a) interaction map, (b) nd D 0, (c) nd D 1, (d) nd D 2, (e) nd D 3, (f) nd D 4, (g)
nd D 5
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location within the impeller can thus be obtained and used, for
instance, as a criterion for a design optimization procedure. The
implementation of such methodology is of particular industrial
relevance [25] in the context of designing robust structures with
respect to structural contact constraints for aeronautical engines.

6.1.3 Contact areas maps
Interaction maps emphasize the dominant EO and the associated
spatial harmonics nd. However, they do not provide any infor-
mation on the actual contact locations. A prescribed distortion
of the casing does not necessarily yield an obvious relationship
between the impact cartography and the corresponding impeller
dynamics: a dominant four-nodal diameter free vibration mode
does not imply four contact areas along the casing circumference.
Contact areas maps are pictured in Figs. 24(a) and 24(b) for the
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Figure 24. Contact areas maps. Line ( ) illustrates the angular shift
of the contact location with �, (a) leading edge, (b) trailing edge

leading edge and the trailing edge of one sector, respectively.
Interestingly, the two maps largely differ: the blade leading

and trailing edges exhibit distinct contact patterns within intricate
dynamics. On the leading edge, where the blade is longer and
less stiff, about four contact areas are captured for most angular
velocities. On the contrary, the stiffer trailing edge is only in
contact with the casing twice per revolution throughout most of
the angular velocity range. More contact areas are only found
for a few narrow angular velocity ranges—such as � 2 Œ3:97 I 4�,
� 2 Œ5 I 5:2� and� 2 Œ5:65 I 5:85�—which correspond exactly to
the highest amplitudes detected in Figure 22(a). As depicted in
Figure 24(b), the blade impacts the casing four and six times per
revolution, respectively, which matches the peaks of resonance
detected along EO D 4 and EO D 6 in Figure 22.

It is remarkable that the angular position of the contact areas
between the casing and the leading edge is shifted as the angular
velocity is increased, see Figure 24(a). In the considered scenario,
the operating clearances are tighter at the trailing edge where con-
tact is initiated. The subsequent wave in the impeller propagates
at wave speed v and the delay required to reach the leading edge
is approximately ıt ' lb=v where lb denotes the blade chord
length. This delay only depends on the material properties of
the impeller and the corresponding angular shift ı� is given by
ı� D ıt�. The red dotted line in Figure 24(a) illustrates the
above simple derivations. Its perfect superimposition with the
angular position of the contact areas confirms that the contact
locations angular shift linearly depends on �.

6.1.4 Harmonic tracking
The harmonic tracking procedure from section 5.2.3 is used to
clarify possible relationships between the first engine orders
(EO D 1 to EO D 6) and the impeller nodal diameters. Both
nodal diameter and engine order are tracked with respect to �.
Results are summarized in Figs. 25 and 26.
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Figure 25. Nodal diameter tracking: nd D 0 ( ), nd D 1 ( ),
nd D 2 ( ), nd D 3 ( ), nd D 4 ( ) and nd D 5 ( ), (a)
EO D 2, (b) EO D 4

Figure 25 shows that along the two dominant EO D 2 and
EO D 4, the vibratory energy is essentially confined in two nodal
diameters, nd D 2 and nd D 4. This is consistent with the
interaction maps in Fig 22.

The engine order tracking for nd D 2 depicts a major nodal
diameter 2 along EO D 2. Figures 25(a) and 26(a) collectively
emphasize the strong internal association, which is also apparent
in Figure 22(f), between EO D 2 and nd D 2: they are both
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Figure 26. Engine order tracking: EO D 1 ( ), EO D 2 ( ),
EO D 3 ( ), EO D 4 ( ), EO D 5 ( ) and EO D 6 ( ), (a)
nd D 2, (b) nd D 4

exclusively related meaning that nd D 2 is only found along
EO D 2 and EO D 2 only contains nd D 2. Conversely, nodal
diameter nd D 4 combines EO D 4 and EO D 6 for the entire
angular velocity range. Interestingly, critical angular velocities
yielding vibratory resonances are detected in Figure 22 are in line
with those for which EO D 6 dominates EO D 4 in Figure 26(b).

