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Nous proposons plusieurs nouvelles méthodes permettant de résoudre le problème de la reconstruction 3D d'une surface à partir de son gradient, qui soient rapides et robustes aux discontinuités de profondeur. Nous proposons de remplacer les moindres carrés par une fonctionnelle inspirée de la méthode de restauration de Perona et Malik, et montrons comment les méthodes d'intégration existantes les plus rapides peuvent être adaptées à la minimisation de cette fonctionnelle.

Introduction 1.Présentation du problème

Contexte. La stéréophotométrie [START_REF] Woodham | Photometric method for determining surface orientation from multiple images[END_REF] est une technique de vision par ordinateur qui permet d'estimer le gradient d'une surface sur un domaine Ω ⊂ R 2 . Dans la suite, le gradient estimé sera noté G(x, y) = p(x, y) q(x, y)

Sous l'hypothèse d'une caméra orthographique, le problème de la reconstruction 3D à partir d'un champ de gradient consiste à estimer une fonction continûment différentiable Z : Ω → R, telle que pour tout (x, y) ∈ Ω,

∇Z(x, y) = G(x, y) (2) 
Cette formulation s'étend facilement au cas d'une caméra perspective [START_REF] Durou | Integration of a normal field without boundary condition[END_REF]. En pratique, l'équation (2) ne peut pas être résolue directement, car le champ G n'est jamais rigoureusement intégrable, i.e. le terme d'intégrabilité [START_REF] Frankot | A Method for enforcing integrability in shape from shading algorithms[END_REF] I(x, y) = ∂ y p(x, y) -∂ x q(x, y)

n'est jamais nul, à cause du bruit et des discontinuités de profondeur qui violent la différentiabilité de Z, et donc son intégrabilité. La parade la plus naturelle consiste à résoudre l'équation (2) au sens des moindres carrés [START_REF] Horn | The variational approach to shape from shading[END_REF][START_REF] Frankot | A Method for enforcing integrability in shape from shading algorithms[END_REF][START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF][START_REF] Durou | Integration of a normal field without boundary condition[END_REF][START_REF] Harker | Least squares surface reconstruction from measured gradient fields[END_REF], en minimisant la fonctionnelle

F L2 (Z) = Ω ∇Z(x, y) -G(x, y) 2 dxdy (4)
ou en résolvant l'équation d'Euler-Lagrange associée

∆Z(x, y) = ∇• G(x, y) (5) 
sur l'intérieur

• Ω de Ω, avec une condition bien choisie sur le bord ∂Ω (voir ci-après). Dans [START_REF] Durou | Integration of a normal field without boundary condition[END_REF], ∆ désigne l'opérateur laplacien et ∇• l'opérateur divergence. Malheureusement, si une telle formulation est robuste à un bruit additif gaussien, elle n'est pas adaptée aux discontinuités de profondeur, et peut créer des phénomènes de Gibbs au voisinage de ces discontinuités. De tels phénomènes sont gênants pour des applications telles que le rééclairage (cf. figure 1). Dans cet article, nous nous intéressons au problème de l'estimation de Z en présence de discontinuités de profondeur.

Résultat principal. Inspirés par la méthode de Perona et Malik [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], nous proposons de pondérer le problème aux moindres carrés (4) par une fonction w dépendant du terme d'intégrabilité (3), de façon à limiter la contribution des pixels susceptibles de se trouver sur une discontinuité. Nous considérons donc la fonctionnelle Régularisation. Le schéma itératif de Horn et Brooks peut être modifié de façon à inclure une régularisation non quadratique : il est montré dans [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field ?[END_REF][START_REF] Durou | Integrating the normal field of a surface in the presence of discontinuities[END_REF] que la fonctionnelle (4) peut être remplacée par

F PM (Z) = Ω w(x, y) ∇Z(x, y) -G(x,
F Φ (Z) = Ω Φ( ∇Z -G ) dxdy (9) 
où Φ est choisie de façon à limiter l'infuence des résidus élevés. La complexité des algorithmes associés est O(N n 4 ) ou O(N n 3 ), selon que des méthodes creuses sont utilisées ou pas. Afin d'améliorer la robustesse au bruit et aux données aberrantes, il a également été proposé dans [START_REF] Harker | Least squares surface reconstruction from gradients: Direct algebraic methods with spectral, Tikhonov, and constrained regularization[END_REF] de modifier la résolution matricielle de [START_REF] Harker | Least squares surface reconstruction from measured gradient fields[END_REF] pour résoudre le problème régularisé au sens de Tikhonov

