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Abstract

We propose an generalization of the classical Or-
thogonal Matching Pursuit (OMP) algorithm for
finding sparse zeros of Hilbert operator. First we
introduce a new condition called the restricted
diagonal deviation property which allow us to
analysis of the consistency of the estimated sup-
port and vector. Secondly when using a per-
turbed version of the operator, we show that a
partial recovery of the support is possible and re-
main possible even if some of the steps of the
algorithm are inexact. Finally we discuss about
the links between recent works on other version
of OMP.

1. Introduction

Consistency of the selection process of features is an im-
portant problem when dealing with data. In the linear set-
ting, Zhang (2009) proposes a full analysis of the orthogo-
nal matching pursuit and shows when the selected features
are guaranteed. In this paper, we propose to cast the fea-
tures selection problem in higher dimensional spaces and
with non-linear Hilbert operator. We model the selection
problem as an optimization problem where one seeks for
a sparse zero of an operator. Such point of view general-
izes many recent works on greedy methods (Zhang, 2011;
Bahmani et al., 2013) and open new directions.

The orthogonal matching pursuit (OMP) (Mallat & Zhang,
1993) is now a very famous method with many exten-
sions (Temlyakov, 2000; 2012; Livshitz & Temlyakov,
2014) to cite a few. In the linear setting, (Zhang, 2009)
followed by (Swirszcz et al., 2009) shows the consis-
tency of the algorithm using the exact recovery condition
(ERC) (Tropp, 2004) (or an extension). Furthermore ERC
is almost a necessary condition (Tropp, 2004; Gribonval &
Vandergheynst, 2006) to guarantee that OMP select good
elements.

Technical report. This work is partially supported by the French
GIP ANR under contract ANR GRETA 12-BS02-004-01 GREed;i-
ness: Theory and Algorithms.

On the signal processing side, OMP and its extensions
has been analysed in infinite dimensional spaces (Mallat
& Zhang, 1993; Gribonval & Vandergheynst, 2006; Fou-
cart, 2013) and also in the case of generalization of the
Compressed Sensing to infinite sensing (Hansen & Ad-
cock, 2011). Still, all these works formulate the problem
as a linear system of equations with a sparsity constraint.

Recently some well known greedy algorithms have been
generalized to function minimization: OMP (Zhang, 2011),
CoSaMP (Bahmani et al., 2013; Dupé & Anthoine, 2013),
Iterative Hard Thresholding (Beck & Eldar, 2013; Yuan
et al., 2014; Jain et al., 2014)...Such generalizations
open way to other loss functions than the classical least
square. This include recent works around logistic regres-
sion (Lozano et al., 2011; Bahmani et al., 2013) or multiple
kernel learning (Sindhwani & Lozano, 2011).

Such generalization can been used for M-estimators (Jain
et al., 2014) and so open well-known algorithms to ro-
bust estimation. However these are recent works and many
questions remains open, such as the construction of func-
tion that will fulfill the condition for either convergence and
consistency. Beck & Hallak (2014) even suggest the possi-
bility of adding other constraints in addition of the sparsity
one. The scope of this paper is to prove that the Orthogonal
Matching Pursuit is still a good algorithm in general setting
and can consistently select features.

Main results The paper’s principal contributions include
a new sufficient criterion for consistency called the re-
stricted diagonal deviation property (RDDP) and an anal-
ysis of the consistency of the OMP with non-linear Hilbert
operator in both noisy and non-noisy case. Contrarily to
Zhang (2009) or Swirszcz et al. (2009), we do not restrict
ourself to finite subset of R™ (with n > 0), we even do
not require the support (i.e. the set of indice of the non-null
coordinate) to be finite. Two extensions are also proposed
where the requirement of some parts of the algorithm are
relaxed and we give the corresponding consistency analy-
sis. Finally we propose a realistic version the OMP.

Motivations OMP is a well known greedy method for
least square regression, but little is known when we use
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it for finding sparse zeros of Hilbert operators. Such oper-
ators include the gradient of convex functions and the clas-
sical linear system of equations. The work of Zhang (2011)
only considers convex functions and seeks to characterize
the distance between the current estimate and the optimal
minimizer through the involved function. Furthermore, as
computing the gradient of a function may be expensive, we
provide with the noisy operator case consistency results.
This leads to new methods of feature selection using non-
linear operator or M-estimator (DasGupta, 2008; Jain et al.,
2014).

