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Abstract

Predicting on circular domains is a central issue that can be addressed by Gaus-
sian process (GP) regression. However, usual GP models do not take into account
the geometry of the disk in their covariance structure (or kernel), which may be a
drawback at least for industrial processes involving a rotation or a diffusion from the
center of the disk. We introduce so-called polar GPs defined on the space of polar
coordinates. Their kernels are obtained as a combination of a kernel for the radius
and a kernel for the angle, based on either chordal or geodesic distances on the circle.
Their efficiency is illustrated on two industrial applications. We further consider the
problem of designing experiments on the disk. Two new Latin hypercube designs are
obtained, by defining a valid maximin criterion for polar coordinates.

Keywords: Kriging, Polar coordinates, Design of Experiments, Kernels.
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1 Introduction

This research aims at analyzing costly computer or physical experiments on a disk. The

question was motivated by two industrial problems. In semiconductor production plants

first, integrated circuits are produced on disks called wafers. Several technological pro-

cesses, such as lithography, heating or polishing, exploit the geometry of the disk, involving

rotations or diffusions from the center. A common issue is to reconstruct a quantity of inter-

est over the whole disk, from few measurements at specific locations. The second problem

is related to air pollution modelling for environmental impact assessment. Greenhouse gas

concentrations are simulated by a computer code. Among the input variables, the couple

(speed, direction) of wind characteristics can be represented on a disk, the radius of which

corresponds to the maximal speed. Here also, the goal is to predict the gas concentration

from some simulated experiments.

Approximation problems on the disk have been considered since the works of Zernike

[1934] in optics. Zernike polynomials are orthogonal with respect to the usual scalar prod-

uct on the unit disk, a useful property for linear models. For such models, Dette et al.

[2007] showed that optimal design of experiments are included in concentric circles. More

recently, a stochastic model consisting of a Gaussian process (GP), also called Kriging

model, has been proposed for microelectronics applications by Pistone and Vicario [2013].

However its covariance kernel, often simply called kernel hereafter, does not take into ac-

count the geometry of the disk, which may be a drawback, at least for technological or

physical processes involving a diffusion from the center of the disk, or a rotation. Indeed

the prediction of a GP model Z at a new location x is a linear combination of the observed

values that are correlated to Z(x). The neighboring locations, corresponding to high cor-

relations, thus play a key role. With the usual stationary GP with Gaussian kernel, the

neighbors are computed with respect to the Euclidian distance, which underestimates the

influence of points located on same concentric circles.

The main aim of the paper is to propose GP models that incorporate the geometry

of the disk in their covariance kernel. For that purpose, we consider the parametrization

of the unit disk in polar coordinates: D = {(ρ cos θ, ρ sin θ), ρ ∈ [0, 1], θ ∈ S} where S

represents the unit circle R/2πZ. The idea is to define a GP on the parametrization space
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C =]0, 1] × S defined by (ρ, θ). This implies constructing a kernel on a product of the

Euclidian space ]0, 1] and on the circle S, which can be done by algebraically combining

kernels on these two spaces with sum, product or ANOVA operations for instance. The

corresponding GPs will be called here polar GPs, and the usual ones based on Cartesian

coordinates, Cartesian GPs.

The construction of kernels on S can be achieved in several ways, and is connected to the

literature of directional data (see e.g. Mardia and Jupp [2000], Fisher [1995]) and periodic

functions (see e.g. Rasmussen and Williams [2006]). One possibility is to use so-called

wrapped GP, obtained by transforming a multinormal density to a periodic one by applying

an operator written as an infinite sum (Jona-Lasinio et al. [2012]). Here we focus on simpler

approaches that provide explicit kernel expressions, either by considering restriction to S of

a 2-dimensional GP Rasmussen and Williams [2006], involving the chordal distance on S,

or by using the recent results of Gneiting [2013], involving the geodesic distance on S. The

geodesic distance on a general manifold was recently used by del Castillo et al. [2015] in the

context of free-form monitoring, with so-called geodesic GPs. However, the goal and the

approach are quite different here, where the form is fixed (the unit disk) and the geodesic

distance known analytically. Furthermore, here the geodesic is relative to the manifold S

which is only an algebraic portion of the mapped space C.

In a second time, we address the issue of defining an initial design of experiments

(DoE) for circular domains. Considering the space C of polar coordinates is natural, but

standard designs cannot be used directly due to its non-Euclidian structure. By considering

a valid distance, we obtain maximin Latin hypercube designs (LHD, McKay et al. [1979])

on C. That class of designs is recommended when the process has a physical interpretation

in polar coordinates. In order to deal with more general situations, we also propose a

modified version, which still has the LHD structure with respect to ρ and θ, and is well

filling the disk D.

