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Abstract

Predicting on circular domains is a central issue that can be addressed by Gaus-
sian process (GP) regression. However, usual GP models do not take into account
the geometry of the disk in their covariance structure (or kernel), which may be a
drawback at least for industrial processes involving a rotation or a diffusion from the
center of the disk. We introduce so-called polar GPs defined on the space of polar
coordinates. Their kernels are obtained as a combination of a kernel for the radius
and a kernel for the angle, based on either chordal or geodesic distances on the circle.
Their efficiency is illustrated on two industrial applications. We further consider the
problem of designing experiments on the disk. Two new Latin hypercube designs are
obtained, by defining a valid maximin criterion for polar coordinates.
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1 Introduction

This research aims at analyzing costly computer or physical experiments on a disk. The

question was motivated by two industrial problems. The first one comes from semicon-

ductor industry where integrated circuits are produced on disks called wafers. Several

technological processes such as lithography, heating or polishing, exploit the geometry of

the disk through rotations or diffusions from the center. A common issue is to reconstruct a

quantity of interest over the whole disk, from few measurements at specific locations. The

second problem is related to air pollution modelling for environmental impact assessment.

Greenhouse gas concentrations are simulated by a computer code. Among the input vari-

ables, the couple (speed, direction) of wind characteristics can be represented on a disk,

the radius of which corresponds to the maximal speed. Here also, the goal is to predict the

gas concentration from some simulated experiments.

Approximation problems on the disk have been considered since the works of Zernike [25]

in optics. Zernike polynomials are orthogonal with respect to the usual scalar product on

the unit disk, a useful property for linear models. For such models, it is shown that optimal

design of experiments are included in concentric circles [5]. More recently, a stochastic

model consisting of a Gaussian process (GP), also called Kriging, has been proposed for

microelectronics applications [22]. Among the existing interpolation and approximation

methods, Kriging models are famous for their ability to provide both accurate prediction

and uncertainty quantification, as pointed out in [12]. However their performance relies on

the choice of a covariance kernel, often simply called kernel hereafter. Traditional kernels

do not take into account the geometry of the disk. This may be a drawback, at least for

technological or physical processes involving a diffusion from the center of the disk, or a

rotation.

The main aim of the paper is to propose GP models that incorporate the geometry

of the disk in their covariance kernel. For that purpose, we consider the parametrization

of the unit disk in polar coordinates: D = {(ρ cos θ, ρ sin θ), ρ ∈ [0, 1], θ ∈ S} where S

represents the unit circle R/2πZ. The idea is to define a GP on the parametrization space

C = (0, 1] × S defined by (ρ, θ). This implies constructing a kernel on a product of the

Euclidean space (0, 1] and of the circle S, which can be done by algebraically combining
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kernels on these two spaces with sum, product or ANOVA operations for instance. The

corresponding GPs will be called here polar GPs, and the usual ones based on Cartesian

coordinates, Cartesian GPs.

The construction of kernels on S can be achieved in several ways, and is connected to

the literature of directional data (see e.g. [16, 8]) and periodic functions (see e.g. [23]).

One possibility is to use so-called wrapped GP, obtained by transforming a multinormal

density to a periodic one by applying an operator written as an infinite sum [15]. Here we

focus on simpler approaches that provide explicit kernel expressions, either by considering

restriction to S of a 2-dimensional GP [23], involving the chordal distance on S, or by

using the recent results of Gneiting [11], involving the geodesic distance on S. The geodesic

distance on a general manifold was recently used in the context of free-form monitoring,

with so-called geodesic GPs [4]. However, the goal and the approach are quite different

here, where the form is fixed (the unit disk) and the geodesic distance known analytically.

Furthermore, here the geodesic is relative to the manifold S which is only an algebraic

portion of the mapped space C.
Second, we address the issue of defining an initial design of experiments (DoE) for

circular domains. Considering the space C of polar coordinates is natural, but standard

designs cannot be used directly due to its non-Euclidean structure. By considering a

valid distance, we obtain maximin Latin hypercube designs (LHD, [18]) on C. That class of
designs is recommended when the process has a physical interpretation in polar coordinates.

In order to deal with more general situations, we also propose a modified version, which

still has the LHD structure with respect to ρ and θ, and is well filling the disk D.

The paper is organized as follows. Section §2 presents the background and defines no-

tations. Section §3 introduces so-called polar GPs. Section §4 shows the strength of the

approach on two real applications, in microelectronics and environments. Section §5 is de-

voted to designs of experiments. Two new LHDs are introduced and compared to common

designs, with respect to quality criteria. Their robustness in prediction is also investigated

on a set of toy functions and models. Section §6 discusses the range of applicability of

polar GPs and gives perspectives for future research.