Outline of the paper In Section 2 we formulate the op-
timization problem and propose a generalization of OMP
for solving it. The consistency of our version of OMP is
analysed in Section 3 in both non-noisy and noisy opera-
tor cases. Then in Section 4 we propose two extensions :
a weak version (like in (Temlyakov, 2000)) and an inexact
step version. Finally in Section 5 we provide a discussion
about the different elements of the analysis and the exten-
sions.

Notations Let  be a separable Hilbert of possibly infi-
nite dimension with a scalar product (.,.) and its associ-
ated norm ||.||. Let {¢;},.; be a orthonormal basis on H
with Z an countable set of indices and I the identity op-
erator on H. For z € H, the support of x is denoted by
supp(z) = {1 € T | (x,p;) # 0}. Let O C T a set of
indices and x € H, we denote by x|o the restriction of x
to the support represented by O. Let S C T a support, we
denote by Ps : = — argmin, ey supp(z)cs 12 — 7| the
orthogonal projection to the support S.

We also need to introduce the /¢; sub-norm,
llzll, = card{supp(z)} (i.e. the cardinality of the
support), the inf-norm, ||z||, = sup;c7 |(z, ;)| and the
operator norm [| Al = sup,cq |z =1 [|A(2)]-

2. Non-linear orthogonal matching pursuit

Given an operator T : ‘H — H, consider the problem of
finding a sparse zero of T,

i L T(z)=0. P
min ||zl s.t. T(z) =0 ®)

Many problems can be cast as instance of (P). For ex-
ample, if T is a affine bounded operator, it leads to the
classical optimization problem that occurs in Compressed
Sensing (Candes et al., 2006) or a feature selection (Zhang,
2009),

min ||z[|, s.t. A'(Az —y) =0,

zER™

where y € R? and A € R?*" is a matrix. In a more gen-
eral setting, (P) can model non-linear eigenproblems as pre-
sented by Hein & Biihler (2010), e.g. for computing sparse

PCA we have,
tA
min ||z, s.t. Az — <x;c> r=0,
€R ]

with A € R™*" a symmetric matrix.

Solving (P) is an NP-hard problem and the potential non-
linearity of T make it even harder. In order to find a good
approximated solution, we provide a version of the OMP
presented by Algo 1. The steps are simple, (i) we select
the best coordinate (through a basis of H) in magnitude
given the current estimate, (ii) if the magnitude is below
some tolerance we stop, (iii) we update the current support
and (iv) we compute the next estimate by finding a zero for
T on the current support. The sub-optimization problem in
line 9 of the algorithm can be difficult to solve, even impos-
sible. However for some classes of operators, for example
if T is a firmly non-expansive operator (i.e. the gradient
of a convex function), standard point-fixed algorithms are
available (Cegielski, 2013).

Algorithm 1 Non-linear orthogonal matching pursuit

1: Input: T an operator, kp,x the maximal sparsity, € the
tolerance.

2: Initialization: 2° <+ 0, SO « 0.

3: for k = 0 to kyax do

VE L argmax; 7\ gi ’<T(xk),g0i> ,
5: if(|<T(]}k),g0jA+1>| < 6) then

6: break.

7:  endif

8 SFHL - Sky{jF+1},

. kb1 supp(mk+l) C Sk+17
9: 2T e Hsit { T(25*1) | gsr = O.
10: end for
11: Output: the estimate 2* with its support S*.

Indeed Algo 1 includes many other algorithms based on
OMP. For example, if T is the gradient of some convex
function, we retrieve the algorithm proposed by (Zhang,
2011) and if T(z) = A'(Az — y) withy € H and A a
linear bounded operator, we directly retrieve the classical
orthogonal matching pursuit (Mallat & Zhang, 1993).