6.2 Interaction for a three-lobe distorted casing
The second interaction of interest features three privileged contact
areas as depicted in Figure 21(b). Similarly to the two-lobe case,
the interaction map for the full model is broken down into nodal
diameter participations, as depicted in Figure 27.

Since EO D 3 is smaller than the maximum number of nodal
diameters featured by the impeller, a fundamental nodal diameter
nd D 3 is expected from Figure 13. Additionally, nodal diame-
ters nd D 1 and nd D 4 are expected to feature non negligible
amplitudes of vibration along engine orders EO D 9 and EO D 6
respectively, due to the aliasing effect. These predictions are
explicitely supported by Figure 27. Noticeably, peaks of large
amplitude are not all detected along the main EO D 3 but also
along EO D 6 and EO D 9, strongly connected to the four
and one-nodal diameter free vibration modes. The fact that the
impeller response to a three-lobe contact configuration involves
four-nodal diameter free vibration modes may look counter intu-
itive and stresses the difficulty to accurately predict interactions
based on condition (2).

Associated contact areas maps are plotted in Figs. 28(a)
and. 28(b) at the leading edge and the trailing edge of the first

3.5 4 4.5 5 5.2 5.5
0

π

2π

Ω

an
gu

la
rp

os
iti

on
(r

ad
)

(a)

3.5 4 4.5 5 5.2 5.5
0

π

2π

Ω

an
gu

la
rp

os
iti

on
(r

ad
)

(b)

Figure 28. Contact areas maps, (a) leading edge, (b) trailing edge

sector blade, respectively. Similarly to what was observed with
an ovalized casing, a more flexible leading edge manifests itself
with low contrast contact maps while a very stiff trailing edge ex-
hibits clearly identified contact areas. In the spirit of bifurcation
diagrams, the abrupt transition in Figure 28(b) at � D 5:2 seems
of particular interest: a small shift in the angular velocity leads
to an radical change of the contact pattern on the casing. This
suggests that the system may bifurcate from a stable solution to
another, as previously observed for axial compressor blades in
the vicinity of a critical speed [26].

7. Conclusions
Based on an existing time-marching numerical tool devoted to
unilateral contact induced rotor/stator interactions in turboma-
chines, this works details a general methodology dedicated to
the thorough analysis and comprehension of the dynamics of a
bladed-disk assembly rotating within a statically distorted rigid
casing. Centrifugal stiffening is included in the proposed reduced-
order model. Cyclically symmetric structures and their key fea-
tures such as aliasing and frequency clustering are recalled and
systematically exploited within a post-processing methodology
in the form of two-dimensional Fourier transforms, harmonic
tracking, interaction maps and contact areas maps. Specific con-
siderations regarding the aliasing phenomenon and its implication
on the interpretation of the time harmonics of the contact forcing
are extensively detailed. The space-time coupling of the contact
forcing induced by the perfectly rigid casing allows for an explicit
mapping of the time harmonics onto the nodal diameters of the
impeller.
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Figure 27. Interaction maps for a 3-lobe casing distortion, (a) interaction map, (b) nd D 0, (c) nd D 1, (d) nd D 2, (e) nd D 3, (f) nd D 4, (g)
nd D 5
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The proposed analysis is then deployed on two configurations
of interest involving the 3D finite element model of an impeller.
The presented results underline the fundamental role of super-
harmonics in the vibratory response of the impeller stemming
from the highly nonlinear nature of the unilateral contact forcing.
It is suggested that most detected critical interaction velocities
may not be predicted by the commonly accepted criteria based
on results obtained with a linear model applied to a rigid casing
configuration.