3



2 Background and notations

Let D denote the unit disk represented either in Cartesian or polar coordinates:

D = {(x, y) ∈ R
2, x2 + y2 ≤ 1} = {(ρ cos θ, ρ sin θ) , ρ ∈ [0, 1], θ ∈ S}

where S = R/2πZ is the unit circle. In various situations, one has to predict a variable of

interest which is measured at a limited number of locations in D. For that purpose, we will

consider the framework of Gaussian Process Regression [23] also called Kriging in reference

to its origins in geostatistics (see e.g. [17]). The measurement locations, also called design

points, will be denoted by X =
(

x(1), . . . ,x(n)
)

. In Gaussian Process Regression, the

observed values at X are modelled by:

Yi = µ(x(i)) + Z(x(i)) + ηi (1)

where µ is a trend function, Z ∼ GP (0, k) is a centered Gaussian process (GP) with covari-

ance function – or kernel – k, and η1, . . . , ηn are Gaussian random variables representing

noise. We now briefly detail the three parts of the model.

The trend function µ is deterministic and often modeled as a linear combination of basis

functions. Here, Zernike polynomials [25] are good candidates since they constitute an

orthogonal basis for the usual scalar product on D. Their shape including regular patterns

are suited to describe symmetries or rotations. They were recently used for predicting on

a disk [22]. The first Zernike polynomials, up to order 2, are shown in Fig. 1. The reader

1 y x xy x2 + y2 x2 − y2

Figure 1: The six first Zernike polynomials.

is referred to [25] for more details.

The stochastic part of model 1 comprises a GP and a noise. The GP Z takes into

account the spatial dependence, which thus entirely depends on its kernel k. The choice

of k is crucial for applications, and may be done in order to include knowledge such as

smoothness, periodicity, symmetries, etc. There are many ways to construct a kernel, and
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a comprehensive presentation is found in [23], Section 4. A key idea is that multidimensional

kernels can be obtained by algebraic operations, such as sum or products, of 1-dimensional

kernels.

Finally the noise part represented by the ηi’s may have different purposes: Modelling

a measurement noise or potential discrepancies between the dataset and the kernel, and

addressing numerical issues such as ill-conditioning ([1, 13]). The ηi’s are computed as

independent N(0, τ 2), where τ 2 is an unknown homogeneous variance term often called

“nugget” or “jitter”. When conditioning on the observed values, the model is an interpo-

lator if τ = 0. It is a smoother when τ > 0, which gives more flexibility.

When all parameters are known, prediction with Equation (1) is given in a closed form

by a Gaussian conditional distribution knowing the observations Yi, i = 1, . . . , n. Its two

moments are known as Kriging mean and Kriging variance. Analytical expressions are also

available when the parameters are estimated, known as universal Kriging formulas that we

use here (see e.g. [23]). An important fact is that the Kriging mean at a new site x is

obtained as an affine combination of the observed values Yi that are correlated to Z(x).

Though all the locations may be involved in the prediction, the neighboring locations,

corresponding to high correlations, typically play a key role.

3 Polar Gaussian processes

One way to define a GP on the unit disk D is to use the restriction of a GP on the square

[0, 1]2, defined in Cartesian coordinates. In this paper, we will call them Cartesian GPs.

In our work, we propose to further exploit the geometry of the disk by using the polar

coordinates. The associated GPs will be called polar GPs.

When using the polar coordinates, the unit disk D is connected to the cylinder C =

(0, 1]× S, where S denotes the unit circle:

Ψ : (ρ, θ) ∈ C 7→ (ρ cos θ, ρ sin θ) ∈ D \ {0} (2)

It is a one-to-one correspondence from C to the unit disk without its center. The fact that

the center is lost in the mapping may be a problem in theory. In practice a design point

located at the center of the disk can be replaced by a set of design points placed on a closed
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concentric circle. A GP on D can then be obtained by using Ψ−1, resulting in kernels on

D ×D of the form:

k(x,x′) = kC
(

Ψ−1(x),Ψ−1(x′)
)

(3)

where kC is a kernel on C × C. Such transformations are referred to as “warping” in the

context of GP modeling (see e.g. [23], Section 4.2.3.).