However, T may be unavailable, either its computation is
too costly or it is simply unaccessible (e.g. if T is only ac-
cessible though a black-box), but a perturbed (or approxi-
mated) version U is usable and is related to T through an
error term,

U:z— T(z) + e(x), (1)
with e : H — 7 a perturbation operator which verifies
Ve € H,|le(x)]l < p. Then solving (P) is irrelevant

because it may have no sparse solution, we instead propose
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to solve a relaxed problem,

U(x) . =0
i s.t. | supp() ’
f,félﬁ ||J?||o {||U($)|OO <e. Q

where € is the deviation. Such formulation generalized the
noise model presented in (Zhang, 2009; Swirszcz et al.,
2009) in the classical linear setting. Then in the next sec-
tion, we answer two questions, (i) when solving (P) is pos-
sible and when and (ii) how solving (Q) gives information
on the optimal solution of (P)?

Existence of a solution While it is clear that a solution
of (P) is also a solution of (Q), the existence of a solution
for both problems for a given operator T is an open ques-
tion. Depending on the properties of the operator, we may
be able to state when a solution exist (but not necessarily
with a way to find it). In the next section, we will show that
the proposed property implies the existence of solutions.

Well-definiteness of Algo 1 Using the algorithm is pos-
sible only if the sub-optimization step on line 9 is solvable.
This asks for the existence of a solution and a way to find it.
These two points are highly dependent on the properties of
the operator (see (Cegielski, 2013) for examples). We will
discuss in Section 5 about some examples where we know
both existence of a solution and a numerical scheme for its
computation.

3. Consistency results

Algo 1 is a forward greedy algorithm, but can we guaran-
tee that the selected elements belong to the true support?
The following analysis use the same kind of arguments as
in (Zhang, 2009; Swirszcz et al., 2009). However since we
work with non-linear operators, we need a new condition
for building our analysis. For this purpose we propose the
restricted diagonal deviation property (RDDP).

3.1. Restricted diagonal deviation property

First, let us introduce D the set of diagonal operators
bounded away by 1:

Di° = {D : H — M, D diagonal, and

2
Ve et |Dal > 1)al). 2

Then we can define the central property for our analysis,

Definition 1 (Restricted Diagonal Deviation Property). An
operator T is said to have the Restricted Diagonal Devia-
tion Property (RDDP) on the support S if there exists o > 0
such thatVx,y € H,

(supp(x) Usupp(y)) € S = ID,, € D7,

3)
IT(@) — T(y) - Duy(w— ). <allz—yl.. .

Notice that in finite dimensional spaces, if T is an affine
bounded operator, then RDDP leads to the well-known re-
stricted isometry property or RIP (using equivalence be-
tween norms). If T is the gradient of some function, then
this criterion meets the requirement proposed by Zhang
(2011) for its analysis of OMP (see Section 5 for a dis-
cussion about links with other works).

Assuming that T fulfills the RDDP on the support O with
constant o, we are able to build two lemmas that highlight
the behavior of T over O.

This first lemma shows the relation between a restriction
of T and restrictions of x — y using elements inside and
outside a given support.

Lemma 2. Let T : H — H be an operator and O the
support of an optimal solution of (P). Assume that T ful-
fills the restricted diagonal deviation property on O with
constant o > 0. Then we have Vx,y € H such that

supp(x) Usupp(y) € O,

I(T(z) = T(¥Y)Irlls =

(1-a)llz—yirl, —a H<~’C*y)\I\RHm '

VR C O,

Proof. We have as D, is a diagonal operator,

|T@ - T
= [(T@ = T() = Doy (@ =) + Duy@ =)y | _ -
= | D@ =) — (T@) = Tw) ~ Duy — )|

> [Das((@ ~ 9)iw)|_ = @) = D) = Dyl — )l -

> @ =y)e| - alle =yl . sinee Doy (). > l2ll..

> (1-a)|@-nr|_—af@-nm_ -

O

Notice that the last term of the inequalities gives informa-
tion about the missed elements by the current support.

This next lemma gives a bound on the energy of T re-
stricted to elements outside the supports of = and y.