The paper is organized as follows. Section 2 presents the background and fixes notations.

Section 3 introduces so-called polar GPs. Section 4 shows the strength of the approach on

two real applications, in microelectronics and environments. Section 5 is devoted to designs

of experiments. Two new LHDs are introduced and compared to common designs, with
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respect to quality criteria. Their robustness in prediction is also investigated on a set of

toy functions and models. Section 6 discusses the range of applicability of polar GPs and

gives perspectives for future research.

2 Background and notations

Let D denote the unit disk represented either in Cartesian or polar coordinates:

D = {(x, y) ∈ R2, x2 + y2 ≤ 1} = {(ρ cos θ, ρ sin θ) , ρ ∈ [0, 1], θ ∈ S}

where S = R/2πZ is the unit circle. In various situations, one has to predict a variable of

interest which is measured at a limited number of locations in D. For that purpose, we will

consider the framework of Gaussian Process Regression (Rasmussen and Williams [2006])

also called Kriging in reference to its origins in geostatistics (see e.g. Matheron [1963]). The

measurement locations, also called design points, will be denoted by X =
(
x(1), . . . ,x(n)

)
.

In Gaussian Process Regression, the observed values at X are modelled by:

Yi = µ(x(i)) + Z(x(i)) + ηi (1)

where µ is a trend function, Z ∼ GP (0, k) is a centered Gaussian process (GP) with covari-

ance function – or kernel – k, and η1, . . . , ηn are Gaussian random variables representing

noise. We now briefly detail the three parts of the model.

The trend function µ is deterministic and often modeled as a linear combination of basis

functions:

µ (x) = f (x)>β

where β is a vector of unknown coefficients. In our situation, Zernike polynomials (Zernike

[1934]) are good candidates for basis functions since they constitute an orthogonal basis for

the usual scalar product restricted to D. Their shape including regular patterns are also

suited to describe symmetries or rotations, and have been recently used for predicting on

a disk by Pistone and Vicario [2013].

The stochastic part of model 1 comprises a GP and a noise. The GP Z takes into account

the spatial dependence, which thus entirely depends on its kernel k. The choice of k is cru-

cial for applications, and may be done in order to include knowledge such as smoothness,
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periodicity, symmetries, etc. There are many ways to construct a kernel, and a compre-

hensive presentation is found in Rasmussen and Williams [2006], Section 4. A key idea

is that multidimensional kernels can be obtained by algebraic operations, such as sum or

products, of 1-dimensional kernels.

Finally the noise part represented by the ηi’s may have two different purposes: Modelling a

measurement noise, or adding flexibility. In this paper we assume that the ηi’s are indepen-

dent N(0, τ 2), where τ 2 is an unknown homogeneous variance term often called “nugget”.

When conditioning by the observed values, the model will interpolate the observations if

τ = 0 but not if τ > 0, which gives more flexibility.

When all parameters are known, prediction with Equation (1) is given in a closed form

by a Gaussian conditional distributions knowing the observations Yi, i = 1, . . . , n. Its two

moments are known as Kriging mean and Kriging variance. Analytical expressions are also

available when the parameters are estimated, known as universal Kriging formulas (see e.g.

Rasmussen and Williams [2006] for more details), that we use here. An important fact is

that the Kriging mean at a new site x is obtained as an affine combination of the observed

values Yi that are correlated to Z(x). Though all the locations may be involved in the

prediction, the neighboring locations, corresponding to high correlations, typically play a

key role.

3 Polar Gaussian processes

One way to define a GP on the unit disk D is to use the restriction of a GP on the square

[0, 1]2, defined in Cartesian coordinates. In this paper, we will call them Cartesian GPs.

Here, we propose to further exploit the geometry of the disk by using the polar coordinates.

The associated GPs will be called polar GPs.

When using the polar coordinates, the unit disk D is connected to the cylinder C =

]0, 1] × S, where S denotes the unit circle, with the mapping, also called warping in the

context of GP modeling (see e.g. Rasmussen and Williams [2006], Section 4.2.3.):

Ψ : (ρ, θ) ∈ C 7→ (ρ cos θ, ρ sin θ) ∈ D \ {0} (2)

This mapping is a one-to-one correspondence from C to the unit disk without its center.
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The fact that the center is lost in the mapping may be a problem in theory. In practice

a design point located at the center of the disk can be replaced by a set of design points

placed on a closed concentric circle. A GP on D can then be obtained by using Ψ−1,

resulting in kernels on D ×D of the form:

k(x,x′) = kC
(
Ψ−1(x),Ψ−1(x′)

)
(3)

where kC is a kernel on C × C.

