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ABSTRACT

Probabilistic projection of climate change consists of formulating the climate change information in a

probabilistic manner at either global or regional scale. This can produce useful results for studies of the impact

of climate change impact and change mitigation. In the present study, a simple yet effective approach is

proposed with the purpose of producing probabilistic results of climate change over China for the middle and

end of the twenty-first century under the Special Report on Emissions Scenarios A1B (SRES A1B) emission

scenario. Data from 28 coupled atmosphere–ocean general circulation models (AOGCMs) are used. The

methodology consists of ranking the 28 models, based on their ability to simulate climate over China in terms

of two model evaluation metrics. Different weights were then given to the models according to their per-

formances in present-day climate. Results of the evaluation for the current climate show that five models that

have relatively higher resolutions—namely, the Istituto Nazionale di Geofisica e Vulcanologia ECHAM4

(INGV ECHAM4), the third climate configuration of the Met Office Unified Model (UKMO HadCM3), the

CSIRO Mark version 3.5 (Mk3.5), the NCAR Community Climate System Model, version 3 (CCSM3), and

the Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2 (hires)]—

perform better than others over China. Their corresponding weights (normalized to 1) are 0.289, 0.096, 0.058,

0.048, and 0.044, respectively. Under the A1B scenario, surface air temperature is projected to increase

significantly for both the middle and end of the twenty-first century, with larger magnitude over the north and

in winter. There are also significant increases in rainfall in the twenty-first century under the A1B scenario,

especially for the period 2070–99. As far as the interannual variability is concerned, the most striking feature is

that there are high probabilities for the future intensification of interannual variability of precipitation over

most of China in both winter and summer. For instance, over the Yangtze–Huai River basin (288–358N, 1058–

1208E), there is a 60% probability of increased interannual standard deviation of precipitation by 20% in

summer, which is much higher than that of the mean precipitation. In general there are small differences

between weighted and unweighted projections, but the uncertainties in the projected changes are reduced to

some extent after weighting.

1. Introduction

Projection of future climate change at regional scale is

important for the assessment of climate change impacts,

as well as the elaboration of appropriate mitigation and

adaptation measures. Coupled atmosphere–ocean general

circulation models (AOGCMs), along with adequate

regionalization methods (e.g., regional climate models,

statistical downscaling), are the most appropriate tools

for projecting climate under scenarios of greenhouse gas

emission. Considerable uncertainties exist in different

steps of future climate projection. Those related to the

representation of physical mechanisms in global coupled

models are believed to be large but can be assessed

through the approach of multimodel ensemble (MME).

This implies naturally a probabilistic projection, which

is also quite suitable for impact or mitigation studies. In

fact, policy makers responsible for complex socioeconomic
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plans and managements can take into account future

climate projections expressed in a probabilistic manner.

As a result of recent coordinated efforts of the sci-

entific community, a number of AOGCMs have been

run to simulate the evolution of a climate system from

preindustrial times to the end of the twenty-first century

using historical observed and future scenarios of anthro-

pogenic and natural forcings, producing large datasets of

projection of future climate (Cubasch et al. 2001; Meehl

et al. 2007). For instance, the recent World Climate Re-

search Programme (WCRP) Coupled Model Intercom-

parison Project phase 3 (CMIP3; Meehl et al. 2007)

consists of 23 state-of-the-art AOGCMs from 16 in-

stitutions and 11 countries. Model output from CMIP

phase 5 (CMIP5) will also be available in the near future

(Taylor et al. 2008). Multimodel databases offer both

scientific opportunities and challenges in combining these

datasets (Knutti et al. 2010).

Two main approaches have been developed to com-

bine multimodel ensemble output (Tebaldi and Sanso

2009). One simply considers each model as equal and

produces simple ensemble averages (‘‘one model, one

vote’’). The other, which has been paid more and more

attention nowadays, stems from the belief that not all

models are to be trusted equally, but some are better

than others and should receive more weight in the com-

bination of the results. In recent years, a number of

techniques have been proposed to weight the model (e.g.,

downweight or eliminate some ‘‘bad’’ climate models

based on metrics of skill, Schmittner et al. 2005; Whetton

et al. 2007; Santer et al. 2009; Perkins and Pitman 2009;

Knutti 2010), such as the reliability ensemble average

(REA) approach (Giorgi and Mearns 2002, 2003; Moise

and Hudson 2008), which has been updated by Xu et al.

(2010), as well as Bayesian methods (Tebaldi et al. 2004,

2005; Greene et al. 2006; Furrer et al. 2007; Tebaldi and

Knutti 2007; Smith et al. 2009; Tebaldi and Sanso 2009).

The REA and Bayesian methods have also been pro-

posed to perform probabilistic projections of climate

change at global and regional scales (Collins 2007), in

which a climate change projection/prediction essentially

consists of producing probability density functions (PDFs)

or cumulative distribution functions (CDFs) of the changes

in climatic variables of interest. The spread of the PDF is

a measure of the uncertainty in the projection (Watterson

2008; Xu et al. 2010).

For China, a number of recent climate change simu-

lations and projections with different AOGCMs have

been analyzed (Jiang et al. 2004, 2005, 2009; Zhou and

Yu 2006; Sun and Ding 2008, 2009; Li et al. 2010; among

others). For example, based on the simulation outputs

of 17 AOGCMs for the Intergovernmental Panel on Cli-

mate Change (IPCC) Fourth Assessment Report (AR4),

Jiang et al. (2009) analyzed the spatial and temporal

characteristics of the 18–38C warming over China in the

twenty-first century. Sun and Ding (2009) investigated

the future potential changes in precipitation and mon-

soon circulation in the summer in East Asia under the

Special Report on Emissions Scenarios (SRES) A1B

emission scenario. However, these studies are all based

on the simple MME method, and there is little infor-

mation about probabilistic projection for future evolu-

tion of climate change over this region.