Kernels on the cylinder can be defined by exploiting its product structure. This can be

done by combining a kernel kr on (0, 1]× (0, 1] and a kernel ka on S× S. A first way is by

using the tensor product:

kprod (u,u
′) = kr

(

ρ, ρ′
)

ka (θ, θ
′) (4)

where u = (ρ, θ) and u′ = (ρ′, θ′) are in C. This formulation implicitly assumes that the

GP Z is the product of two independent components: a radial process Rρ and an angular

process Aθ (Zu = RρAθ). It corresponds to a simple form of interaction. For processes that

do not have interactions between these components (Zu = Rρ + Aθ), an additive kernel

should be more appropriate:

kadd (u,u
′) = kr

(

ρ, ρ′
)

+ ka (θ, θ
′) (5)

A trade-off between these two extreme approaches is the ANOVA kernel defined as:

kANOVA (u,u′) =
(

1 + kr
(

ρ, ρ′
)

)(

1 + ka (θ, θ
′)
)

(6)

The expanded form of Equation (6) shows that a process Zu with ANOVA kernel can be

viewed as a sum of four independent GPs: a constant process Z0, a radial process Rρ with

kernel kr, an angular process Aθ with kernel ka, and a process Z inter on C with kernel krka.

From the ANOVA point of view, these processes are similar to constant term, main effects,

and second-order interaction [7], but without respecting the unicity constraints such as

centering. For more details on how to make new kernels from old, we refer the reader to

[23].

Let us now define the kernels kr on (0, 1] × (0, 1] and ka on S × S. We recall that

valid kernels must be positive definite. The domain (0, 1] is a segment of a 1-dimensional
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Figure 2: Chordal (d1) and geodesic (d2) distances on S.

Euclidean space. As a consequence, traditional kernels are suitable for kr. In particular,

Matérn kernels are attractive for their ability to control the smoothness of the process and

to ensure numerical stability. In dimension 1, the Matérn 5
2
kernel is given by:

km (x, x′) =

(

1 +

√
5 | x− x′ |

ℓ
+

5(x− x′)2

3ℓ2

)

exp

(

−
√
5 | x− x′ |

ℓ

)

(7)

A simple way of defining kernels on S×S is mentioned in [11]. They are based on the chordal

distance d1 (θ, θ
′) = 2 sin

(

θ−θ′

2

)

and the geodesic distance d2 (θ, θ
′) = acos

(

cos (θ − θ′)
)

illustrated in Figure 2.

To define a kernel on S× S, one could be tempted to compose usual kernels with d1 or

d2. Unfortunately, positive definiteness is not guaranteed for the resulting functions when

d2 is used. As a counter-example, if the Gaussian kernel is chosen for ka, then ka ◦ d2

is not positive definite ([11], Th. 8). Alternatively, two sufficient conditions of positive

definiteness over S × S are provided by Gneiting [11]. Define Fd the class of continuous

functions ϕ : [0,∞) → R, with ϕ(0) = 1 and such that the function (x,x′) ∈ R
d × R

d 7→
ϕ (‖x− x′‖) is positive definite. Then:

(i). If ϕ ∈ F2, then ϕ ◦ d1 is a kernel on S× S.

(ii). If ϕ ∈ F1 is such that ϕ(t) = 0 for t ≥ π, then ϕ ◦ d2 is a kernel on S× S.

Kernels satisfying (i) were initially proposed by Yadrenko in 1983 and are often used to

describe periodic functions (see e.g. [23]). They correspond to restrictions of 2-dimensional

isotropic GPs on R
2 to S. The second result is due to Lévy in 1961. Kernels satisfying (ii)
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can be constructed from compactly supported functions on R such as the C2-Wendland

function defined for 0 ≤ t ≤ π:

Wc (t) =

(

1 + τ
t

c

)(

1− t

c

)τ

+

, c ∈ (0, π]; τ ≥ 4 (8)

For the geodesic distance, we use c = π, which is the largest possible value due to condition

(ii) above. With this choice, the covariance between two angles θ, θ′ is zero when d2(θ, θ
′) =

π, and strictly positive for d2(θ, θ
′) < π. The same interpretation is possible for the chordal

distance with c = 2, though it is not necessary to use a compactly supported function in

that case. From now on, we will use the Wendland function in both cases, resulting in the

two following kernels on S× S:

kchord(θ, θ
′) = W2(d1(θ, θ

′)), (9)

kgeo(θ, θ
′) = Wπ(d2(θ, θ

′)), (10)

and the corresponding GPs will be denoted polar GP (chordal) and polar GP (geodesic).