Kernels on the cylinder can be defined by exploiting its product structure. This can be

done by combining a kernel kr on ]0, 1]×]0, 1] and a kernel ka on S × S. A first way is by

using the tensor product:

kprod (u,u′) = kr

(
ρ, ρ′

)
ka (θ, θ′) (4)

where u = (ρ, θ) and u′ = (ρ′, θ′) are in C. This formulation implicitly assumes that Zu is

the product of two independent components: a radial process Rρ and an angular process

Aθ (Zu = RρAθ). It corresponds to a simple form of interaction. For processes that do not

have interactions between these components (Zu = Rρ +Aθ), an additive kernel should be

more appropriate:

kadd (u,u′) = kr

(
ρ, ρ′

)
+ ka (θ, θ′) (5)

A trade-off between these two extreme approaches is the ANOVA kernel defined as:

kANOVA (u,u′) =
(

1 + kr

(
ρ, ρ′

))(
1 + ka (θ, θ′)

)
(6)

The expanded form of Equation (6) shows that a process Zu with ANOVA kernel can be

viewed as a sum of four independent GPs: a constant process Z0, a radial process Rρ

with kernel kr, an angular process Aθ with kernel ka, and a process Z inter on C with kernel

krka. From the ANOVA point of view, these processes are similar to constant term, main

effects, and second-order interaction Durrande et al. [2013], but without respecting the

unicity constraints such as centering. Though out of the scope of this paper, a so-called

KANOVA kernel mimicking exactly the ANOVA decomposition could have been proposed

Ginsbourger et al. [2014]. For more details on how to make new kernels from old, we refer

the reader to Rasmussen and Williams [2006].
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Figure 1: Chordal (d1) and geodesic (d2) distances on S.

Let us now define the kernels kr on ]0, 1]×]0, 1] and ka on S × S. We recall that valid

kernels must be positive definite. The domain ]0, 1] is a segment of a 1-dimensional Eu-

clidean space. As a consequence, traditional kernels are suitable for kr. In particular,

Matérn kernels are attractive for their ability to control the smoothness of the process and

to ensure numerical stability. In dimension 1, the Matérn 5
2

kernel is given by:

km (x, x′) =

(
1 +

√
5 | x− x′ |

`
+

5(x− x′)2

3`2

)
exp

(
−
√

5 | x− x′ |
`

)
(7)

A simple way of defining kernels on S × S is mentioned by Gneiting [2013]. They are

based on the chordal distance d1 (θ, θ′) = 2 sin
(
θ−θ′

2

)
and the geodesic distance d2 (θ, θ′) =

acos
(

cos (θ − θ′)
)

illustrated in Figure 1.

To define a kernel on S × S, one could be tempted to apply usual kernels to d1 or d2.

Unfortunately, positive definiteness is not guaranteed for the resulting functions when d2

is used. As a counter-example, if the Gaussian kernel is chosen for ka, then ka ◦ d2 is

not positive definite (Gneiting [2013], Th. 8). Alternatively, two sufficient conditions of

positive definiteness over S × S are provided by Gneiting [2013]. Define Fd the class of

continuous functions ϕ : [0,∞) → R, with ϕ(0) = 1 and such that the function (x,x′) ∈

Rd × Rd 7→ ϕ (‖x− x′‖) is positive definite. Then:

(i). If ϕ ∈ F2, then ϕ ◦ d1 is a kernel on S× S.

(ii). If ϕ ∈ F1 is such that ϕ(t) = 0 for t ≥ π, then ϕ ◦ d2 is a kernel on S× S.
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Kernels satisfying (i) were initially proposed by Yadrenko in 1983 and are often used

to describe periodic functions (see e.g. Rasmussen and Williams [2006]). They correspond

to restrictions of 2-dimensional isotropic GPs on R2 to S. The second result is due to Lévy

in 1961. Kernels satisfying (ii) can be constructed from compactly supported functions on

R such as the C2-Wendland function defined for 0 ≤ t ≤ π:

Wc (t) =

(
1 + τ

t

c

)(
1− t

c

)τ
+

, c ∈]0, π]; τ ≥ 4 (8)

For the geodesic distance, we use c = π, which is the largest possible value due to condition

(ii) above. With this choice, the covariance between two angles θ, θ′ is zero when d2(θ, θ
′) =

π, and strictly positive for d2(θ, θ
′) < π. The same interpretation is possible for the chordal

distance with c = 2, though it is not necessary to use a compactly supported function in

that case. From now on, we will use the Wendland function in both cases, resulting in the

two following kernels on S× S:

kchord(θ, θ′) = W2(d1(θ, θ
′)), (9)

kgeo(θ, θ
′) = Wπ(d2(θ, θ

′)), (10)

and the corresponding GPs will be denoted polar GP (chordal) and polar GP (geodesic).