In the present study, we attempt to construct proba-

bilistic projections of climate change over China under

the SRES A1B scenario in the twenty-first century based

on a simple yet effective method. We first prequalify 28

available AOGCMs based on their ability to simulate

climate over China in terms of two metrics of model skills.

Then different weights are given to the models based on

their performances in simulating present-day climate.

We address the issue of uncertainties to some extent by

interpreting the climate projection problem in a probabi-

listic way.

The paper is organized as follows: Section 2 provides

a brief description of the datasets, model evaluation

metrics, and the weighting methodology. Section 3 de-

scribes the results from the model-quality assessment.

The probabilistic projections of climate change over

China are presented and interpreted in section 4. In

section 5, the projected changes provided by the weighted

ensemble mean and the unweighted one are compared.

Finally, section 6 provides a general discussion and con-

clusions.

2. Data and methods

a. Data

This study uses 22 coupled AOGCMs from the CMIP3

in support of the IPCC AR4, as well as 6 AOGCMs from

the Ensemble-Based Predictions of Climate Changes and

Their Impacts (ENSEMBLES) project (van der Linden

and Mitchell 2009), which is funded by the European

Commission. One ensemble member for each model

is used. The models participating in the ENSEMBLES

project, shown in bold in Table 1, are generally improved

or extended versions of models contributing to the IPCC

AR4 [through improvement to core physical schemes,

and the inclusion or improvement of the carbon cycle

component (CC), aerosol chemical transport component

(AT), and transient land use change component (LU)].

A more detailed documentation of the ENSEMBLES

models is described by van der Linden and Mitchell

(2009). As a result, a total of 28 models (Table 1) were

used in this study, which should be so far the most com-

prehensive projection under the A1B scenario over China.
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Monthly precipitation (Pr) and surface air tempera-

ture (Tas) fields from the Twentieth-Century Climate in

Coupled Model (20C3M) runs and the SRES A1B emis-

sions scenario runs are used in the analysis. The CO2

concentration associated with the A1B scenarios is ex-

pected to reach a maximum of 720 ppm by 2100, ac-

cording to Nakicenovic and Swart (2000). The IPCC AR4

simulation results were obtained from the FTP server

(ftp://ftp-esg.ucllnl.org/) that is maintained by the Earth

System Grid II (ESG) research project sponsored by

the U.S. Department of Energy Office of Science. The

ENSEMBLES simulation datasets are obtained from

the Climate and Environmental Data Retrieval and Ar-

chive (CERA) database, run by the Model and Data

group at the Max Planck Institute for Meteorology

(www.mad.zmaw.de/projects-at-md/ensembles/).

Model performance is assessed by the University of

East Anglia’s Climate Research Unit time series

(CRU TS2.1) temperature and precipitation datasets

(Mitchell and Jones 2005; New et al. 2002). The model

and observed data are regridded to a common 1.08 3

1.08 grid, with only land points being used in the in-

terpolation. In this study we focus on climatology of

the last 40 yr of the twentieth-century simulations

(1960–99).

b. Model evaluation metrics

Models that do a good job for basic variables, such

as surface air temperature and precipitation, often have

good performance in other variables (e.g., Gleckler et al.

2008). Hence, we use these two basic variables to eval-

uate model performance.

1) MSE

According to Pierce et al. (2009), the mean-squared

error (MSE) is defined as

TABLE 1. Model Identification, originating group/country, and atmospheric resolution. Models participating in the ENSEMBLES project

are shown in bold.

Model ID Originating group/country

Atmosphere

resolution (8)

BCCR BCM2.0 Bjerknes Centre for Climate Research (BCCR)/Norway 2.8 3 ;2.8

CGCM3.1 (T47) Canadian Centre for Climate Modelling and Analysis (CCCma)/Canada 3.75 3 ;3.75

CGCM3.1 (T63) CCCMA/Canada 2.8 3 ;2.8

CNRM-CM3 Centre National de Recherches Météorologiques (CNRM)/France 2.8 3 ;2.8

CSIRO Mk3.0 CSIRO Atmospheric Research/Australia 1.875 3 ;1.875

CSIRO Mk3.5 CSIRO Atmospheric Research/Australia 1.875 3 ;1.875

GFDL CM2.0 Geophysical Fluid Dynamics Laboratory (GFDL)/United States 2.5 3 2.0

GFDL CM2.1 GFDL/United States 2.5 3 2.0

GISS-EH National Aeronautics and Space Administration (NASA) GISS/United States 5 3 4

FGOALS-g1.0 National Key Laboratory of Numerical Modeling for Atmospheric Sciences and

Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP)/China

2.8 3 2.8

INGV ECHAM4 INGV/Italy 1.125 3 ;1.125

INMCM3.0 Institute for Numerical Mathematics (INM)/Russia 5.0 3 4.0

IPSL_CM4 L’Institut Pierre-Simon Laplace (IPSL)/France 3.75 3 2.5

MIROC3.2(hires) Center for Climate System Research, National Institute for Environmental Studies,

and Frontier Research Center for Global Change (FRCGC)/Japan

1.125 3 1.12

MIROC3.2(medres) Center for Climate System Research, National Institute for Environmental Studies,

and FRCGC/Japan

2.8 3 ;2.8

MIUBECHOG Meteorological Institute of the University of Bonn, Meteorological Research Institute

of the Korea Meteorological Administration (KMA), and Model and Data

group/Germany and Korea

3.75 3 ;3.75

ECHAM5/MPI-OM Max Planck Institute for Meteorology (MPI)/Germany 1.875 3 ;1.875

MRI CGCM2.3.2 Meteorological Research Institute (MRI)/Japan 2.8 3 ;2.8

NCAR CCSM3 NCAR/United States 1.4 3 ;1.4

NCAR PCM1 NCAR/United States 2.8 3 ;2.8

UKMO HadCM3 Hadley Centre for Climate Prediction and Research, Met Office (UKMO)/