GP simulations on the unit disk

In order to better understand the specificities of polar GPs, it is useful to draw simulated

surfaces. For the sake of simplicity, we propose to focus on the ANOVA combinations. We

consider a Cartesian GP and the two polar GPs (chordal, geodesic) defined in Equations

(9), (10). Their expressions are written below, including variance factors s2, α2
1, α

2
2:

(a) k (x,x′) = s2
(

1 + α2
1 km

(

x, x′
)

)(

1 + α2
2 km (y, y′)

)

(b) k (x,x′) = s2
(

1 + α2
1 km

(

ρ, ρ′
)

)(

1 + α2
2 kchord (θ, θ

′)
)

(c) k (x,x′) = s2
(

1 + α2
1 km

(

ρ, ρ′
)

)(

1 + α2
2 kgeo (θ, θ

′)
)

Simulation results are displayed in Figure 3. We can see that with polar GPs, the

simulated surface exhibits radial and angular patterns around the center of the disk. Such

kernels may thus be suitable to describe physical phenomena involving such effects. Figure 4

shows via Kriging standard deviation how model uncertainty varies over D, given a design

of 17 points. Two striking differences are visible, especially between the Cartesian GP
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Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 3: Simulations of Cartesian and polar GPs with kernels (a)-(c).

Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 4: Kriging standard deviations for Cartesian and polar GPs (kernels (a)-(c))

and the polar GP (geodesic), about uncertainty at the center of the disk, and uncertainty

regions at the vicinity of design points. On one hand, the neighborhoods produced by the

Cartesian GP look like elliptical regions at any location of the circular domain. On the

other hand, those produced by the polar GP (geodesic) look like pie chart sectors, oriented

towards the center of the disk, which plays a particular role. This is also true for the polar

GP (chordal), though less pronounced.
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4 Applications

4.1 Quality control in microelectronics

In microelectronics, integrated circuits are produced on circular slices of semiconductor

materials called wafers. For quality monitoring, physical and electrical variables are col-

lected on a set of locations of these wafers. In this example, the characteristic of interest is

thickness, a key parameter affecting performance of integrated circuits. In our industrial

background, only 17 predefined points are measured for economic reasons. The statistical

challenge consists in predicting non-measured locations in order to assess the spatial risk

of default from this dataset. For the purpose of this study, thickness is further measured

at 64 new locations to serve as a test grid. For the sake of confidentiality, the technological

process is not detailed and the thickness values are rescaled. It produces here data with a

pronounced radial pattern. However, we will not assume that the model is purely radial,

which is a too strong assumption in practice, due to the numerous successive operations

on a wafer, and the possible slacks in processing. The aim of this section is to compare the

Design points Design and test points Test points

Figure 5: Rescaled thickness values. The 81 measurement locations are shown in the

middle, including 17 design points (triangles, left) and 64 test points (bullets, right).

Cartesian and polar GPs (chordal, geodesic), obtained with 3 types of algebraic combina-

tion (product, sum, ANOVA). The Cartesian GPs considered here are obtained by tensor

product, tensor sum or ANOVA product of the 1-dimensional Matérn kernel of Equation

(7). For the polar GPs, we use the same combinations for a kernel kr on (0, 1] and a kernel

ka on S×S, accordingly to Equations (4), (5), (6). For kr, we use again the Matérn kernel,
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whereas for ka we choose kchord or kgeo (see Equations (9), (10)). The range parameters τ

and θ, as well as the variance factors s2, α2
1, α

2
2 are estimated by maximum likelihood. For

this, R package kergp [6] is used with a quasi-Newton optimization (L-BFGS-B). The model

accuracy is computed on the 64 test points, with the root mean squared error (RMSE) cri-

terion. The results are summarized in Table 1 when µ is constant in Equation 1. They

GP type Cartesian Polar (chordal) Polar (geodesic)

Kernel type kprod kadd kANOVA kprod kadd kANOVA kprod kadd kANOVA

RMSE 0.75 * 0.77 0.76 0.69 0.60 * 0.62 0.68 0.61 * 0.65

Table 1: RMSE computed on 64 test points for several GPs with a constant trend. For each

GP type, the combination resulting in the smallest RMSE is marked by an asterisk. When

a Zernike trend is added, the best RMSE is equal to 0.71 for all GP types, corresponding

to the score of the trend only.

show that the smallest prediction errors are obtained with the polar GPs, corresponding to

gains around 20% compared to the Cartesian GP. Adding Zernike polynomials as a trend

slightly improves the result for the Cartesian GP, but the untrended polar GPs still out-

perform with a gain of 15%. Actually the trend captures the main part of the phenomenon

and the GP part has then a minor effect: results are the same as for a pure linear model

based on Zernike polynomials of order 2.