GP simulations on the unit disk

In order to have a first contact with polar GPs, it is useful to draw simulated surfaces. For

the sake of simplicity, we propose to focus on the ANOVA combinations. We consider a

Cartesian GP and the two polar GPs (chordal, geodesic) defined in Equations (9), (10).

Their expressions are written below, including variance factors s2, α2
1, α2

2:

(a) k (x,x′) = s2
(

1 + α2
1 km

(
x, x′

))(
1 + α2

2 km (y, y′)
)

(b) k (x,x′) = s2
(

1 + α2
1 km

(
ρ, ρ′

))(
1 + α2

2 kchord (θ, θ′)
)

(c) k (x,x′) = s2
(

1 + α2
1 km

(
ρ, ρ′

))(
1 + α2

2 kgeo (θ, θ′)
)

Simulation results are displayed in Figure 2. We can see that with polar GPs, the

simulated surface exhibits radial and angular patterns around the center of the disk. Such
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Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 2: Simulations of Cartesian and polar GPs with kernels (a)-(c).

Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 3: Kriging standard deviations for Cartesian and polar GPs (kernels (a)-(c))

kernels may thus be suitable to describe physical phenomena involving such effects. Figure 3

shows via Kriging standard deviation how model uncertainty varies over D, given a design

of 17 points. Two striking differences are visible, especially between the Cartesian GP

and the polar GP (geodesic), about uncertainty at the center of the disk, and uncertainty

regions at the vicinity of design points. On one hand, the neighborhoods produced by the

Cartesian GP look like elliptical regions at any location of the circular domain. On the

other hand, those produced by the polar GP (geodesic) look like pie chart sectors, oriented

towards the center of the disk, which plays a particular role. This is also true for the polar

GP (chordal), though less pronounced.
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4 Applications

4.1 Quality control in microelectronics

In microelectronics, integrated circuits are produced on circular slices of semiconductor ma-

terials called wafers. For quality monitoring, physical and electrical variables are collected

on a set of locations of these wafers. A statistical challenge consists in predicting non-

measured points in order to assess the spatial risk of default. In our industrial background,

thickness is measured at only 17 points of a wafer for economic reasons. Exceptionally, for

the purpose of this study, thickness is further measured at 64 new locations to serve as

a test grid. For the sake of confidentiality, the thickness values have been rescaled. For

the same reason the technological process is not detailed. It produces here data with a

pronounced radial pattern. However, we will not assume that the model is purely radial,

which is a too strong assumption in practice, due to the numerous successive operations

on a wafer, and the possible slacks in processing.

The aim of this section is to compare the Cartesian and polar GPs (chordal, geodesic),

obtained with 3 types of algebraic combination (product, sum, ANOVA). The Cartesian

GPs considered here are obtained by tensor product, tensor sum or ANOVA product of

the 1-dimensional Matérn kernel of Equation (7). For the polar GPs, we use the same

combinations for a kernel kr on ]0, 1] and a kernel ka on S × S, accordingly to Equations

(4), (5), (6). For kr, we use again the Matérn kernel, whereas for ka we choose kchord or

kgeo (see Equations (9), (10)). The parameters are estimated by maximum likelihood with

R package GPlab [Deville et al., 2015]. The model accuracy is computed on the 64 test

points, with the root mean squared error (RMSE) criterion. The results are summarized

in Table 1 when a constant trend is used for µ in Equation 1. They show that the smallest

prediction errors are obtained with the polar GPs, corresponding to gains around 20%

compared to the Cartesian GP. Adding Zernike polynomials as a trend slightly improves

the result for the Cartesian GP, but the untrended polar GPs still outperform with a gain

of 15%. Actually the trend captures the main part of the phenomenon and the GP part

has then a minor effect: results are the same as for a pure linear model based on Zernike

polynomials of order 2.
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Design points Design and test points Test points

Figure 4: Color representation of thickness values. The 81 measurement locations are

shown in the middle, including 17 design points (triangles, left) and 64 test points (bullets,

right).