United Kingdom

3.75 3 2.5

UKMO HadGEM1 Hadley Centre for Climate Prediction and Research, Met Office/United Kingdom 1.875 3 1.25

CNRM-CM3.3, LU Centre National de Recherches Météorologiques (CNRM)/France 2.8 3 ;2.8

HadCM3C, CC&AT Hadley Centre for Climate Prediction and Research, Met Office/United Kingdom 3.75 3 2.5

HadGEM2-AO, AT&LU Hadley Centre for Climate Prediction and Research, Met Office/United Kingdin 1.875 3 1.25

INGV C-ESM, CC INGV/Italy 3.75 3 ;3.75

IPSL CM4 V2, LU IPSL/France 2.5 3 1.268

ECHAM5_C, CC&LU Max Planck Institute for Meteorology/Germany 3.75 3 ;3.75
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MSE(m, o) 5
1

N
�
N

k51
(Mk 2 Ok)2, (1)

where Mk and Ok indicate the model pattern of interest

and the corresponding observed pattern, respectively,

and N indicates the number of spatial points.

We transform this performance measure to a (di-

mensionless) spatial skill metric (M1) by normalizing as

follows:

M1 5 1 2
MSE(m, o)

MSE(o, o)
, (2)

where the overbar indicates the spatial mean. This nor-

malization step enables us to compare climate variables

(temperature and precipitation) with different units. A

model field identical to observation has a M1 value of 1,

and the closer the M1 value is to 1, the greater skill in

simulating the spatial climatologies.

2) INTERANNUAL VARIABILITY

The variability is measured by the interannual stan-

dard deviation (STD). Before calculating the STD, there

is no special filtering applied (Scherrer 2010); that is,

interannual variability also contains some decadal vari-

ability strictly speaking, although we think the contri-

bution from decadal variability is small. As in the study

by Gleckler et al. (2008) and Santer et al. (2009), we cal-

culate a ‘‘symmetric’’ variability statistic (M2), which has

the same numeric values for a model that simulates half

and twice the observed variability as follows:

M2 5
STDm

STDo

2
STDo

STDm

� �2

, (3)

where STDm denotes the interannual standard deviation

of simulated variables and STDo is the STD of observed

variables. We first calculated the M2 value at each grid

point over China and then compute the China-averaged

value. It should be noted that M2 is also dimensionless.

Moreover, the M2 value is equal to 0 when STDm is

identical to STDo, and the closer the M2 value is to 0, the

greater skill in simulating the interannual variability.

c. Weighting methodology

Compared with previously published methods for

weighting simulations of climate change (e.g., the REA

methods), the largest difference of our method is the

weighting functions. We first rank all 28 models accord-

ing to their order of performance in terms of each in-

dividual metric, as defined in section 2b. For each model

we then obtain Si, which is a simple sum of its ranks

for the two individual metrics. The inverse of the

normalized Si can then be considered as a model re-

liability factor (Ri).

Let the sum of a model’s ranks be Si and let the sum of

all models’ ranks be �N

i51Si; the model reliability factors

is defined as

Ri 5

�
N

i51
Si

Si

. (4)

Evidently Ri can be thought as the combined ‘‘model

quality’’ metric, representing one model’s skill in simu-

lating historical climatology. The greater the Ri value,

the better is the skill. Once the reliability factor (Ri) for

each model is calculated, the likelihood of a model’s

outcome is defined by

Wi 5
Ri

�
N

i51
Ri

. (5)

In fact Wi is just the normalized value of Ri (so that

the sum of the weights across all 28 AOGCMs is equal

to 1).Then threshold probabilities can be derived by

summing over all Wi, which exceeds a given threshold of

climate change. For example, the probability of a tem-

perature change exceeding a certain threshold DTth is

given by Giorgi and Mearns (2003) and Xu et al. 2010

and is defined as

PDT.DT
th 5�

i
Wi, DTi . DTth. (6)

Moreover, the probability of the change of a variable

that is lower than the threshold DTth can be obtained by

1 2 P. It should be pointed out that here we have made

a reasonable starting assumption that better agreement

with past climate builds more confidence in the reliability

of a model’s future projections (Whetton et al. 2007).

As in Giorgi and Mearns (2003), the weighted average

change is given as

DT 5

�
i

WiDTi

�
i

Wi

, (7)

where DTi is the projected change of model i and Wi is

its corresponding weight defined by Eq. (5).

The uncertainty in projection is measured by the root-

mean-square difference (RMSD) of the projected change

(Giorgi and Mearns 2003; Xu et al. 2010). Here the term

difference refers to the difference between one single
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model’s projected change and MME’s projected one. For

example, the RMSD of change projected by weighted

averages and unweighted ones are defined by Eqs. (8)

and (9) as follows:

d
DT 5

�
i

Wi(DTi 2 DT)2

�
i

Wi

2
664

3
775

1/2

and (8)

d
DT 5

1

N
�

i51,N
(DTi 2 DT)2

" #1/2

, (9)

where DT is the weighted average change defined by

Eq. (7) and DT is the equally weighted average.