F T (Z) = Ω ∇Z -G 2 + λ ∇Z 2 dxdy (10)
avec λ > 0. La complexité reste en O(n 3 ), ce qui en fait la méthode la plus rapide pour la reconstruction 3D régularisée. Cependant, la régularisation proposée n'est pas robuste aux discontinuités de profondeur, puisque le terme d'attache aux données et le terme de lissage dans (10) sont tous deux quadratiques. Les caractéristiques de toutes ces méthodes d'intégration sont résumées dans la table 1. Les méthodes proposées étendent les méthodes analytiques utilisant la transformation de Fourier [START_REF] Frankot | A Method for enforcing integrability in shape from shading algorithms[END_REF][START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF] ou les méthodes de résolution de systèmes creux [START_REF] Agrawal | An algebraic approach to surface reconstruction from gradient fields[END_REF].

Condition au bord

Méthode

Moindres carrés Régularisation

Périodique FFT [6] -O(n 2 ) Méthode proposée -O(N n 2 ) Dirichlet DST [12] -O(n 2 ) Méthode proposée -O(N n 2 ) Formulation matricielle [7] -O(n 3 ) - Neumann homogène Résolution directe d'un système creux [1] -O(n 3 ) [2] -O(N n 3 ) Neumann DCT [12] -O(n 2 ) Méthode proposée -O(N n 2 ) Formulation matricielle [8] -O(n 3 ) [7] -O(n 3 ) Résolution itérative d'un système linéaire [10, 5] -O(N n 4 ) [2, 4] -O(N n 4 ) Résolution directe d'un système creux Méthode proposée -O(n 3 )
2 Méthodes proposées

Présentation formelle

On s'intéresse à la minimisation de la fonctionnelle (6), où les poids w, qui sont fixés, ne dépendent pas de l'inconnue Z (nous proposerons dans la suite plusieurs façons de calculer ces poids). Comme pour l'équation de diffusion anisotrope [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], l'équation d'Euler-Lagrange associée à (6) s'écrit

∆Z = ∇• G -∇(log w)• (∇Z -G) (11) 
accompagnée d'une condition au bord bien choisie. Si w = 1 en tout point (pondération uniforme), ( 11) se ramène à (5), ce qui correspond à la solution aux moindres carrés. Si w n'est pas uniforme, l'équation [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] est toujours linéaire en Z, mais ses coefficients ne sont plus constants. La solution de [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] peut être obtenue, dans ce cas, en évaluant la limite de la suite définie par la récurrence

Z 0 = Z 0 ∆Z k+1 = ∇• G -∇(log w)• (∇Z k -G) (12) 
avec une condition au bord à chaque pas, où Z 0 est par exemple la solution aux moindres carrés [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field ?[END_REF][START_REF] Durou | Integrating the normal field of a surface in the presence of discontinuities[END_REF]. Le schéma semi-implicite (12) implique donc la résolution d'une équation de Poisson à chaque pas, ce qui peut être réalisé très efficacement pour des domaines de reconstruction rectangulaires par transformation de Fourier. Nous détaillons cette approche dans le prochain paragraphe. Cependant, et contrairement à [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field ?[END_REF][START_REF] Durou | Integrating the normal field of a surface in the presence of discontinuities[END_REF], les poids w ne dépendent pas de l'inconnue Z, donc une autre approche consiste à résoudre le système linéaire [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] de manière directe, en utilisant par exemple la décomposition LU creuse. Ceci permet en outre de traiter des domaines de reconstruction non rectangulaires. Nous présentons cette approche dans le paragraphe 2.3.