In order to further analyze the results, we select for each GP type the kernels cor-

responding to the best combination, repaired by an asterisk in Table 1. The prediction

surfaces obtained with these 3 kernels are shown on Figure 5. All the GPs succeed in

recovering the radial pattern of the dataset, visible on Figure 4, middle. However, it is less

faithfully identified by the Cartesian GP. The differences on the predicted values can be

explained by thinking at the space in which the kernel is defined. For polar GPs, due to

the mapping used, the kernel is defined in the polar space (ρ, θ). Thus, prediction at one

location will particularly involve the locations corresponding to a high correlation accord-

ing to ρ or θ. Typically, the resulting neighborhoods in D may look like pie chart sectors

(high radial correlation) or ring portions (high angular correlation). Here, a closer look at

estimated parameters reveals that there is a high angular correlation. This explains the

high predicted value at the bottom of the disk, since it involves the other points of the disk

that are close to the boundary, for which the measured thicknesses are large. On the other

hand, for the Cartesian GP, the predicted thickness has a low value, since the measurement

points around, in the (x, y) space, have a low value. Finally notice that the predicted value

at the extreme boundary of the disk should be considered with care, since no test points

are defined on this region due to technical constraints.
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GP type Cartesian Polar (chordal) Polar (geodesic)

Kernel type kprod kadd kANOVA kprod kadd kANOVA kprod kadd kANOVA

RMSE 0.75 * 0.77 0.76 0.69 0.60 * 0.62 0.68 0.61 * 0.65

Table 1: RMSE computed on 64 test points for several GPs with a constant trend. For each

GP type, the combination resulting in the smallest RMSE is marked by an asterisk. When

a Zernike trend is added, the best RMSE is equal to 0.71 for all GP types, corresponding

to the score of the linear trend only.

Zernike regression Cartesian GP Polar GP (chordal) Polar GP (geodesic)

Figure 5: Prediction surface for the best untrended GP models of Table 1. When adding

a Zernike trend, the prediction surface is approximately the same as for a pure Zernike

regression represented on the left. Black bullets correspond to test points, triangles to

design points.

4.2 Air pollution modelling with a directional input

The problem tackled here is a an environmental question. A greenhouse gas emitted by a

known source, usually an industrial plant, is measured at a given location for air quality

monitoring. In the absence of sensors, gas concentration must be predicted. For simple

landscapes, analytical expressions are available based on transport and diffusion equa-

tions. However, for complex landscapes, gas concentration is simulated by numerical codes

[Batton-Hubert et al., 2013]. The input variables include the emitted flow, landscape char-

acteristics and meteorological variables. Here we focus on wind speed and wind direction.

In this short study, 242 simulations were carried out, 30 of which serve as design points and
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Design points. Design and test points. Test points.

Figure 6: Color representation of gas concentrations. The 242 simulation locations are

shown in the middle, including 30 design points (triangles, left) and 212 test points (bullets,

right).

the other ones are used for tests, as illustrated in Figure 6. The wind speed, initially given

on the range [0; 12] (m.s−1), is rescaled to [0, 1]. With this transformation, the domain of

the variables (speed, direction) is the unit disk.

The aim of this study is simply to compare the prediction accuracy of Cartesian and

polar GPs, without using a priori information. In particular, we do not specify the con-

straints of positivity or nullity of the gas concentration on a known subregion. We use the

same kernels as in the first application, corresponding to 3 algebraic combinations (product,

sum, ANOVA). Here, the best model is obtained for the tensor-product combination for

all kinds of GPs. This claims in favor of an interaction speed-direction for the wind on gas

concentration. Notice that adding a Zernike polynomial trend does not improve the results

here, since the angular shape is restricted to a region of the disk, which is hard to capture

with Zernike polynomials. The results are displayed in Figure 7. In terms of prediction

accuracy (measured by the RMSE criterion) the polar GPs are clearly outperforming, cor-

responding to gains around 40% compared to the standard tensor-product Matérn kernel.

Furthermore, for the polar GPs the influence of wind direction on gas concentration has

an angular shape, which is intuitive, and corresponds to the true shape visible in Figure 6

(middle). On the other hand, this shape is rectangular for the Cartesian GP.
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Cartesian GP

RMSE = 0.61

Polar GP (chordal)

RMSE = 0.38

Polar GP (geodesic)

RMSE = 0.37

Figure 7: Estimated gas concentrations according to wind speed (ρ) and direction (θ), for

untrended Cartesian and polar GPs. Adding a Zernike polynomial trend does not improve

the results. Triangles correspond to design points.

5 Design of experiments on the disk

5.1 Optimal designs for Zernike polynomials and spirals

Among the DoEs that are specific to the disk, there are optimal designs for Zernike poly-

nomials. The D-optimal designs were investigated by Dette et al. [2007] and were found to

be contained in few concentric circles, as illustrated in Figure 8.

Spirals, hereafter denoted spiral DoEs, are used in various industrial settings: microelec-

tronics, optics, microbiology, etc. They allow to control the density of the design (see e.g.