3. Results from model-quality assessment

In this section we focus on the order of the model

performance based on the two evaluation metrics rather

than the general features of the temperature and pre-

cipitation climatologies from the AOGCMs, which have

been described in a number of previous studies (e.g.,

Jiang et al. 2005; Zhou and Yu 2006; Xu et al. 2010).

Figure 1 is the plot of model skill scores (M1) of the

spatial mean squared error of the temperature (with the

scale on the left-hand ordinate) and precipitation (with

the scale on the right-hand ordinate). Models along the

x axis are ordered by their mean M1 value of both tem-

perature and precipitation. Not surprisingly, in general

the spatial skill metric (M1) of temperature is greater

than that of precipitation. For the simulation of the

temperature pattern, the top three models are the Istituto

Nazionale di Geofisica e Vulcanologia ECHAM4 (INGV

ECHAM4), ECHAM5–MPI-OM, and the third climate

configuration of the Met Office (UKMO) Unified Model

(HadCM3C), with the M1 value greater than 0.9. As for

the simulation of precipitation, the INGV_ECHAM,

the Commonwealth Scientific and Industrial Research

Organisation Mark version 3.5 (CSIRO Mk3.5), and

the Meteorological Institute of the University of Bonn,

ECHO-G Model (MIUBECHOG), whose M1 value is

up to 0.6, have relatively higher skill than others. Taking

both temperature and precipitation into account, the top

three models are INGV_ECHAM4, CSIRO Mk3.5, and

UKMO HadCM3, whereas the MMEs rank fourth.

In terms of interannual variability, Fig. 2 depicts the

model skill scores (M2 value averaged over China) of

the interannual variability (measured by the interannual

standard deviation) of both temperature and precipi-

tation. Similar to M1 mentioned above, model skill in

simulating the interannual variability of temperature is

generally higher than that of precipitation. Overall, the

three models that perform best are the INGV ECHAM4,

the Meteorological Research Institute Coupled General

Circulation Model, version 2.3.2a (MRI CGCM2.3.2),

and the HadCM3. In addition, MME has the lowest M2

FIG. 1. Model skill scores (M1) of the spatial mean squared error of the temperature (left

scale) and precipitation (right scale). The 28 AOGCMs and MMEs are ordered by the mean

M1 value of the temperature and precipitation. Large values of M1 indicate good skill in

simulating the spatial climatologies.
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value for both temperature and precipitation, signifying

that MME has the best skill in simulating the interannual

variability compared to any single model.

By combining information from different performance

metrics, the overall ranking and weighting results are

shown in Table 2. The weight for each model is calcu-

lated based on its ranks according to Eqs. (4) and (5).

Note that the weight for each model would be 0.036 in

the case that all models were equally weighted. The best

five models—namely, the INGV ECHAM4, the UKMO

HadCM3, the CSIRO Mk3.5, the National Center for

Atmospheric Research (NCAR) Community Climate

System Model, version 3 (CCSM3), and the Model for

Interdisciplinary Research on Climate 3.2, high-resolution

version MIROC3.2(hires)—have weights of 0.289, 0.096,

0.058, 0.048, and 0.044, respectively, clearly better than

others. We also notice that 4 of these 5 models (INGV

ECHAM4, MIROC3.2(hires), NCAR CCSM3, and

CSIRO Mk3.5) have the highest horizontal resolutions

(Table 1), indicating that finer model resolutions are

needed to simulate present-day climate over China ac-

curately (Gao et al. 2006). The five above-mentioned

models are consistently ranked in the top 8 models for

both M1 and M2 evaluation criteria. Particularly, INGV

ECHAM4 outperforms any other models for both eval-

uation criteria. Therefore, this model is given the largest

weight (0.289). On the other hand, several models [e.g.,

the Centre National de Recherches Météorologiques

Coupled Global Climate Model, version 3.3 (CNRM-

CM3.3) and the Goddard Institute for Space Studies

Model E-H (GISS-EH)] are given smaller weights (e.g.,

0.011) because of their poor performance in the two

evaluation metrics.

4. Probabilistic projection of climate change

This section describes future probabilistic changes of

the mean values and interannual variability in temper-

ature and precipitation, based on the methodology de-

scribed in section 2c. We focus on two future time periods

under the A1B scenario: one is 2011–40, representing the

near-term period, which is of critical importance for policy

and decision makers (Meehl et al. 2007; the other is 2070–

99, which has the maximal climate change signal. The

term change refers to the difference between 30-yr means

in the scenario and in the reference period (1961–90).

a. Changes in mean temperature and precipitation

Figure 3 shows the probability of winter [December–

February (DJF)], summer [June–August (JJA)], and

annual mean surface air temperature and precipitation

changes (China averaged) exceeding a given threshold

as a function of the threshold for 2011–40 and 2070–99.

The probability is calculated following Eq. (6), and the Wi

for each model is shown in Table 2. According to Eq. (6),

as the temperature (or precipitation) change threshold

increases, the probability decreases until it reaches 0

above a maximum value, implying that no model projects

a greater change than this value.

For the near-term period (2011–40), all models show

a positive temperature change over China in all seasons;

therefore, the probability of warming is equal to 1. The

FIG. 2. As in Fig. 1, but for model skill scores (M2) of the interannual variability (measured by

the interannual standard deviation) of both temperature and precipitation.