The presented work is thus a first step toward the definition
of a new methodology for the definition of nonlinear criteria
suitable for enhancing the conception phase of impellers. It is
advantageously applicable to any type of impeller, from large
scale radial compressors or automotive turbochargers to micro-
rotors.
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A. Aliasing effect: analytical example
The following one-dimensional equation of motion of the elemen-
tary sector i of a cyclically symmetric structure is considered:

m Rxi .t/C kxi .t/ D fi .t/ (18)

It is now assumed that the cyclically symmetric structure pos-
sesses 10 elementary sectors, i D 1; : : : ; 10 of angular span
˛ D 2�=10: the maximum number of nodal diameters nd is
b10=2c D 5. A 2D-Fourier transform of xi .t/, i D 1; : : : ; 10

yields:

xi .t/ D
1X
jD1

5X
ndD0

�
xcj;nd

cos.jp!t C ind˛/C xsj;nd
sin.jp!t C ind˛/

�
(19)

For the sake of simplicity, only the fundamental harmonic (j D
1) is considered and Eq. (19) reduces to:

xi .t/ D
5X

ndD0

�
xc1;nd

cos.p!t C ind˛/C xs1;nd
sin.p!t C ind˛/

�
(20)

The forcing fi .t/ on sector i is assumed to be:

fi .t/ D F cos.p.!t C i˛// (21)

Accordingly, all coefficients xs1;nd
D 0, nd D 0; : : : ; 5 in Eq. (20).

The remaining coefficients xc1;nd
are computed for different val-

ues of p and are listed in Tab. 1. While p is smaller than the

Table 1. Coefficients xc1;nd
for different values of p

p xc1;0 xc1;1 xc1;2 xc1;3 xc1;4 xc1;5
3 0 0 0 F

k�9m!2 0 0
6 0 0 0 0 F

k�36m!2 0
9 0 F

k�81m!2 0 0 0 0
12 0 0 F

k�144m!2 0 0 0

maximum number of nodal diameter, only the coefficient xc1;pis non zero. For higher values of p, it is found that only one
coefficient xc1;nd

is non zero. This coefficient is said to be aliased
and the relationship between p and nd is predicted by Figure 13.

References
[1] W.-H. Jeon, D.-J. Lee, An analysis of the flow and aerody-

namic acoustic sources of a centrifugal impeller, Journal of
Sound and Vibration 222 (1999) 505–511.

[2] T. Raitor, W. Neise, Sound generation in centrifugal compres-
sors, Journal of Sound and Vibration 314 (2008) 738–756.

[3] C. Scheit, B. Karic, S. Becker, Effect of blade wrap angle
on efficiency and noise of small radial fan impellers — a
computational and experimental study, Journal of Sound and
Vibration 331 (2012) 996–1010.

[4] W.-M. Zhang, G. Meng, Contact dynamics between the rotor
and bearing hub in an electrostatic micromotor, Microsystem
technologies 11 (2005) 438–443.

[5] W.-M. Zhang, G. Meng, D. Chen, J.-B. Zhou, J.-Y. Chen,
Nonlinear dynamics of a rub-impact micro-rotor system with
scale-dependent friction model, Journal of Sound and Vibra-
tion 309 (2008) 756–777.

[6] B. Schweizer, Total instability of turbocharger rotors — phys-
ical explanation of the dynamic failure of rotors with full-
floating ring bearings, Journal of Sound and Vibration 328
(2009) 156–190.

[7] B. Schweizer, M. Sievert, Nonlinear oscillations of automo-
tive turbocharger turbines, Journal of Sound and Vibration
321 (2009) 955–975.

[8] C. L. Morfey, Rotating pressure patterns in ducts: their gener-
ation and transmission, Journal of Sound and Vibration 1 (1)
(1964) 60 – 87. doi:10.1016/0022-460X(64)90007-0.

[9] J. C. Wilkes, D. W. Childs, B. J. Dyck, S. G. Phillips, The
numerical and experimental characteristics of multimode
dry-friction whip and whirl, Journal of Engineering for Gas
Turbines and Power 132 (5). doi:10.1115/1.3204658.

[10] D. W. Childs, D. Kumar, Dry-friction whip and whirl pre-
dictions for a rotor-stator model with rubbing contact at two
locations, Journal of Engineering for Gas Turbines and Power
134 (7). doi:10.1115/1.4005979.

[11] M. Legrand, A. Batailly, B. Magnain, P. Cartraud, C. Pierre,
Full three-dimensional investigation of structural contact in-
teractions in turbomachines, Journal of Sound and Vibration
331 (11) (2012) 2578–2601.