Lemma 3. Let T : H — H be an operator and O the sup-
port of an optimal solution of (P). Assume that T fulfills the
restricted diagonal deviation property on O with constant
a > 0. ThenVzx,y € H such that supp(z)Usupp(y) C O,
we have,

VF C T s.t. Fn(supp(z)Usupp(y)) = 0,

(T(x) =TW)F| <elz-yls
H .
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Proof. Since F N (supp(x) U supp(y)) = @ and

Doy (2 — y) 7 = 0, we have

|[T@) = T@) ]| = [(T@ = Tw) ~ Dayla =),
<alz -yl -
O

Using these lemmas we are able to prove the existence and
unicity of a solution of (Q) when the operator fulfills the
RDDP.

Proposition 4. Assume that T fulfills the RDDP on sup-
port O C T with constant o < 1, then (Q) has a unique
solution.

Proof. Existence From the RDDP, we have, Vz,y € H
such that (supp(z) Usupp(y)) C O,
allz =yl > IT(@) = T(y) = Day(z -yl »
> [[(Day = T)(z) — (Day — T)(?J)HOO . @

Equation (4) suggests that there exists an operator R =
D o T (with D a diagonal operator) such that,

II-R)(z) = T-R)y)llo <allz -yl
thus if o < 1 the operator I — R is a Banach contraction.
Then VS C O, Ps(I—R) is also a Banach contraction (P s
is a orthogonal projection and a linear diagonal operator),
thus we are able to build a iterative scheme that converges
to a point fixed of Ps(I — R). Such a scheme implies the

existence of @ € H such that supp(z) € S and T(z)s =
0.

Unicity The unicity is directly given by Lemma 2. O

With the two lemmas and the proposition we are now able
to analyse the OMP in both non-noisy and noisy settings.

3.2. Non-noisy case

We first focus on the non-noisy case. From definition 1 we
are able to build the following theorem.

Theorem 5. Let T : H — H be an operator and O the
support of an optimal solution of (P) with T. Assume that
T fulfills the restricted diagonal deviation property on O
with constant o > 0. If « < 0.5 then Algo 1 solves (P).

Proof. Let denote by Z the solution of (P) and O =
supp(%) its support. From Lemma 2 and Lemma 3, we
have, Vx € H such that supp(z) C O,

HT(fE)\z\on 7 HT(x)n\o - T(CE)|I\OHOO

IT@o]_ [IT@i0 - T@0|

aflr -2,

)

T (-a)llr -l

So if o < 0.5, we always select a good coordinate (or
atoms). O]

This result suggests that the RDDP is a sufficient condi-
tion and is not as tight as the ERC (Tropp, 2004). Working
with non-linear operators forbids many mathematical tools
that are available with the linear algebra, however there ex-
ists generalization that may help to build a tighter condi-
tion (Appell et al., 2004).

3.3. Noisy case

The non-noisy analysis gives us a condition on the
RDDP. Now let U : z — T(z) + e(z) be a per-
turbed version of an operator T with e such that Vx &
M, |le(z)]|, < p. Let & be the optimal sparse solution
of T with supp(z) = O (i.e. a solution of (P)). Let & be
the solution of (Q) with U with the support O.

We can now state the theorem that links Z and Z and their
supports,

Theorem 6. Let T : H — H be an operator and O the
support of &, the optimal solution of (P). Let U : z —
T(x) + e(x) withVax € H, |le(x)||,, < p a perturbed ver-
sion of T. Let ¥ € H be an optimal solution of (Q) with U
and support O. Assume that T fulfills the restricted diag-
onal property on support O with constant o < 0.5. If the
stopping criterion of Algo. 1 is such that

then when the algorithm stops at iteration k, the following
holds,

(C1) SkC o,

€ [t~ < 52,

-«

(€3 & -2l < 155 -

11—

Before proving this theorem, we need to state some useful
lemmas (these are reformulation of previously stated lem-
mas in (Zhang, 2009; Swirszcz et al., 2009)).

The following lemma gives a lower bound on the magni-
tude of the best element inside the optimal support when
we consider an vector living on this support,

Lemma 7. Let S C O, i.e. S is a set of good indices. Let
T € H a vector such that suppT C S and U(j)‘s = 0.
Then if T fulfills the RDDP on O with constant o, we have
Vz € H such that supp(z) C S,

v = a-alz-al.—».
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Proof. Using Lemma 2 for T, we have,

[oe)s], 2 [Uens ~v@s

2 ||TE)s - T@)s|| _ ~ el ~ (@)l
> (1-a) |l =2l ~ 2.