4746 J O U R N A L O F C L I M A T E VOLUME 24



probability of a temperature change being greater than

1.08C is also quite high, reaching 0.9 or greater. For a

warming level equal to or greater than 1.58C, the prob-

ability decreases sharply to 0.73, 0.24, and 0.21 for DJF,

JJA, and the annual mean, respectively. We can see that

in winter, the warming has the largest signal. The max-

imum change is of the order 2.08–2.58C. For precipita-

tion, in general there is a positive change in 2011–40 but

the amplitude is quite weak. Only in DJF is there a

probability greater than 0.5 of an increase in excess of 5%.

For the end of the twenty-first century (2070–99), the

general behaviors of the projected changes are similar

to that of the period 2011–40 for both temperature and

precipitation. However, the magnitudes are much greater.

There is a near 100% probability for increases of tem-

perature above 2.58C for both summer and winter. Fur-

thermore, the probability of exceeding the 38C threshold

reaches 0.9 or greater in all seasons. During winter, this

is also true for a warming level above 3.58C. The maxi-

mum change ranges from 58 to 68C. For precipitation,

the probability curves have a similar shape as for

temperature, a prevalence of probability of positive

change is observed, especially in winter. The probability

of the DJF, JJA, and annual mean precipitation change

greater than 10% is 0.94, 0.34, and 0.45, respectively. The

projected maximum change for precipitation is 60% in

winter and 25% in summer.

1) CHANGES IN 2011–40

The probability of exceeding three warming levels

(18, 1.58, and 2.08C) over China during winter and sum-

mer for 2011–40 under SRES A1B is given in Fig. 4.

Shadings indicate areas where the probabilities are

greater than 0.5. When the warming level is set to 1.08C,

we obtain probabilities greater than 0.5 for all of China

in winter and the northwestern part of China in summer.

Similar spatial structures are obtained for a future warm-

ing set to .11.58C but having a smaller probability of

occurring. In addition, over the northeastern part there

is a 50% probability of above 12.08C warming in winter.

During summer, most of the high probabilities for

above 18C warming were located over the Tibetan Pla-

teau and the northern parts, encompassing northwest

China, north China, and northeast China. The probabil-

ities for a warming level above 12.08C are quite low,

implying that a warming by 12.08C is unlikely in summer

over China.

With respect to the precipitation, Fig. 5 shows the

probability for exceeding precipitation change thresh-

olds (0%, 5%, and 10%) during winter (top panel) and

summer (bottom panel). Shaded areas indicate proba-

bilities greater than 0.5. In winter the northern parts

show probabilities of above 0.5 for rainfall to increase.

In the southeastern parts, the probability for rainfall to

increase is below 50%, indicating a higher probability

for rainfall to decrease in these areas. Increases (5%

and 10% levels) are mainly seen in the northern parts

(northwest China, north China, and northeast China).

During summer the most probable future changes of

rainfall are increases in southeast China, east of north-

east China, and the Tibetan Plateau, with probabilities

higher than 0.5 over those regions.

2) CHANGES IN 2070–99

In general the spatial patterns of probability of ex-

ceeding given change thresholds for both temperature

and precipitation in 2070–99 under SRES A1B are the

same as that of 2011–40, but with larger magnitude.

Figure 6 depicts the spatial pattern of probability for

exceeding temperature change thresholds (38, 48, and

58C) for both DJF and JJA. In winter, there is a near

100% probability across most of China for the warming

to be above 38C. For thresholds above 48C, northeast

China, northwest China, and the Tibetan Plateau also

exhibit high probabilities, reaching 60% or higher.

TABLE 2. Weights and ranks of the 28 AOGCMs according to

their performance. Bold values indicate that the model has a weight

.0.036 (value of equally weighted models).

Model ID

Rank

of M1

Rank

of M2

Sum of

the ranks Weights

INGV ECHAM4 1 1 2 0.289

UKMO HadCM3 3 3 6 0.096
CSIRO Mk3.5 2 8 10 0.058

NCAR CCSM3 6 6 12 0.048

MIROC3.2(hires) 8 5 13 0.044

MIROC3.2(medres) 12 4 16 0.036

CSIRO Mk3.0 4 12 16 0.036

CGCM3.1 (T63) 11 6 17 0.034

MIUBECHOG 9 11 20 0.029

MRI CGCM2.3.2 20 2 22 0.026

GFDL CM2.1 6 16 22 0.026

GFDL CM2.0 14 9 23 0.025

HadGEM2-AO 4 23 27 0.021

MPI ECHAM5/MPI-OM 14 14 28 0.021

INGV C-ESM 9 20 29 0.020

IPSL CM4 21 9 30 0.019

HadCM3C 19 12 31 0.019

CGCM3.1 (T47) 16 15 31 0.019

ECHAM5_C 13 19 32 0.018

IPSL CM4 V2 17 17 34 0.017

UKMO HadGEM1 18 17 35 0.017

NCAR PCM1 25 21 46 0.013

INM-CM3.0 22 24 46 0.013

IAP FGOALS-g1.0 26 22 48 0.012

BCCR BCM2.0 23 25 48 0.012

CNRM CM3 24 25 49 0.012

CNRM-CM3.3 27 28 55 0.011

GISS-EH 28 27 55 0.011
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Furthermore, over parts of northeast China there is

even a 60% probability of above 58C warming in winter.

During summer, most of the high probabilities higher

than 50% for future warming above 138C are located

in areas north of 308N. This is particularly the case for the

southern part of northwest China, where the probabilities

reach 100%. With respect to the thresholds above 48C,

only the northern part of Xinjiang province exhibits high

probabilities. The probability for temperature to increase

above 58C is lower than 20% for most of the regions.