Résolution itérative

Dans ce paragraphe, Ω est supposé rectangulaire, tel que

Ω = [0; m -1] × [0; n -1].
Condition au bord périodique. Notons  la transformée de Fourier 2D d'une fonction A, j 0 le complexe tel que j 2 0 = -1, et

f k = -∇(log w)• (∇Z k -G) (13) 
La transformée de Fourier de la relation de récurrence [START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF] s'écrit

-4π 2 (ω x 2 + ω y 2 ) Ẑk+1 = 2πj 0 (ω x p + ω y q) + f k (14) 
d'où la transformée de Fourier discrète de Z k+1 :

Z k+1 r,s = - 2πj 0 ( r m pr,s + s n qr,s ) + f k r,s 4π 2 ( r 2 m 2 + s 2 n 2 ) (15) 
où (r, s) ∈ [0, m -1] × [0, n -1] \ (0, 0). L'équation (15) permet d'obtenir rapidement Z k+1 , grâce à l'algorithme FFT. Si w ≡ 1, alors f k ≡ 0 et la méthode converge immédiatement : ce cas correspond à la méthode de Frankot et Chellappa [START_REF] Frankot | A Method for enforcing integrability in shape from shading algorithms[END_REF].

Condition de Dirichlet. Supposons Z connu sur le bord ∂Ω de Ω. Soit Π l'opérateur de projection permettant de sélectionner les valeurs de Z sur l'intérieur

• Ω de Ω. Soit également Z B la fonction égale aux valeurs connues sur ∂Ω, et nulle ailleurs. On montre que la méthode de Simchony et al. [START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF] peut être modifiée de façon à obtenir le schéma de résolution suivant de l'équation [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] :

Π(Z k+1 ) = DST -1 DST(Π(∇•G-∆ZB +f k )) Π(2 cos( πr m )+2 cos( πs n )-4)
Z k+1 = Z B sur ∂Ω (16) où DST désigne la transformée en sinus discrète 2D. Notons que le dénominateur dans (16) ne s'annule que si r = s = 0, ce qui laisse à penser que Z k+1 n'est estimable qu'à une constante additive près. Cependant, Z étant supposé connu sur ∂Ω, l'estimation de Z k+1 est bien unique. Notons également que le cas w ≡ 1, qui implique f k ≡ 0, correspond à la méthode de Simchony et al. [START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF]. Condition de Neumann. Le cas d'une condition de Neumann étant également traité par Simchony et al. dans [START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF], il est possible d'adapter cette méthode de façon à prendre en compte le terme f k . Soit

g = ∇• G sur • Ω -ν• G sur ∂Ω (17) 
On peut montrer que Z k+1 s'obtient par :

Z k+1 = DCT -1 DCT(g + f k ) 2 cos( πr m ) + 2 cos( πs n ) -4 (18) 
où DCT désigne la transformation en cosinus discrète 2D. Le dénominateur dans (18) s'annule si r = s = 0, et Z n'est plus supposé connu sur ∂Ω. Il en résulte que Z k+1 ne peut être estimé qu'à une constante additive près, ce qui est cohérent avec la forme de l'équation initiale (2).

Résolution directe

Dans [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field ?[END_REF][START_REF] Durou | Integrating the normal field of a surface in the presence of discontinuities[END_REF], le choix d'un algorithme itératif pour la résolution de [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] est motivé par le fait que la pondération dépend du résidu (∇Z -G). Considérer une pondération w qui ne dépende pas de l'inconnue Z est un avantage majeur : comme l'équation [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] reste linéaire en Z, on peut utiliser des méthodes de résolution directes. Soit

κ = ∇• G + ∇(log w)• G (19) et ∇(log w) = [C x , C y ] ⊤ (20) 
La discrétisation de l'équation (11) s'écrit, pour tout (i, j) ∈

• Ω :

1 + Cx(i, j) 2 Z(i + 1, j) + 1 - Cx(i, j) 2 Z(i -1, j) + 1 + Cy(i, j) 2 Z(i, j + 1) + 1 - Cy(i, j) 2 Z(i, j -1) 
-4Z(i, j) = κ(i, j) (21) À cause du manque de place, nous présentons uniquement les résultats pour la condition de [START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF], la matrice A n'est pas une matrice de Toeplitz par blocs, mais elle reste très creuse : on peut donc utiliser la décomposition LU creuse P AQ = LU , où P est une matrice de permutation de lignes et Q sert à réordonner les colonnes tout en garantissant le caractère creux du système. Une telle factorisation peut être calculée en O(n 3 ). Ensuite, la solution est obtenue par Z = QU -1 L -1 P B, qui peut être calculée par l'algorithme du pivot de Gauss, en un nombre d'opérations proportionnel au nombre d'entrées non nulles de L et U , soit O(n 2 ). Enfin, notons que nous n'avons cette fois pas précisé, cette fois-ci, si Ω était rectangulaire ou non : effectivement, cette approche permet de traiter tout type de domaine, pourvu qu'il soit connexe.