In order to further analyze the results, we select for each GP type the kernels corre-

sponding to the best combination, indicated by an asterisk in Table 1. The prediction

surfaces obtained with these 3 kernels are shown on Figure 6. All the GPs succeed in

recovering the radial pattern of the dataset, visible on Figure 5, middle. However, it is less

faithfully identified by the Cartesian GP. The differences on the predicted values can be

explained by thinking at the space in which the kernel is defined. For polar GPs, prediction

at one location will particularly involve the locations corresponding to a high correlation

according to ρ or θ. Typically, the resulting neighborhoods in D may look like pie chart

sectors (high radial correlation) or ring portions (high angular correlation). Here, a closer

look at estimated parameters reveals that there is a high angular correlation. Therefore,

prediction at the bottom of the disk involves the other points that are close to the bound-
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ary. On the other hand, for the Cartesian GP, the predicted thickness has a low value,

since the measurement points around, in the (x, y) space, have a low value. Finally notice

that the predicted value at the extreme boundary of the disk should be considered with

care, since no test points are defined on this region due to technical constraints.

Zernike regression Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 6: Prediction surface for the best untrended GP models of Table 1. When adding

a Zernike trend, the prediction surface is approximately the same as for a pure Zernike

regression represented on the left. Black bullets correspond to test points, triangles to

design points.

4.2 Air pollution modelling with a directional input

The problem tackled here is a an environmental question. A greenhouse gas emitted by a

known source, usually an industrial plant, is measured at a given location for air quality

monitoring. In the absence of sensors, gas concentration must be predicted. For simple

landscapes, analytical expressions are available based on transport and diffusion equations.

However, for complex landscapes, gas concentration is simulated by numerical codes [2].

The input variables include the emitted flow, landscape characteristics and meteorological

variables. Here we focus on wind speed and wind direction. In this short study, 242

simulations were carried out, 30 of which serve as design points and the other ones are used

for tests, as illustrated in Figure 7. The wind speed, initially given on the range [0; 12]

(m.s−1), is rescaled to [0, 1]. With this transformation, the domain of the variables (speed,

direction) is the unit disk. The aim of this study is simply to compare the prediction

accuracy of Cartesian and polar GPs, without using a priori information. In particular, we

do not specify the constraints of positivity or nullity of the gas concentration on a known
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Design points. Design and test points. Test points.

Figure 7: Rescaled gas concentrations. The 242 simulation locations are shown in the

middle, including 30 design points (triangles, left) and 212 test points (bullets, right).

subregion. We use the same kernels as in the first application, corresponding to 3 algebraic

combinations (product, sum, ANOVA). Here, the best model is obtained for the tensor-

product combination for all kinds of GPs. This claims in favor of an interaction speed-

direction for the wind on gas concentration. Notice that adding a Zernike polynomial trend

does not improve the results here, since the angular shape is restricted to a region of the disk,

which is hard to capture with Zernike polynomials. The results are displayed in Figure 8.

In terms of prediction accuracy (measured by the RMSE criterion) the polar GPs are

clearly outperforming, corresponding to gains around 40% compared to the standard tensor-

product Matérn kernel. Furthermore, for the polar GPs the influence of wind direction on

gas concentration has an angular shape, which is intuitive, and corresponds to the true

shape visible in Figure 7 (middle). On the other hand, this shape is rectangular for the

Cartesian GP.

5 Design of experiments on the disk

5.1 Optimal designs for Zernike polynomials and spirals

Among the DoEs that are specific to the disk, there are optimal designs for Zernike poly-

nomials. The D-optimal designs were investigated in [5] and were found to be contained in

few concentric circles, as illustrated in Figure 9.

13



Cartesian GP

RMSE = 0.61

Polar GP (chordal)

RMSE = 0.38

Polar GP (geodesic)

RMSE = 0.37

Figure 8: Estimated gas concentrations according to wind speed (ρ) and direction (θ), for

untrended Cartesian and polar GPs. Adding a Zernike polynomial trend does not improve

the results. Triangles correspond to design points.

N = 1 N = 2 N = 3 N = 4

Figure 9: 20-point D-optimal DoEs for Zernike polynomials of degree N .

Spirals, hereafter denoted spiral DoEs, are used in various industrial settings: micro-

electronics, optics, microbiology, etc. They allow to control the density of the design (see

e.g. [21]). Some of them are represented in Figure 10, corresponding to the equation

ρ = aθp + b.