As for changes in precipitation, probabilities for ex-

ceeding given thresholds (0%, 10%, and 20%) are shown

in Fig. 7. Increases of precipitation mainly appear in the

northern parts of China. For instance, there are high

probabilities for future increases of winter precipitation

by 20% over northeast China, north China, and north-

west China. During summer, precipitation increases

across the entire country, with the exception of the

western part of northwest China. In addition, over

southeast China and the eastern part of northwest

China, there are high probabilities (greater than 0.5) of

increasing by 10%. The probability for rainfall increases

above 20% is lower than 0.2 over most of China.

b. Changes in interannual variability

As far as the changes in interannual variability are

concerned, we focus on the end of the twenty-first cen-

tury (2070–99) with the purpose of maximizing the change

signal. Figure 8 shows the spatial pattern of probability

of exceeding (or not) given change thresholds of tem-

perature interannual variability over China during win-

ter (20.28, 20.18, and 08C; top) and summer (08, 0.18, and

0.28C; bottom) for the period 2070–99. Areas with a

probability greater than 0.5 are shaded. In general, the

interannual variability of temperature will increase over

most of China in JJA, especially in the northwestern and

the central parts, where the probability for increasing

above 0.18C is up to 50% or greater. For temperature

in winter, there are areas across China that have

probabilities greater than 50% for either increased or

decreased interannual variability, consistent with the

finding of Xu et al. (2010).

FIG. 3. Probability of surface air temperature and precipitation change (2011–40, 2070–99 minus 1961–90) ex-

ceeding given thresholds over mainland China under the A1B scenario: (a) temperature, 2011–2040; (b) temperature,

2070–99; (c) precipitation, DJF; and (d) precipitation, JJA. Units are 8C for temperature change and % of present-

day value for precipitation change.
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For precipitation, there are high probabilities (greater

than 60%) across most of China for an enhanced inter-

annual variability of rainfall in both summer and winter

(Fig. 9). During winter, most of the high probabilities

for future intensification of interannual variability by

20% are located in the northern parts, whereas in sum-

mer the southern parts show high probabilities for en-

hanced interannual variability. In particular, over the

Yangtze–Huai River basin (288–358N, 1058–1208E), there

is a 60% probability of increased ratios of interannual

standard deviation of precipitation by 20% in summer,

which is much higher than that of the mean precipitation

(Fig. 7). It should be noted that previous studies also

found that the interannual variability is intensified much

more remarkably in comparison with the mean precipi-

tation under global warming conditions (e.g., Lu and Fu

2010), implying that there will be a higher probability of

potential floods and droughts in the future over this region.

5. Comparison among a few variants of the
methodology

a. Comparison with the equal weighting

The particularity of our methodology resides in the

calculation of weights attributed to each model. It is

FIG. 4. Spatial pattern of probability for temperature change thresholds of (left) .18C , (middle) .1.58C , and (right) .2.08C over China

during (top) winter (DJF) and (bottom) summer (JJA) for the period 2011–40. Shaded areas indicate probabilities .0.5.

FIG. 5. As in Fig. 4, but for precipitation change thresholds of .0%, .5% and .10%.
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based on a simple and straightforward idea: the relative

rank of models in reproducing present-day climate

should be used in a proportional way to calculate their

weights. How does the weighting affect the projection?

We compare now the projected changes of temperature

and precipitation over China, calculated by the rank-

based weighted average of the 28 AOGCMs [W_mean,

basing on Eq. (7)], as well as the simple multimodel

average (S_mean, calculated with no weighting, or equal

weights). Furthermore, projected changes only from

the five best models in Table 2 (Top5_mean) are also

shown. The analysis is concentrated for the period of

2070–99.

1) TEMPERATURE

Figure 10 depicts the projected change of surface air

temperature over China in both winter and summer

for the period of 2070–99 under the A1B scenario, as

obtained with the W_mean, S_mean, and Top5_mean

approaches. It is evident that for temperature the mag-

nitudes and main spatial patterns of the changes show

a quite good consistency among the three approaches.

In winter the area-averaged warming over China for

W_mean, S_mean, and Top5_mean is 4.278, 4.288, and

4.498C, respectively. Consistent with Xu et al. (2010),

the northern parts show greater warming than the

FIG. 6. As in Fig. 4, but for the period 2070–99. Temperature change thresholds are now .3.08C , .4.08C, and .5.08C.

FIG. 7. As in Fig. 5, but for the period 2070–99.
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southern parts. A large portion of northern China shows

warming greater than 48C, with maximum increases over

the northwestern regions (.58C). In summer the spatial

patterns of temperature change are similar to winter, but

the magnitudes are slightly smaller than the latter, with

the China-averaged warming for W_mean, S_mean, and

Top5_mean reaching 3.718, 3.708, and 4.008C, respectively.

2) PRECIPITATION

The changes of DJF and JJA mean precipitation ac-

cording to W_mean, S_mean, and Top5_mean are given

in Fig. 11. Generally speaking, the spatial patterns of

this change calculated with the three methods are simi-

lar for both seasons. However, there are substantial dif-

ferences in magnitude, with the largest for Top5_mean,

followed by W_mean and S_mean. For instance, the

domain-averaged changes in DJF mean precipitation for

W_mean, S_mean, and Top5_mean are 24.4%, 21.1%,

and 30.3%, respectively. There is a dipolar structure of

the precipitation change signal, with an increase over

the northern parts of the domain and a decrease in the

southern parts. Maximum increases are found in

FIG. 8. Spatial patterns over China of cumulative probability for given change thresholds of temperature interannual variability during

(top) winter (,20.28, ,20.18, and .08) and (bottom) summer (.08, .0.18, and .0.28) for the period 2070–99. Shaded areas indicate

probabilities .0.5.