O

The following lemma relates the solution of (P) with T
with the solution (Q) using U and the same support,

Lemma 8. Let & the solution of (P) with T and & the so-
lution of (Q) on the same support with U. Let O the sup-
port of the optimal solution of (P) with T. If T fulfills the
RDDP on O with constant « and the perturbation e is such
thatVx € H, |le(z)] ., < p, we have,

oo

p
®=1—a

& =]

Proof. This result comes from Lemma 2 and the definition
of the perturbation, i.e.

I# =l < T | T@)o - T@o]l |
< 2 (U@ - T@oll. + @]l
= 1fa '

O

This last lemma provides an upper bound on the magnitude
of the best element outside the optimal support O when
considering a vector living on O,

Lemma 9. Let U be a perturbed version of an operator T,
Vo € H, U(z) = T(x) + e(x) with |le(x)||,, < p. Let O
the support of the optimal solution & of (P) with T. Let &
the solution of (Q) on O with U. If T fulfill the RDDP on
O with constant o, we have,

. p
|v@ino| <55

Proof. As i is such that T'(#) = 0 and supp(Z) = O. We
have, using Lemma 3 and Lemma 8,
HU@)II\OHOO = HU(£)|I\O - T(i“)\z\oHOO )

< HT@)\I\O - T(f)a\on + [le(@)]
<alz—-2[,+p,

_P _P
SOzlfoc—i_pgl a

oo

O

We are now ready to prove the theorem.

Proof of Theorem 6. This proof works by induction. Now,
we assume that all claims hold at step k. So at the be-

ginning, we have S* C O. First by combining Lemma 2
and Lemma 3, we have Va,y € H such that supp(z) U

supp(y) € O,

HU(%)‘I\O - U(y)\I\OHOO Sa HT(x)\I\O N T(y)lz\oHoo +20,

lz —ylloo + 20,
25 |T(@)j0 — Tyo| + 2,

U(x)\o - U(y)wHw + 12—7[:1 )

N
R

IN N

11—«

Then we yield,

HU(mk)mo - U(i“)moHoo + HU(@\I\OHOO )

U(gg’“)‘oHoo+HU(;Z‘)‘I\OHOO+ 20

IN

Ta e

From the condition on € and Lemma 9, it implies,

2p

- °

HU(57)|I\OHOO < < ee - (©6)

‘We now have to deal with 4 cases.

Case 1: ||z* — F||__ > S22 This yields,

11—«
1-2a

HU(m’“)‘on >e>

U@) ol _+ %= -

Using (5) and (6), we have |‘U|I\@(xk)”oo

HU(J’,‘k’)l(QH which implies, since a < 0.5, the selection

<

of a good element from the basis and the algorithm contin-
ues.

Case 2: H.Q?k — 5:”00 < %. We have then three choices.
Case 2.1: j**1 € O and the algorithm continues.

Case 2.2: j**! € O and the algorithm stops.

Case 2.3: j**! ¢ O then using (5) we have,

U6 o] < v mol| -
< 1% U)o+ [0@ im0 + 2
< 12 [UE@)mo|_ + U@ ol + 2 -
This implies,
HU(xk)|I\OHOO <= U(f)moHoo + 1255 <e,
thus the algorithm stops. This leads to Theorem 6. O
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This theorem gives lower bounds on the distance between
the current estimate and the solutions of both problems (P)
and (Q), it also guarantees the consistency of the estimated
support. As the support of the optimal solution may be of
infinite dimension (but countable), we cannot as in (Zhang,
2009) provide a bound on the number of missing elements.
Notice also that both theorems ask for a < 0.5, so Propo-
sition 4 implies that Algo 1 is well-defined and the sub-
optimization problem of line 9 has always a solution.

4. Extensions

We propose here two extensions of Algo. 1 that describe
the behavior of OMP with errors on some steps.