D-optimal DoEs for regression models are not robust to departures from the assumed shapes

[14], and do not fill the space, a property usually required in the framework of GP mod-

elling for capturing potential non-linearities. Poor space-filling properties are also visible

for spirals in the space (ρ, θ) of polar coordinates, as shown in Figure 11, though they may

correctly fill the disk.
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Fermat: s = 1
2 Archimede: s = 1 Galilee: s = 2

Figure 10: 20-point DoEs defined from spirals of the form ρ = aθs+ b with θ ∈ [0, 6π]. The

parameter s controls the speed with which the curve moves away from the center, and a, b

are chosen such that the spirals start at the center and end at the boundary.

Figure 11: Cartesian (left) and polar (right) representations of the Archimedean spiral

DoE. This DoE is filling well the disk but not the cylinder of polar coordinates.

5.2 Maximin Latin hypercubes for polar coordinates

For metamodelling a potentially complex phenomenon, two main properties are expected

from a good DoE: Space-filling, in order to capture non-linearities, and uniformity of the

marginal distributions, to avoid redundancies in projection. Among the indicators used

to assess space-fillingness, the maximin criterion [19] is a common choice. In addition,

Latin hypercube designs (LHD, [18]) provide good projection properties onto marginal

dimensions. Thus, maximin LHDs are often proposed as initial DoEs. However such

designs cannot be directly used in polar coordinates, due to the non-Euclidean structure

of C. The aim of this section is to adapt their construction.

Let us first recall the construction of a maximin LHD over the hypercubic domain
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[0, 1]2. Given a design X =
(

x(1), . . . ,x(n)
)

of elements of [0, 1]2, we denote ΦMn (X) so-

called maximin criterion, giving the minimal distance among design points:

ΦMn (X) = min
i 6=j

(

‖ x(i) − x(j) ‖
)

(11)

A maximin DoE is a design that maximizes ΦMn. However, ΦMn is hard to optimize and a

regularized version Φp, more suitable for optimization, was proposed in [20]:

Φp (X) =

(

∑

1≤i<j≤n

‖ x(i) − x(j) ‖−p

)
1

p

(12)

For p → ∞, maximizing ΦMn is equivalent to minimizing Φp. Following [20, 3], we will use

p = 50. In software, the algorithms used for optimization are often based on simulated an-

nealing or evolutionary strategies (see e.g. [9]). When the input variables are not provided

in the same unit of measure, a maximin LHD is first designed over [0, 1]2, corresponding

to dimensionless variables.

Now let us consider the cylinder C of polar coordinates. The construction of a Latin

hypercube on C is identical for an hypercubic domain, by considering discretizations of

[0, 1] and S. For the sake of clarity, we propose to call polar Latin cylinder design (polar

LCD) or simply LCD, a LHD defined in polar coordinates, referring to the geometry of

the polar space. As for the maximin criterion, two modifications are needed for polar

coordinates. First, a valid distance on C must fill the condition ‖ u−u′ ‖= 0 for u = (ρ, θ)

and u′ = (ρ, θ′), with θ = θ′ (mod 2π). In particular the Euclidean distance is no further

valid since it does not see that the points (ρ, 0) and (ρ, 2π) are the same in C. Second, the
range of the polar angle θ is π, which is the maximum value of the geodesic distance over

S. Therefore, any distance over the dimensionless cylinder [0, 1]×
(

1
π
S
)

applies to the polar

space (ρ, θ). A natural choice is the geodesic distance given by:

‖ x− x′ ‖Polar=

√

(ρ− ρ′)2 +

(

d2 (θ, θ′)

π

)2

(13)

Notice that the factor 1
π
rescales d2 to [0, 1] and weighs equivalently the radius and the

angle.

From now on we will denote ΦPolar (resp. ΦCartesian) the Φp criteria computed with

‖ . ‖Polar (resp. ‖ . ‖2). Minimizing ΦPolar leads to a maximin LCD. A 20-point maximin
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LCD is displayed in Figure 12, where the cylinder is represented as a 2-dimensional map.

As expected it is well filling the space of polar coordinates. Though it looks similar to a

Figure 12: Cartesian (left) and polar (right) representations of a 20-point maximin Latin

cylinder design (LCD). The design is well-filling the cylinder C of polar coordinates, dis-

played as a 2-dimensional map: In particular, the design points near the left and right

boundaries are also spread out from each other.

maximin LHD obtained in an hypercubic domain with the usual Euclidean distance, the

difference is visible on the left and right boundaries which correspond to the same points in

C: the design points near the left and right boundaries are also spread out from each other.