FIG. 9. As in Fig. 8, but for given change thresholds (.0%, .10%, and .20%) of precipitation.
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northwest China, with the projected changes for

W_mean, S_mean, and Top5_mean reaching 150%,

130%, and 70%, respectively. This change pattern is

consistent with that of Xu et al. (2010) and may be as-

sociated with the intensification of midlatitude cyclones

(Christensen et al. 2007) and a poleward shift of the

midlatitude storm track in global warming (Yin 2005;

Meehl et al. 2007). In summer the projected change of

precipitation is positive throughout the entire domain,

with an exception in the region around 358N, 1058E,

where weak positive values or even negative values

appear. In the western part of northwest China, pre-

cipitation is also projected to decrease.

It should be pointed out that when each model is

treated equally, probabilistic climate change informa-

tion from ensembles of AOGCM simulations can also

be produced. For example, Raisanen and Palmer (2001)

proposed a procedure for estimating probabilities of cli-

mate change exceeding given thresholds from ensem-

bles of AOGCM experiments. In their method, this

probability is measured by the fraction of the total num-

ber of models that simulate a change exceeding the

FIG. 10. Temperature changes (2070–99 minus 1961–90, 8C) over China in (top) winter (DJF) and (bottom) summer (JJA) under the

A1B scenario calculated by (left) W_mean, (middle) nS_mean, and (right) Top5_mean of the top five models [INGV ECHAM4, UKMO

HadCM3, CSIRO Mk3.5, NCAR CCSM3, and MIROC3.2(hires)].

FIG. 11. As in Fig. 10, but for fractional changes of precipitation (%).
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threshold. Table 3 shows the probability of tempera-

ture and precipitation changes being greater than se-

lected thresholds as calculated using our rank-based

method and the method of Raisanen and Palmer (2001).

In general, the probability trends calculated with the

two methods are similar. However, substantial differ-

ences are found in some cases, both for temperature and

precipitation and for the two periods. For instance, the

probability of the increases of DJF mean precipitation

by 5% for the period of 2011–40 is 0.61 by the rank-

based method, but it reaches 0.79 by the method of

Raisanen and Palmer (2001).

An interesting aspect of the aforementioned result

is that the weighted model averages are similar to the

unweighted ones. Does this mean the weighting is use-

less? We calculated the RMSD of temperature and pre-

cipitation change projected by the weighted mean and the

unweighted one at each grid, based on Eqs. (8) and (9),

respectively. Table 4 summarizes the China-averaged

RMSD of the two methods. Whereas the projected

changes of the weighted and unweighted means are sim-

ilar, the RMSD of the former is smaller than that

of the latter, suggesting that there is a decrease in the

model spread after weighting. The uncertainties in the

projection are reduced to some extent by our method of

ranking the models with their performance in present-

day climate. This conclusion is consistent with earlier

studies (e.g., Schmittner et al. 2005).

b. Comparison with the REA methods

It is interesting to compare our rank-based weighting

method with the REA methods (Giorgi and Mearns

2002, 2003; Xu et al. 2010). Xu et al. (2010) introduced

the concept of ‘‘effective number of models, or Neff’’

(Neff 5 1/�N

i51W2
i , where Wi is the weight for each

model), which measures the spread of the weights and

thus the relative contribution of the different models in

the ensemble. The number of models decreases when

the weighting is more ‘‘aggressive.’’ We calculated the

value of Neff of the ranking approach, as well as that of

the REA1 (Xu et al. 2010) and REA-ORIG (Giorgi and

Mearns 2002; note that in REA-ORIG, the Neff is cal-

culated separately for temperature and precipitation)

methods over China, with the annual mean temperature

and precipitation of the 28 AOGCMs. The Neff value

is 9.0 and 10.5 for the ranking approach and REA1, re-

spectively; and 14.0 and 17.2 for the REA-ORIG (tem-

perature) and REA-ORIG (precipitation) respectively.

The Neff value of the ranking approach is smaller than

those of the REA methods, implying that generally the

former method is more aggressive than the latter.

Coming to the projected change, Fig. 12 depicts the

spatial pattern of probability of exceeding given change

thresholds (38, 48, and 58C) of annual mean temperature

for the period 2070–99, which is calculated by the rank-

based weighting method (Rank_W, top panels) and the

REA method (REA_Xu, bottom panels) refined by Xu

et al. (2010). It is evident that for temperature, the main

spatial patterns of the changes show a quite good con-

sistency among the two approaches, but significant dif-

ferences are found at local scales. For instance, the

probability for a warming level above 13.08C over south-

ern China is lower than 50% as obtained by the rank

weighting method; however, the REA result indicates

high probabilities for future increases of 13.08C over this

region. For thresholds above 48C, there are also some

differences over northwestern China among the two ap-

proaches.

For precipitation, the spatial patterns of this change

calculated with the two methods are generally similar

(Fig. 13). There are substantial differences at subregions,

for example, in the region around 358N, 1058E, results of

TABLE 3. Probability of changes in temperature (DT) and precipitation (DP) exceeding given thresholds for the rank-based method and

the method of Raisanen and Palmer (2001) (in parentheses), for the middle (2020s, 2011–40) and end (2080s, 2070–99) of the twenty-first

century.