Navarro and Arines [2011]). Some of them are represented in Figure 9, corresponding to

the equation ρ = aθp + b.

D-optimal DoEs for regression models are not robust to departures from the assumed

shapes Huber [1981], and do not fill the space, a property usually required in the framework

of GP modelling for capturing potential non-linearities. Poor space-filling properties are

also visible for spirals in the space (ρ, θ) of polar coordinates, as shown in Figure 10, though

they may correctly fill the disk.
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N = 1 N = 2 N = 3 N = 4

Figure 8: 20-point D-optimal DoEs for Zernike polynomials of degree N .

Fermat: s = 1
2 Archimede: s = 1 Galilee: s = 2

Figure 9: 20-point DoEs defined from spirals of the form ρ = aθs + b with θ ∈ [0, 6π]. The

parameter s controls the speed with which the curve moves away from the center, and a, b

are chosen such that the spirals start at the center and end at the boundary.

Figure 10: Cartesian (left) and polar (right) representations of the Archimedean spiral

DoE. This DoE is filling well the disk but not the cylinder of polar coordinates.
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5.2 Maximin Latin hypercubes for polar coordinates.

For metamodelling a potentially complex phenomenon, two main properties are expected

from a good DoE: Space-filling, in order to capture non-linearities, and uniformity of the

marginal distributions, to avoid redundancies in projection. Among the indicators used

to assess space-fillingness, the maximin criterion Morris [2012] is a common choice. In

addition, Latin hypercube designs (LHD, McKay et al. [1979]) provide good projection

properties onto marginal dimensions. Thus, maximin LHDs are often proposed as initial

DoEs. However such designs cannot be directly used in polar coordinates, due to the

non-Euclidian structure of C. To adapt their construction is the aim of this section.

Let us first recall the construction of a maximin LHD over the hypercubic domain [0, 1]2.

Given a design X =
(
x(1), . . . ,x(n)

)
of elements of [0, 1]2, we denote ΦMn (X) the so-called

maximin criterion, giving the minimal distance among design points:

ΦMn (X) = min
i 6=j

(
‖ x(i) − x(j) ‖

)
(11)

A maximin DoE is a design that maximizes ΦMn. However, ΦMn is hard to optimize and

Morris and T.J. [1995] proposed a regularized version Φp, more suitable for optimization:

Φp (X) =

( ∑
1≤i<j≤n

‖ x(i) − x(j) ‖−p
) 1

p

(12)

For p → ∞, maximizing ΦMn is equivalent to minimizing Φp. Following Morris and T.J.

[1995], Damblin et al. [2013], we will use p = 50. In software, the algorithms used for

optimization are often based on simulated annealing or evolutionary strategies (see e.g.

Franco et al. [2014]).

Now let us consider the cylinder C of polar coordinates. The construction of a Latin

hypercube on C is identical for an hypercubic domain, by considering discretizations of

[0, 1] and S. For the sake of clarity, we propose to call polar Latin cylinder design (polar

LCD) or simply LCD, a LHD defined in polar coordinates, referring to the geometry of

the polar space. The maximin criterion for LCDs must be adapted to a valid distance on

C, ensuring that ‖ u − u′ ‖ = 0 for u = (ρ, θ) and u′ = (ρ, θ′), with θ = θ′ (mod 2π). In

particular the Euclidian distance is no further valid, since it does not see that the points

(ρ, 0) and (ρ, 2π) are the same in C. Valid distances on C can be obtained by combining
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Figure 11: Cartesian (left) and polar (right) representations of a 20-point maximin Latin

cylinder design (LCD). The design is well-filling the cylinder C of polar coordinates, dis-

played as a 2-dimensional map: In particular, the design points near the left and right

boundaries are also spread out from each other.

distances on ]0, 1] and S. We propose to consider the following distance:

‖ x− x′ ‖Polar=

√
(ρ− ρ′)2 +

(
d2 (θ, θ′)

π

)2

(13)

The factor 1
π

rescales d2 to [0, 1] in order to weigh equivalently radius and angle.

From now on we will denote ΦPolar (resp. ΦCartesian) the Φp criteria computed with

‖ . ‖Polar (resp. ‖ . ‖2). Minimizing ΦPolar leads to a maximin LCD. A 20-point maximin

LCD is displayed in Figure 11, where the cylinder is represented as a 2-dimensional map.

As expected it is well filling the space of polar coordinates. Though it looks similar to a

maximin LHD obtained in an hypercubic domain with the usual Euclidian distance, the

difference is visible on the left and right boundaries which correspond to the same points

in C: the design points near the left and right boundaries are also spread out from each

other.