LCDs are recommended when the studied phenomenon has a physical interpretation with

respect to polar coordinates. First, if the phenomenon is purely radial (resp. angular), the

Latin structure ensures that all the design radius (resp. angles) values are different, so that

no information is lost by projection. Furthermore, the maximin property helps in capturing

non-linearities with respect to ρ and θ. However, when no a priori information about the

phenomenon is known, the maximin LCD may be inappropriate, due to non-uniform filling

that they produce on D, as visible in Figure 12. Though it is not possible to optimize

simultaneously maximin criteria based on distances in Cartesian and polar coordinates, a

multi-criteria approach could be investigated. In this paper, as a first study, we focus on

a simple transformation of a maximin LCD which helps improving space-fillingness on D
while preserving the Latin structure on C. This is done by applying the transform ρ 7→ √

ρ,

based on the well-known fact that if R, T are independent random variables with uniform

distribution on [0, 1] and [0, 2π] respectively, then (
√
R, T ) is uniform on D. This transfor-
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Figure 13: Cartesian (left) and polar (right) representations of the LCD obtained by trans-

forming the maximin LCD of Figure 12 with ρ 7→ √
ρ.

mation was applied to the design of Figure 12, resulting in the design displayed in Figure 13.

5.3 Comparison

The aim of this section is to compare the DoEs presented above with respect to quality

criteria, and to evaluate their performance on a set of toy functions. We will denote Dopt1,

..., Dopt4 the D-optimal DoEs for Zernike regression of order N (1 ≤ N ≤ 4) shown in

Figure 9, and Spiral-F, Spiral-A, Spiral-G the spiral DoEs (Fermat, Archimede, Galilee)

of Figure 10. We also denote maxLCD the maximin LCD of Figure 12 and maxLCD*

its transformed version with ρ 7→ √
ρ (Figure 13). All these 20-point DoEs are compared

according to the following scheme:

(i). An assessment is made according to space-filling and D-optimality criteria. For space-

filling, two indicators are used: the minimum Euclidean distance, and the minimum

geodesic distance (Equation 13) between design points. The D-optimality criterion

for the N -order Zernike regression (see [5]) is given in log-scale.

(ii). A comparison in term of prediction accuracy. The RMSE over a test grid of 1.000

points is computed for the 6 analytical functions shown in Figure 14, illustrating

various non-linear patterns. For each DoE, the best model is chosen among Zernike

polynomials up to order 4, Cartesian GPs and polar GPs with kernels obtained by
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combination (sum, product, ANOVA) of 1-dimensional kernels as in Section §4.

D-optimality min
i6=j

(

‖ x(i) − x(j) ‖
)

DN=2 DN=3 DN=4 ‖ . ‖Polar ‖ . ‖2
D-opt1 −159.9 −308.3 −448.3 0.01 0.31

D-opt2 36.6 −135.6 −353.1 0.01 0.33

D-opt3 35.4 49.1 −18.9 0.02 0.45

D-opt4 34.4 47.5 63.5 0.03 0.32

Spiral-F 29.7 37.2 44.1 0.04 0.20

Spiral-A 27.2 31.6 32.1 0.03 0.22

Spiral-G 23.3 19.3 −1.4 0.01 0.13

maxLCD 22.2 20.3 2.4 0.06 0.06

maxLCD* 27.5 32.8 33.0 0.04 0.28

Table 2: Comparison of DoEs according to D-optimality and space-filling criteria.

The results of Table 2 are consistent with the theory of D-optimality and exhibit the lack

of robustness of D-optimal designs in case of departure from their assumptions, especially

when N is underestimated. The comparison also shows that spiral DoEs have rather good

scores for all criteria. The best spirals for Zernike polynomials are the one that have the

smaller p (Spiral-F), but the intermediate one (Spiral-A) has the best space-filling scores; It

seems to be the best trade-off among spirals. As expected, the maximin LCD is interesting

for the polar GPs because it optimally fills the polar space, but has the worst space-

filling score in Cartesian coordinates. This weakness is overcome by its modified version

maxLCD*, which seems to accomplish the best trade-off for the different criteria among

all the DoEs considered.