DJF JJA

2020s DT $18C $1.58C $2.08C $2.58C $18C $1.58C $2.08C

0.98 (0.93) 0.73 (0.64) 0.06 (0.07) 0.00 (0.00) 0.86 (0.71) 0.24 (0.21) 0.00 (0.00)

DP $0% $5% $10% $15% $20% $0% $5% $10%

0.70 (0.93) 0.61 (0.79) 0.38 (0.39) 0.07 (0.11) 0.02 (0.04) 0.81 (0.75) 0.25 (0.21) 0.00 (0.00)

2080s DT $38C $3.58C $4.08C $4.58C $58C $2.58C $3.08C $3.58C $4.0 $4.5

0.95 (0.93) 0.93 (0.86) 0.52 (0.64) 0.23 (0.32) 0.13 (0.18) 0.99 (0.96) 0.88 (0.75) 0.48 (0.54) 0.34 (0.39) 0.22 (0.21)

DP $0% $10% $20% $30% $40% $0% $5% $10% $15% $20%

0.98 (0.96) 0.94 (0.89) 0.42 (0.57) 0.22 (0.25) 0.18 (0.18) 0.94 (0.89) 0.46 (0.61) 0.34 (0.36) 0.19 (0.11) 0.04 (0.04)

TABLE 4. China-averaged RMSD of DT and DP calculated by

the rank-based weighted averages and the unweighted ones (in pa-

rentheses) for end of the twenty-first century (2080s, 2070–99).

DT (8C) DP (mm day21)

DJF JJA DJF JJA

0.87 (0.99) 0.89 (0.95) 0.15 (0.17) 0.47 (0.51)
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the rank weighting method show high probabilities (up to

0.8) for rainfall to increase; however, in the REA case, the

probability for rainfall to increase is below 50%, indicating

a higher probability for rainfall to decrease in this area.

6. Summary and conclusions

In the present study, we provided the probabilistic

results of climate change over China for the middle and

end of the twenty-first century, respective to the control

period 1961–90, under the SRES A1B emission scenario.

We first ranked the 28 AOGCMs based on their ability

to simulate present-day climate over China in terms of

two evaluation metrics. Then the models were given with

different weights based on their performance for present-

day climate. We addressed the issue of uncertainties due

to intermodel differences to some extent by approaching

the climate projection problem in a probabilistic way.

The main finding can be summarized as follows:

1) By combining evaluation information from differ-

ent performance metrics and different variables,

the overall ranking and weighting results show that

five models that have relatively higher resolutions—

namely, INGV ECHAM4, UKMO HadCM3, CSIRO

Mk3.5, NCAR CCSM3.0, and MIROC3.2(hires)

FIG. 12. Spatial pattern of probability for annual mean temperature change thresholds of (left) .38C, (middle) .48C, and (right) .58C

over China calculated by (top) Rank_W and (bottom) REA_Xu refined by Xu et al. (2010) for the period 2070–99. Shaded areas indicate

probabilities .0.5.

FIG. 13. As in Fig. 12, but for annual mean precipitation change thresholds of (left) .0%, (middle) .10%, and (right) .20%.
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clearly perform better than others over China. Their

corresponding weights are 0.289, 0.096, 0.058, 0.048,

and 0.044, respectively.

2) Surface air temperature is projected to increase

significantly for both the middle and end of the

twenty-first century under A1B scenario, with larger

magnitude over the north in winter. For instance, in

winter for the period 2070–99 there is a near 100%

probability across most of China for temperature

to increase above 38C. For thresholds above 48C,

northeast China, northwest China, and the Tibetan

Plateau exhibit high probabilities, reaching 60% or

higher. During summer, most of the high probabili-

ties (greater than 50%) for a future warming above

138C are located in areas north of 308N.

3) There are significant increases in rainfall in the

twenty-first century under the A1B scenario, espe-

cially for the period 2070–99. For example, there are

high probabilities (greater than 50%) for future in-

creases of winter precipitation by 20% over north-

east China, north China, and northwest China. During

summer, high probabilities of precipitation increasing

by 10% mainly appear in southeast China and in the

eastern part of northwest China.

4) In general, the interannual variability of temperature

will increase over most of China in JJA, especially

in the northwestern and the central parts; whereas in

winter, there are areas across China that have prob-

abilities of greater than 50% for either increased or

decreased interannual variability. For precipitation,

during winter, most of the high probabilities for

future intensification of interannual variability by

20% are located in the northern parts, whereas in

summer the southern parts show high probabilities for

enhanced interannual variability. In particular, over

the Yangtze–Huai River basin (288–358N, 1058–1208E),

there is a 60% probability of increased interannual

standard deviation of precipitation by 20% in sum-

mer, which is much higher than that of the mean

precipitation.

5) There are small differences between the weighted

and unweighted projections, but a decrease in the

model spread is found in the former. Compared with

the REA methods, the rank-based weighting method

is more aggressive.

Probabilistic projection of climate changes at both

global and regional scales is still in the early stage of

development, and there is a lack of consensus on how

models should be best evaluated and weighted; in other

words, the best way of performing the weighting is hard

to determine, and there is no method that has yet won

widespread acceptance (Raisanen et al. 2010; Weigel

et al. 2010). In the present study, we only focus on two

evaluation metrics based on the monthly-mean surface

air temperature and precipitation. The method of pro-

ducing weights is relatively simple and based on the rank

attributed to each model. Moreover, there is always an

element of subjectivity to some extent. It is clear that

more research will be needed to produce probabilistic

results of climate change based on new statistical methods

(e.g., in a Bayesian framework and machine learning)

and more comprehensive evaluation metrics, such as

processes evaluation (more relevant for issues on climate

change) and climate extremes (e.g., Chen et al. 2011; Jiang

et al. 2011), rather than focusing only on temperature and

precipitation (Knutti et al. 2010; Knutti 2010).
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