4.1. Weak Non-Linear OMP

If H is an infinite dimensional space, then computing the
inf-norm is troublesome. Instead of searching for the best
element, Temlyakov (2000) proposes to make a good guess
by introducing some tolerance (3, this implies to replace the
selection step by,

the I\S’C s.t.
)<T(xk)790jk+1>’ > 51_68111\1?% <T(mk)7¢i> 7 @)

with 0 < 8 < 1. Such a change has of course repercus-
sions on the two theorems. For the non-noisy case, we now
have

Theorem 10. Let T : H — H be an operator and O
the support of the optimal solution of (P). If T fulfills the
restricted diagonal deviation property on O with constant
a>0 Ifa< % then Algo 1, with (7) as selection step,
solves (P).

Proof. Since we want Vx € H, supp(z) C O,

HT(m)|I\OHOO < ﬁHT(m)wHOo we just adapt the proof

for Theorem 5.

For the noisy case, we need to introduce a new variable to
strengthen the inequalities, then we have,

Theorem 11. Let T : ‘H — H be an operator and O
the support of Z, the optimal solution of (P). Let U : x —
T(x)+ewith||e| ., < paperturbed version of T. Let & €
H be an optimal solution of (Q) with support O. Assume
that T fulfills the restricted dzagonal deviation property on
support O with constant o < == (with a such that 0 <
a < 1). If the stopping cnterlon of Algo. 1, with (7) as
selection step, is such that

3p
€> (1—a)a ?

then when the algorithm stops the following holds,

(Cy s*co,

€ [l -3l < 2.

—

(€3 & -2l < 155 -

—Q

Proof. This proof works by induction. Now we assume
that all claims hold at step k. So at the beginning, we have
Skco.

From the condition on ¢, we imply with Lemma 9,

~ (1—a)a 2
HU(I)\I\OHDO << Tae-1ih- ®)

‘We now have to deal with 4 cases.

Case 1: ||z* — F||__ > S22 This yields,

k —a
[veyell,, > > dss

U@) o+ 2% -

Since 12~ < a/3 and using (5) with (6), we have

Uz IOH +|ua \I\@H

= <wk>|o\\

k a
HU(%“ )|I\OHOO <ia
<1 HU

<A HU ol..

ol

< (2—a)a5HU(w >|on ,

oll..
(oo}

which implies that we select a good element from the basis
and the algorithm continues.

< BHU(J:k

Case 2: Hx’“ - QEHOO < %. We have then three choices.
Case 2.1: j**! € O and the algorithm continues.
Case 2.2: j**1 € O and the algorithm stops.

Case 2.3: j*! ¢ O then using (5) we have,

[vae], < |vEhmol /8-
< s Vo] +][U@ ol /8 + w2
< e [V mo| + [V@imol | + w2
< |uet ‘I\OHOO+HU(9~C)‘I\OHOO+HE—QW

It implies,

HU(mk)‘I\OHoo <afe<e,

thus the algorithm stops. This leads to Theorem 11. O
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The introduction of the variable a makes the comparison
between Theorem 6 and Theorem 11 non trivial. In fact,
this variable is here to guarantee o < 0.5. In both case
choosing « close to the limit leads to an high value for e.
So these two formulations lead to the same results and re-
quirements.

4.2. Inexact solution of the sub-optimization problem

With non-linear operators, finding the frue estimate at line 9
of Algo. 1 can be difficult. Most point fixed algorithms
converge at infinity (Cegielski, 2013) so getting the exact
solution is almost impossible. Some methods allow a good
control on the convergence (e.g. with Banach contraction),
this often allows to guess the accuracy of the estimate. As
we require operators to fulfill the restricted diagonal de-
viation property, we have some information about conver-
gence when dealing with sparse vectors of H.

The error can be modelled as a deviation toward O of the
estimate on the support, i.e we replace the line 9 of Algo. 1
by,

supp(xk"“l) C Sk-i—l ,

k+1
x € H st { |}T(xk+1)‘$k+1uw <7, (9)

with 7 > 0 the maximal deviation of the estimation. We as-
sume here that the support constraint is always guaranteed
(i.e. in some case a projection on the final estimate may be
necessary).

For the non-noisy case, we have the following theorem,

Theorem 12. Let T : H — H be an operator and O
the support of the optimal solution of (P). If T fulfills the
restricted diagonal deviation property with o« < 0.5, then
Algo. 1 with (9) recovers the support at first.