[12] A. Batailly, M. Legrand, A. Millecamps, F. Garcin,
Numerical-experimental comparison in the simulation of
rotor/stator interaction through blade-tip/abradable coating
contact, Journal of Engineering for Gas Turbines and Power
134 (8).

[13] A. Millecamps, J. Brunel, P. Dufrénoy, F. Garcin, M. Nucci,
Influence of thermal effects during blade-casing contact ex-
periments, in: Proceedings of the ASME 2009 IDETC &
CIE Conference, ASME, 2009.

[14] R. J. Williams, Simulation of blade casing interaction phe-
nomena in gas turbines resulting from heavy tip rubs us-
ing an implicit time marching method, in: Proceedings of
the ASME Turbo Expo 2011, GT2011-45495, Vancouver,
Canada, 2011.

14

http://dx.doi.org/10.1016/0022-460X(64)90007-0
http://dx.doi.org/10.1115/1.3204658
http://dx.doi.org/10.1115/1.4005979


[15] N. White, S. Laney, C. Zorzi, Rcfa for recurring impeller fail-
ures in a 4.7 mtpa lng train propane compressor, in: Proceed-
ings of the Fortieth Turbomachinery Synposium, Houston,
USA, 2011.

[16] C. Pierre, D. V. Murthy, Aeroelastic modal characteristics
of mistuned blade assemblies: mode localization and loss of
eigenstructure, AIAA Journal 30 (10) (1992) 2483 – 2496.

[17] P. D. Cha, C. Pierre, Eigensolution of periodic assemblies
of multi-mode component systems, Journal of Sound and
Vibration 129 (1) (1989) 168–174.

[18] M. B. Meingast, A. Batailly, M. Legrand, J. P. Ousty, Inves-
tigation of rotor-casing interactions in the centrifugal com-
pressor of a helicopter engine, in: Proceedings of the ASME
Turbo Expo 2013, GT2013-94461, San Antonio, USA, 2013.

[19] D. Thomas, Dynamics of rotationally periodic structures,
International Journal for Numerical Methods in Engineering
14 (1) (1979) 81–102.

[20] R. Bladh, Efficient predictions of the vibratory response
of mistuned bladed disks by reduced order modeling, Ph.d.
thesis, The University of Michigan, Ann Arbor, USA (2001).

[21] A. Sternchüss, E. Balmès, On the reduction of quasi-cyclic
disks with variable rotation speeds, Proceedings of the Inter-

national Conference on Advanced Acoustics and Vibration
Engineering (ISMA) (2006) 3925–3939.

[22] R. Craig, M. Bampton, Coupling of substructures for dy-
namic analyses, AIAA Journal 6 (7) (1968) 1313–1319.

[23] N. Carpenter, R. Taylor, M. Katona, Lagrange constraints
for transcient finite element surface contact, International
Journal for Numerical Methods in Engineering 32 (1991)
103–128.

[24] D. Jiang, C. Pierre, S. W. Shaw, Large-amplitude non-linear
normal modes of piecewise linear systems, Journal of Sound
and Vibration 272 (3-5) (2006) 869–891.

[25] A. Batailly, M. Legrand, A. Millecamps, S. Cochon,
F. Garcin, Redesign of a high-pressure compressor blade
accounting for nonlinear structural interactions, in: Proceed-
ings of the ASME Turbo Expo 2014, GT2014-25673, Dus-
seldorf, Germany, 2014.

[26] A. Batailly, Legrand, Conjectural bifurcation analysis of
an aircraft engine blade undergoing 3d unilateral contact
constraints, in: Proceedings of the ASME Turbo Expo 2014,
GT2014-25674, Dusseldorf, Germany, 2014.

15


	Introduction
	Aeronautical engine: main features and assumptions
	Linear criterion for interaction free designs
	Unilateral contact interactions modelling
	Finite element discretization
	Cyclic symmetry
	Modal synthesis reduction
	Modal analysis and convergence
	Unilateral contact conditions

	Analysis method
	Challenging aspects
	Detection of critical angular velocities

	Application: unilateral contact interaction between a flexible impeller and a rigidly distorted casing
	Two-lobe interaction
	Interaction for a three-lobe distorted casing

	Conclusions
	Aliasing effect: analytical example
	References