Choix de la pondération

Cas où seul G est disponible. On peut choisir pour les poids w des indicateurs du caractère localement intégrable du champ de gradient G : on peut par exemple choisir w = max ǫ, pi , . . . , I L pi ], i = 1 . . . 8, des niveaux de gris de ses huit plus proches voisins, en définissant

D(p o ) = max I po I po - I pi I pi ∞ , i = 1 . . . 8 (25) 
où la normalisation des niveaux de gris dans (25) permet de garantir que des valeurs élevées de D ne correspondent pas à des variations d'albédo [START_REF] Hertzmann | Example-based photometric stereo: shape reconstruction with general, varying BRDFs[END_REF]. Nous remplaçons la pondération (23) par

w = max {ǫ, exp {-bD}} (26) 
avec b > 0.

3 Validation expérimentale 2. Les méthodes proposées permettent de retrouver les discontinuités de profondeur, ce qui donne de plus faibles valeurs de la RMSE. De plus, les temps de calcul sont comparables à ceux de la reconstruction aux moindres carrés de [START_REF] Harker | Least squares surface reconstruction from measured gradient fields[END_REF], au contraire des méthodes de régularisation antérieures [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field ?[END_REF][START_REF] Durou | Integrating the normal field of a surface in the presence of discontinuities[END_REF].

Sur la figure 3-a, nous comparons les vitesses de convergence des schémas itératifs proposés et de la méthode Φ 2 décrite dans [START_REF] Durou | Integrating the normal field of a surface in the presence of discontinuities[END_REF]. Les schémas proposés semblent converger tous les trois en des temps comparables. Cependant, la convergence est difficile à prouver, donc en général la méthode directe, qui est comparable en terme de rapidité, doit être préférée.

Enfin, sur la figure 3-b, nous évaluons l'influence du choix du paramètre a sur la reconstruction 3D. Le choix a = 0 correspond à la solution aux moindres carrés, tandis que des valeurs élevées de a provoquent des instabilités numériques. Entre ces deux situations extrêmes, une valeur optimale de a semble exister, mais son estimation est laissée en perspective. Des considérations sur la distribution statistique du bruit pourraient sans doute aider, comme cela est proposé dans [START_REF] Agrawal | What is the range of surface reconstructions from a gradient field ?[END_REF]. 

  y) 2 dxdy (6) et présentons plusieurs méthodes d'optimisation qui découlent des algorithmes de résolution de l'équation (5) les plus rapides[START_REF] Frankot | A Method for enforcing integrability in shape from shading algorithms[END_REF][START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF][START_REF] Agrawal | An algebraic approach to surface reconstruction from gradient fields[END_REF].
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 1 FIGURE 1 -Effet des discontinuités de profondeur sur la reconstruction 3D à partir d'un champ de gradient : (a) une des trois images 1 utilisées pour estimer le gradient par stéréophotométrie ; (b) champ de gradient estimé ; (c) reconstruction 3D aux moindres carrés [8] ; (d) reconstruction 3D aux moindres carrés pondérés ; (e) rééclairage de la surface (c) par un éclairage frontal : des phénomènes de Gibbs sont visibles sur le bord du buste ; (f) rééclairage de la surface (d) par le même éclairage : ces phénomènes sont atténués.