Proof. If we guarantee the estimate it belongs to the sup-
port S¥*1 ie. supp(zF*!) € S¥*1. Thenif a < 0.5 we
still select element of the support at each steps. Of course
if the size of the support is finite at one point we will select
out-of-support elements. O

This results clearly suggests that the RDDP is only a suf-
ficient condition for the convergence and consistency of
OMP.

For the noisy case, we have,

Theorem 13. Let T : H — H be an operator and O the
support of , the optimal solution of (P). Let U : © —
T(x) + e(x) withVax € H, |le(x)||,, < p a perturbed ver-
sion of T. Let € H be an optimal solution of (Q) with
support O. Assume that T fulfills the restricted diagonal
deviation property on support O with constant o < 0.5. If
the stopping criterion of Algo. I with (9) is such that

3p
€> 1940

then when the algorithm stops the following holds,

(Cy sk co,

€2 ||lo" -3, = 552

= 1—a ’

(C3) || — &, < T2
Proof. We only need to adapt Lemma 8 to reflect the error,
the rest of the proof of Theorem 6 still hold. O

5. Discussion

In this section, we first propose to discuss about the RDDP
and its links with others criteria. Then we will propose a re-
alistic version of OMP using both extensions of Section 4.
Finally, we show the links with the previous work of Zhang
(2011) on function minimization.

5.1. The restricted diagonal deviation property

Definition 1 introduces the key of all our analysis. This def-
inition clearly leads to a sufficient condition for the consis-
tency of Algo. 1, finding an expression closer to the exact
recovery criterion (ERC) asks for deeper analysis around
the non-linearity of the operator. Still one may require
the assumption of the definition to work only on vectors
x € ‘H such that, for the involved operator T, we have
T(2)| supp(x) = 0. This reduces the number of vectors that
should fulfill the condition of both Theorem 5 and Theo-
rem 6 (and their weak versions still hold). However, when
dealing with inexact steps like in Section 4.2 we need to
make a new analysis.

For the linear setting (i.e. when T is a linear or affine oper-
ator), the famous restricted isometry property (RIP) can be
used to build the consistency analysis. However RIP uses
the ¢5-norm while our RDDP used the inf-norm, but if the
optimal support O is finite we can apply equivalence rela-
tion between norms. Assume that T fulfills RDDP on finite
support O with constant «, we have Vz,y € H such that
supp(z) U supp(y) € O,

[T () = T(y) = Day(z -y
<|T(x) = T(y) — Day(z -
<allz -yl

< ay/card{O} ||z — vy .
Thus this implies,
(1 - a\/card{O}) |z — yll
< [IT(z) - T(y)

< (ID2 Il + ay/card{0}) o — y]|

which directly leads to RIP when T is affine. As we work
with infinite dimensional spaces, it is possible to use the

oo



Greed is Fine

works of Hansen & Adcock (2011) who generalize Com-
pressed Sensing to infinite dimensional spaces.

The RDDP works with a basis of the Hilbert space and
the selection process is toward the element of the basis.
Extensions are possible, for example, Gribonval & Van-
dergheynst (2006) use redundant dictionary (that could
have an infinite number of atoms). Then guarantees on the
selection of atoms are delicate to set and one needs strong
hypothesis on the dictionary to fulfill the consistency re-
quirements. However such dictionaries are better models
for feature selection task as they are often correlated.

5.2. Dealing with perturbations

From the analysis of both Section 3 and Section 4, we are
able to build Algo. 2, a realistic version of the non-linear
orthogonal matching pursuit. Such algorithm is more reli-
able when working in very high dimensional spaces. How-
ever, while finding values for 7 and k,,x can be easily done,
¢ is difficult to set as it depends on S the tolerance on the
selection step and p the perturbation of the operator. Still
in a given statistical context, one may build some proce-
dures that, with an high probability, leads to accurate val-
ues (e.g. using concentration inequalities (Massart & Pi-
card, 2007)).

Algorithm 2 Realistic NL-OMP
1: Input: T an operator, ky,.x the maximal sparsity, € the
tolerance, 7 the maximal deviation, 3 the tolerance for
the maximum research step.
2: Initialization: 2° <+ 0, SO « 0.