LCDs are recommended when the studied phenomenon has a physical interpretation

with respect to polar coordinates. First, if the phenomenon is purely radial (resp. angular),

the Latin structure ensures that all the design radius (resp. angles) values are different,

so that no information is lost by projection. Furthermore, the maximin property helps in

capturing non-linearities with respect to ρ and θ. However, when no a priori information

about the phenomenon is known, the maximin LCD may be inappropriate, due to non-
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Figure 12: Cartesian (left) and polar (right) representations of the LCD obtained by trans-

forming the maximin LCD of Figure 11 with ρ 7→ √ρ.

uniform filling that they produce on D, as visible in Figure 11.

Though it is not possible to optimize simultaneously maximin criteria based on distances

in Cartesian and polar coordinates, a multi-criteria approach could have been investigated.

In this paper, as a first study, we focus on a simple transformation of a maximin LCD which

helps improving space-fillingness on D while preserving the Latin structure on C. This is

done by applying the transform ρ 7→ √ρ, based on the well-known fact that if R, T are

independent random variables with uniform distribution on [0, 1] and [0, 2π] respectively,

then (
√
R, T ) is uniform on D. This transformation was applied to the design of Figure 11,

resulting in the design displayed in Figure 12.

5.3 Comparison

The aim of this section is to compare the DoEs presented above with respect to quality

criteria, and to evaluate their performance on a set of toy functions. We will denote Dopt1,

..., Dopt4 the D-optimal DoEs for Zernike regression of order N (1 ≤ N ≤ 4) shown in

Figure 8, and Spiral-F, Spiral-A, Spiral-G the spiral DoEs (Fermat, Archimede, Galilee)

of Figure 9. We also denote maxLCD the maximin LCD of Figure 11 and maxLCD* its

transformed version with ρ 7→ √ρ (Figure 12). All these 20-point DoEs are compared

according to the following scheme:

• An assessment is made according to different criteria including the space-filling indi-

cators ΦCartesian and ΦPolar (see Section 5.2), and the D-optimality criterion for the
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N -order Zernike regression. The latter is given in log-scale via the information matrix

(see Dette et al. [2007] for more details);

• A comparison in term of prediction accuracy. The RMSE over a test grid of 1.000

points is computed for the 6 analytical functions shown in Figure 13, illustrating

various non-linear patterns. For each DoE, the best model is chosen among Zernike

polynomials up to order 4, Cartesian GPs and polar GPs with kernels obtained by

combination (sum, product, ANOVA) of 1-dimensional kernels as in Section 4.

D-optimality maximin criteria

DN=2 DN=3 DN=4 ΦPolar ΦCartesian

D-opt1 −159.9 −308.3 −448.3 10.6 3.4

D-opt2 36.6 −135.6 −353.1 10.1 3.2

D-opt3 35.4 49.1 −18.9 7.4 2.4

D-opt4 34.4 47.5 63.5 6.3 3.1

Spiral-F 29.7 37.2 44.1 8.8 7.6

Spiral-A 27.2 31.6 32.1 5.2 4.9

Spiral-G 23.3 19.3 −1.4 6.1 4.6

maxLCD 22.2 20.3 2.4 3.8 17.1

maxLCD* 27.5 32.8 33.0 5.2 3.7

Table 2: Comparison of DoEs according to D-optimality and space-filling criteria.

The results of Table 2 are consistent with the theory of D-optimality and exhibit the lack

of robustness of D-optimal designs in case of departure from their assumptions, especially

when N is underestimated. The comparison also shows that spiral DoEs have rather good

scores for all criteria. The best spirals for Zernike polynomials are the one that have the

smaller p (Spiral-F), but the intermediate one (Spiral-A) has the best space-filling scores; It

seems to be the best trade-off among spirals. As expected, the maximin LCD is interesting

for the polar GPs because it optimally fills the polar space, but has the worst space-filling

score in Cartesian coordinates (measured by Φp). This weakness is overcome by its modified
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Prediction RMSE (as percentage of the standard deviation)

x (x2 − y2)
(
ρ− 1

4

)2
sin (2πρ+ θ) 1+sin(θ)

1+ρ2
1+x
1+y2

cos (3θ)

D-opt1 14.0 210.1 112.7 75.2 2.9 2.8

D-opt2 14.4 46.6 112.4 60.2 1.7 0.2

D-opt3 0.0 17.5 80.1 18.4 0.4 0.2

D-opt4 0.0 15.9 82.1 19.0 0.8 1.4

Spiral-F 0.0 0.4 41.2 6.3 0.7 4.5

Spiral-A 0.0 0.1 49.0 4.0 0.7 2.8

Spiral-G 0.0 0.0 49.1 8.6 1.3 0.8

maxLCD 0.0 0.0 42.9 4.5 1.0 0.8

maxLCD* 0.0 0.3 35.3 3.6 0.4 2.6

Table 3: Comparison of DoEs in terms of predictive performance on toy functions.

version maxLCD*, which seems to accomplish the best trade-off for the different criteria

among all the DoEs considered.