  où ǫ est un paramètre positif de faible valeur (dans notre implémentation, ǫ = 0.01) assurant w > 0, a est un paramètre positif fixé par l'utilisateur et I est défini par (3).Cas de la stéréophotométrie. Dans le cadre de la stéréophotométrie[START_REF] Woodham | Photometric method for determining surface orientation from multiple images[END_REF], L images d'un objet sont prises sous le même point de vue, mais sous L éclairages différents. Chaque éclairage est supposé parallèle et uniforme, et peut donc être modélisé par un vecteur s l ∈ R 3 , l ∈ [1, L]. Sous l'hypothèse lambertienne, le niveau de gris dans l'image l en un pixel p o est donné parI l po = ρ po µ po ⊤ s l(24) où ρ po représente l'albédo en p o , et µ po la normale à la surface, unitaire sortante. Connaissant les éclairages s l , on peut très facilement estimer µ = [µ x , µ y , µ z ] ⊤ en chaque point, puis en déduire G = [-µ x /µ z , -µ y /µ z ] ⊤ . Malheureusement, une pondération telle que (23) n'est pas adaptée, car le champ G peut être corrompu par d'éventuels écarts au modèle lambertien (24). Nous proposons d'utiliser la pondération décrite dans [3], qui compare le vecteur I po = [I 1 po , . . . , I L po ] des niveaux de gris au pixel p o aux vecteurs I pi = [I 1

FIGURE 3 -

 3 FIGURE 3 -(a) RMSE en fonction du nombre d'itérations, pour les trois méthodes itératives proposées et pour la méthode Φ 2 décrite dans [4]. Les méthodes proposées convergent beaucoup plus vite, même si on peut observer un comportement oscillatoire dont l'interprétation est laissée en perspective. (b) Évolution de la RMSE, calculée à la convergence, de l'une des méthodes proposées (Direct -Neumann), en fonction du paramètre a. Une valeur optimale semble exister. Des courbes similaires caractérisent les autres méthodes.

3. 2 FIGURE 4 -

 24 FIGURE 4 -Calcul des poids à partir d'images de stéréophotométrie : (a)-(b) deux images (parmi dix) de taille 1062 × 836 d'un objet mat ; (c) pondération (23) avec a = 20 ; (d) pondération (26) avec b = 20, qui semble moins « bruitée ».
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 256 FIGURE 2 -Validation sur données de synthèse : (a) surface de test (m = n = 128) et (b) son gradient ; (c) reconstruction 3D aux moindres carrés [8] ; (d) régularisation de Tikhonov [7] ; (e) régularisation Φ 2 de Durou et al. [4] ; (f) M-estimateur de Agrawal et al. [2] ; reconstructions 3D en utilisant le schéma itératif proposé ici, avec une condition au bord (g) périodique (a = 32), (h) de type Dirichlet (a = 70) ou (i) Neumann (a = 95) ; (j) reconstruction 3D avec la méthode directe proposée (a = 100). Seules les régularisations non quadratiques permettent de retrouver les arêtes.

  où Z B est connue. Là encore, le problème n'est plus équivalent à la minimisation de (4), mais il est montré dans[START_REF] Harker | Least squares surface reconstruction from gradients: Direct algebraic methods with spectral, Tikhonov, and constrained regularization[END_REF] qu'une telle condition au bord permet de corriger un certain biais dans la donnée G. En utilisant la condition au bord[START_REF] Harker | Least squares surface reconstruction from gradients: Direct algebraic methods with spectral, Tikhonov, and constrained regularization[END_REF], l'approximation discrète de l'équation de Poisson (5) peut être résolue numériquement par un schéma itératif. L'algorithme utilisé dans[START_REF] Horn | The variational approach to shape from shading[END_REF][START_REF] Durou | Integration of a normal field without boundary condition[END_REF] est celui de Jacobi, pour lequel N itérations sont nécessaires, chacune impliquant O(n 4 ) opérations, où n est la dimension principale de Ω. Un tel schéma itératif a été utilisé en raison des contraintes de stockage en mémoire des ordinateurs des années 90, mais dans [1, 2], Agrawal et al. montrent que le système linéaire associé peut être résolu directement, en tenant compte du caractère creux de la matrice du système : la complexité est alors celle de la factorisation LU d'une matrice creuse de taille n 2 × n 2 , à savoir O(n 3 ).Si Ω est rectangulaire, des solutions analytiques fondées sur la transformation de Fourier ont été proposées et adaptées au cas d'une condition au bord périodique[START_REF] Frankot | A Method for enforcing integrability in shape from shading algorithms[END_REF], ou à celui d'une condition de type Dirichlet ou Neumann[START_REF] Simchony | Direct analytical methods for solving Poisson equations in computer vision problems[END_REF]. Dans les trois cas, grâce à la transformée de Fourier rapide (FFT), la résolution peut être menée en O(n 2 ) opérations.