3: for k = 0 to k. do
4 ez \SFs.t
[(T(2"), p5041)| = Bsupiensn [(T(2*), 01)]
5. if (|<T(l’k), gﬁjk+1>| < ¢) then
6: break.
7:  endif
8: Sk+1 . Sk {jk+1} ,

o k+1) C Sk-‘rl
9:  aFtleHsit { supp( = ’
10: end f T ) | grn || < 7.
. enda ior

11: Output: the estimate 2* with its support S¥.

Algo. 2 requires to solve a sub-optimization (line 9), how-
ever depending on the properties of T such problem may
be very hard to solve. For example, if T is continuous and
restricted to a compact convex set X C R" (with n > 0),
then T has fixed point (see Brouwer theorem (Chow et al.,
1978; Cegielski, 2013)), but finding such point can be very
difficult. However for some family of operators, many
methods are available (see (Bauschke & Combettes, 2011;
Cegielski, 2013)) and some provide also some controls on
the convergence.

We can finally state a theorem combining all the previous
in the noisy case,

Theorem 14. Let T : H — H be an operator and O the
support of , the optimal solution of (P). Let U : x —
T(z) + e(z) withVa € H, |le(z)||, < p a perturbed ver-
sion of T. Let € H be an optimal solution of (Q) with
support O. Assume that T fulfills the restricted diagonal
deviation property on support O with constant o < 1i§ 3
(0 < a < 1). If the stopping criterion of Algo. 2 is such
that

3p
€> (1-a)a ?

then when the algorithm stops the following holds,

€y stco,
(€2 |la* -] < 55¢,

~ ~ T4p
(C3) ||z -z < 2.
Such theorem implies that feature selection in noisy context
is still possible but with some prices.

5.3. Links with (Zhang, 2011)

In this paper, the author proposes a generalization of the
orthogonal matching pursuit to the minimization of convex
functions with a sparsity constraint, i.e.

i L < 1
gg;}f(w) st |zl < K\ (10)

with £ the maximum number of coefficients and f
H — R a convex differentiable function. In order to
build the analysis of the algorithm, the author use the re-
stricted strong smoothness property (RSSP) and the re-
stricted strong convexity property (RSCP) (see also (Blu-
mensath, 2013; Bahmani et al., 2013; Jain et al., 2014) for
other use of both properties) as an alternative to RIP for
non-linear setting.

However these properties use the Bregman divergence
which requires convex functions (at least on sparse sets in
this case). Such functions enter in our framework as a spe-
cial case by taking T as the gradient operator (thanks to
the diagonal operator in RDDP). Furthermore, if H is a real
Hilbert space, take f : #H — R a smooth convex function
then, we have Vz,y € H (Bauschke et al., 2012),

IVf(@) = VI + -y - V(@) + Vi)
< ||Z‘ - y”2 )

so if f is such that for some support O C Z, we have
Y,y € H, supp(z) Usupp(y) C O,

V(@) =Vl =mle—yl, (11
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with m > 0, then,

|z —y =V f@)+ Vil <VIi-m?|z -yl .
12)

(11) implies the restricted strong smoothness property
as we can lower bound f using a strictly convex and
smooth function. So with (12) we have both RSSP and
RSCP. Equation (12) also implies with Proposition 4 the
existence of solutions for the sub-optimization problems
and for (Q), furthermore as I — V f is a Banach contraction
making a iterative scheme for solving the sub-optimization
problems is easy (Cegielski, 2013).

6. Conclusion

In this paper we present a full analysis of the orthogonal
matching pursuit algorithm as a solver for finding sparse
zero of Hilbert operator. The proposed algorithms include
some of the previous generalizations (e.g. function mini-
mization and the weak OMP) with new results on the con-
sistency of the estimated support. Such guarantees should
be very helpful when dealing with M-estimators (as in (Jain
et al., 2014)). Future works includes generalization to Ba-
nach space like in (Temlyakov, 2001), working with struc-
tured sparsity (Huang et al., 2011) or links with nonlinear
eigenproblems (Hein & Biihler, 2010).
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