In Table 3, we see that D-optimal designs of low order (1, 2) have in general poor scores

in term of RMSE for the functions considered here, that present non-linearities. Spirals

and maxLCD perform rather well. maxLCD met our expectations when radial and angular

patterns are dominant (functions 1, 2, 3 and 6), and the modified maxLCD* seems to adapt

well to the range of functions and models considered here, confirming its robustness among

other DoEs. Finally, notice that the function z = sin(2πρ+ θ) was poorly reconstructed by

all models, whatever the DoE. Indeed, either neighborhoods in (x, y) or (ρ, θ) coordinates

are not suited to capture the spiral shape of the function, and an acceptable fit would

require more than 20 points.

6 Conclusions and discussion

We addressed the issue of analyzing costly computer or physical experiments on a disk.

Such problems are encountered in various industrial applications, where the geometry of

the disk is exploited for several technological processes involving rotations or diffusions from
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Figure 13: Color representation of test functions.

the center. For prediction purpose, we introduced so-called polar GP models that take into

account the geometry of the disk both in their mean and covariance kernel. The new kernels

are defined in polar coordinates. They are obtained as a combination of a kernel for the

radius using an Euclidean distance, and a kernel for the angle, based on either chordal

or geodesic distances on the unit circle. It was shown on two industrial examples where

radial and angular patterns are visible that the approach significantly improves prediction.

The best algebraic combination was found to be either a tensor product or a tensor sum,

which claims in favor of using a kernel mimicking the more general ANOVA decomposition (

Ginsbourger et al. [2014]). Furthemore, in these applications there were only few differences

in the results obtained with the polar GPs based on chordal or geodesic distances. This

can be explained by the strong monotonic relationship between the chordal and geodesic

distance. However, in theory the geodesic distance does not distort distances on the circle,

and should be preferred.

In a second time, we considered the problem of designing experiments for circular do-

mains. We introduce so-called (polar) Latin cylinder designs (LCD), which correspond to
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LHD in polar coordinates, and are suited to phenomena that have a physical interpreta-

tion in polar coordinates. By defining a valid distance in polar coordinates, we obtained a

maximin LCD. A modified LCD was proposed for more general situations, with the addi-

tional property of filling well the disk. We assessed the performances of these two designs,

compared to other common DoEs of the literature, on a set of toy functions aiming at

representing various non-linear patterns. As expected, the maximin LCD is outperforming

in case of radial or angular patterns, but loses efficiency otherwise. The modified LCD is

attractive for its robustness, showing good performances over the whole range of functions

and models considered here.

It is important to precise when polar GPs, based on distances on the unit circle, are

relevant. One main difference between polar GPs and the usual ones, called here Cartesian

GPs, is about the neighborhoods used for prediction. Since kernels of polar GPs are

mapped to the polar space (ρ, θ), the prediction at one location will particularly involve

the locations corresponding to a high radial or angular correlation with respect to ρ or

θ. Typically, the resulting neighborhoods in the disk may look like pie chart sectors (high

radial correlation) or ring portions (high angular correlation). This explains why polar

GPs give more accurate predictions when there are radial or angular patterns, as may

happen for technological processes that involve a rotation or a diffusion from the center. In

other situations, involving for instance translations, Cartesian GPs may give better results.

These two cases might correspond to the “two clusters of profiles over a circular grid”

mentioned by [Pistone and Vicario, 2013] without any additional information about their

origin. A knowledge of the process or historical data may help to choose which kernel is

appropriate. In any case, there remains a lot of degrees of freedom about a GP model

definition, concerning at least the trend shape or the different kernels corresponding to a

given distance. To address this problem, aggregation techniques may be a solution.

The discussion above concerning the model choice raises several questions about de-

sign of experiments. The study presented in this paper shows the possibility of adapting

existing criteria to new distances. In the situations where there is no information about

processing, choosing a distance may be difficult, and there is a need for building DoEs

that can be suitable for any distance. In such a case, a solution would be to consider a
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multi-criteria approach, for instance by aggregating the maximin criteria in Cartesian and

polar coordinates. On the other hand, if a specific kernel is justified, then IMSE-optimal

designs could be computed with respect to this kernel.
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