In Table 3, we see that D-optimal designs of low order (1, 2) have in general poor scores

in term of RMSE for the functions considered here, that present non-linearities. Spirals

and maxLCD perform rather well. maxLCD met our expectations when radial and angular

patterns are dominant (functions 1, 2, 3 and 6), and the modified maxLCD* seems to adapt

well to the range of functions and models considered here, confirming its robustness among

other DoEs. Finally, notice that the function z = sin(2πρ+ θ) was poorly reconstructed by
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Prediction RMSE (as percentage of the standard deviation)

x
(

x2 − y2
) (

ρ− 1
4

)2
sin (2πρ+ θ) 1+sin(θ)

1+ρ2

1+x
1+y2 cos (3θ)

D-opt1 14.0 210.1 112.7 75.2 2.9 2.8

D-opt2 14.4 46.6 112.4 60.2 1.7 0.2

D-opt3 0.0 17.5 80.1 18.4 0.4 0.2

D-opt4 0.0 15.9 82.1 19.0 0.8 1.4

Spiral-F 0.0 0.4 41.2 6.3 0.7 4.5

Spiral-A 0.0 0.1 49.0 4.0 0.7 2.8

Spiral-G 0.0 0.0 49.1 8.6 1.3 0.8

maxLCD 0.0 0.0 42.9 4.5 1.0 0.8

maxLCD* 0.0 0.3 35.3 3.6 0.4 2.6

Table 3: Comparison of DoEs in terms of predictive performance on toy functions.

all models, whatever the DoE. Indeed, either neighborhoods in (x, y) or (ρ, θ) coordinates

are not suited to capture the spiral shape of the function, and an acceptable fit would

require more than 20 points.

6 Conclusions and discussion

We addressed the issue of analyzing costly computer or physical experiments on a disk.

Such problems are encountered in various industrial applications, where the geometry of

the disk is exploited for several technological processes involving rotations or diffusions from

the center. For prediction purpose, we introduced so-called polar GP models that take into

account the geometry of the disk both in their mean and covariance kernel. The new kernels

are defined in polar coordinates. They are obtained as a combination of a kernel for the

radius using an Euclidean distance, and a kernel for the angle, based on either chordal or

geodesic distances on the unit circle. It was shown in two industrial examples where radial

and angular patterns are visible that the approach significantly improves prediction. The

best algebraic combination was found to be either a tensor product or a tensor sum, which

claims in favor of using a kernel mimicking the more general ANOVA decomposition [10].

Furthemore, in these applications there were only few differences in the results obtained

with the polar GPs based on chordal or geodesic distances. This can be explained by
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the strong monotonic relationship between the chordal and geodesic distance. However,

in theory the geodesic distance does not distort distances on the circle, and should be

preferred. Finally, though not reported here, similar results were obtained with other

kernel choices such as Matérn 3
2
or exponential kernels for the Cartesian GP.

We also considered the problem of designing experiments for circular domains. We

introduce so-called (polar) Latin cylinder designs (LCD), which correspond to LHD in

polar coordinates, and are suited to phenomena that have a physical interpretation in polar

coordinates. By defining a valid distance in polar coordinates, we obtained a maximin LCD.

A modified LCD was proposed for more general situations, with the additional property of

filling well the disk. We assessed the performances of these two designs, compared to other

common DoEs of the literature, on a set of toy functions aiming at representing various

non-linear patterns. As expected, the maximin LCD is outperforming in case of radial

or angular patterns, but loses efficiency otherwise. The modified LCD is attractive for

its robustness, showing good performances over the whole range of functions and models

considered here.

It is important to precise when polar GPs, based on distances on the unit circle, are

relevant. One main difference between polar GPs and the usual ones, called here Cartesian

GPs, is about the neighborhoods used for prediction. Since kernels of polar GPs are

mapped to the polar space (ρ, θ), the prediction at one location will particularly involve

the locations corresponding to a high radial or angular correlation with respect to ρ or

θ. Typically, the resulting neighborhoods in the disk may look like pie chart sectors (high

radial correlation) or ring portions (high angular correlation). This explains why polar

GPs give more accurate predictions when there are radial or angular patterns, as may

happen for technological processes that involve a rotation or a diffusion from the center. In

other situations, involving for instance translations, Cartesian GPs may give better results.

These two cases might correspond to the “two clusters of profiles over a circular grid”

mentioned in [22] without any additional information about their origin. A knowledge of

the process or historical data may help to choose which kernel is appropriate. In any case,

there remains a lot of degrees of freedom about a GP model definition, concerning at least

the trend shape or the different kernels corresponding to a given distance. To address this
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problem, aggregation techniques may be a solution.

The discussion above concerning the model choice raises several questions about de-

sign of experiments. The study presented in this paper shows the possibility of adapting

existing criteria to new distances. In the situations where there is no information about

processing, choosing a distance may be difficult, and there is a need for building DoEs

that can be suitable for any distance. In such a case, a solution would be to consider a

multi-criteria approach, for instance by aggregating the maximin criteria in Cartesian and

polar coordinates. On the other hand, if a specific kernel is justified, then IMSE-optimal

designs could be computed with respect to this kernel.
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Figure 14: Color representation of test functions.
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