	Cette condition de Neumann est remplacée par la condi-
	tion de Neumann homogène ∇Z = 0 dans [2], mais il est
	notable que le problème n'est alors plus équivalent au pro-
	blème aux moindres carrés original (4). Dorénavant, nous
	appellerons « condition de Neumann » la condition au bord
	(7). Cette condition au bord est parfois encore remplacée
	par une condition de type Dirichlet	
	Z = Z B sur ∂Ω	(8)
	1. http://www.ece.ncsu.edu/imaging/Archives/	

1.2 Travaux antérieurs

Problème aux moindres carrés (4). La résolution de l'équation d'Euler-Lagrange

[START_REF] Durou | Integration of a normal field without boundary condition[END_REF]

, qui est une équation de Poisson, n'est équivalente à la minimisation de la fonctionnelle (4) que si elle est accompagnée de la condition naturelle au bord

(∇Z(x, y) -G(x, y))• ν(x, y) = 0 sur ∂Ω (7)

où ν est un vecteur normal à ∂Ω dans le plan image. Dorénavant, les dépendances en (x, y) seront omises. Enfin, Harker et O'Leary montrent dans [8] que (4) peut être minimisée efficacement en cherchant son minimiseur sous forme matricielle : l'équation à résoudre est alors une équation de Sylvester, qui peut être résolue en O(n 3 ). La condition naturelle au bord est implicitement satisfaite. Ils montrent également dans [7] comment étendre cette méthode au cas d'une condition au bord de type Dirichlet.

TABLE 1 -

 1 Complexité des méthodes d'intégration fondées sur un critère aux moindres carrés, et de leurs équivalents introduisant une régularisation : ceci suppose généralement l'utilisation d'un algorithme itératif (N désigne le nombre d'itérations).

  Neumann, mais d'autres conditions au bord peuvent être très naturellement prises en compte. En stockant les valeurs de Z et de κ colonne par colonne, et en utilisant la condition au bord de Neumann, les équations (21) peuvent être regroupées en

		contrairement à
	AZ = B	(22)
	où A et B désignent, respectivement, une matrice creuse
	|Ω|×|Ω| (|Ω| désigne le cardinal de Ω) représentant un opé-
	rateur laplacien modifié, et un vecteur de taille |Ω| conte-
	nant les valeurs de κ. Plus précisément, chaque ligne de
	A correspondant à un point de	
	Cx,y 2 . Notons que A et B doivent être modifiés afin de prendre correctement
	en compte la condition au bord. Notons également que,

• Ω aura une entrée égale à -4, et quatre entrées égales à 1 ±

TABLE 2 -

 2 Reconstructions 3D de la figure

	3.1 Évaluation quantitative sur des données
	de synthèse		
	Afin d'évaluer la précision des reconstructions 3D, nous
	considérons le même relief discontinu que dans [4], repré-
	senté sur la figure 2-a, dont le gradient ∇u est représenté
	sur la figure 2-b. Les reconstructions 3D obtenues montrent
	que les discontinuités de profondeur sont mieux retrouvées
	avec les méthodes proposées.		
	Nous calculons la RMSE entre la surface originale et la
	surface reconstruite, et mesurons les temps CPU pour at-
	teindre la convergence sur un processeur I7 à 2.7GHz dans
	des conditions comparables : pour les méthodes itératives,
	nous choisissons comme critère d'arrêt un seuil de 10 -4
	sur l'écart relatif moyen entre deux pas successifs, et la
	constante d'intégration est choisie de façon à minimiser la
	RMSE. Les résultats sont regroupés dans la table 2.
	RMSE (pixels) CPU (s)
	Moindres carrés [8]	9.47	0.23
	Tikhonov [7]	9.47	0.28
	Φ-fonction [4]	2.87	81.3
	M-estimateur [2]	10.18	34.9
	Itératif -périodique	1.08	1.10
	Itératif -Dirichlet	0.45	0.82
	Itératif -Neumann	0.58	0.77
	Direct -Neumann	0.49	0.32