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Abstract. Using Brownian dynamics simulations, we investigate the effect of
an external flow on the fluctuations of a liquid–liquid interface for a wide range
of shear rates. Although the statistics is Gaussian at low shear, we observe a
transition to a nonlinear phenomenology above a critical shear rate. In particular,
we show that statistical properties at high forcing share striking similarities with
Burgers turbulence. An energy criterion allows us to predict the onset of non-
Gaussian statistics. It also provides a simple explanation for the development
of shock singularities through the exchange of kinetic energy from regions with
positive to negative gradients in the shear direction.
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1. Introduction

A fundamental understanding of soft matter systems under shear is a challenging issue [1].
Complexity usually arises from the coupling between the flow and the local structure of the
soft material. Despite recent progress on nonequilibrium fluctuation-dissipation relations
in sheared systems [2, 3], it is never clear a priori whether the injected power should
increase [4] or decrease [5] the fluctuations. It is therefore essential to have model systems
where theory and experiment can meet in order to capture the relevant features of driven
soft materials.

In this article, we investigate the steady-state properties of a liquid–liquid interface in
a plane Couette flow at low Reynolds number. Experimentally, interfacial fluctuations can
be observed using standard optical microscopy in a phase-separated colloidal dispersion [6]
and it was recently shown that thermal capillary waves are strongly reduced by an external
shear flow [7]. These observations are in qualitative agreement with subsequent molecular
dynamics [8] and Monte-Carlo [9, 10] simulations. An analytical description, which is
required in order to be really predictive, was eventually achieved by the present authors
within the framework of fluctuating hydrodynamics [11, 12]. Still, previous experimental
and theoretical studies were limited to relatively low forcing. Our aim is to extend the
survey to a wider range of shear rates where nonlinear coupling is prevailing.

This study focuses on the fluctuations of an interface between two immiscible liquids
of unequal densities. Properties of the upper (respectively, lower) fluid are labelled with
the index i = 1 (respectively, i = 2). Each fluid is newtonian and incompressible, with
viscosity ηi and mass density ρi. We also define the capillary length lc =

√
σ/(ρ2 − ρ1)g

and the capillary time τc = (η1 + η2)lc/σ, g being the gravitational acceleration and σ the
interfacial tension. It is assumed for convenience that the fluctuations are frozen in the
direction perpendicular to the shear. We denote z = h(x, t) the local height of the interface
with respect to the horizontal xy plane, the projected area being L × L. The two fluids
are set in motion along the x-direction at constant shear rate γ̇ = (η1γ̇1 + η2γ̇2)/(η1 + η2),
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Figure 1. Schematic representation of a liquid interface in a plane Couette flow.
The thickness of each fluid layer is Li. The fluids are set in motion by moving
the boundaries in opposite directions at velocities Vi.

with γ̇i = Vi/Li—see figure 1 and the discussion in [11]. For convenience, all physical
quantities are expressed in dimensionless units: we use τc, lc and kBT respectively as time
scale, horizontal length scale (both for x and q) and energy scale. The position h of the
interface is expressed in units of the thermal length ξT =

√
kBT lc/(2σL) [6]. In the limit of

vanishing Reynolds number, it was shown recently that the stochastic equation describing
the (overdamped) fluctuations of h(x, t) reads, up to second order in h [11]

∂th +
α√
2
h∂xh = Lh + ϕ(x, t) , (1)

with ϕ the white noise and Lh the linear relaxation term. Both terms are conveniently
expressed in Fourier representation h(x, t) = L−1 ∑

q h̃q(t)eiqx, with q = n × (2π/L). The
relaxation term is then diagonal in Fourier space: Lh̃q = −λqh̃q, with λq = (1 + q2)/2q.
The white noise ϕ̃q follows a Gaussian distribution [11] with 〈ϕ̃q(t)〉 = 0 and

〈ϕ̃q(t)ϕ̃q′(t′)〉 = q−1δq,−q′δ(t − t′) . (2)

In the absence of shear, equation (1) describes the equilibrium dynamics of overdamped
fluctuations [6]. The control parameter that drives the system out of equilibrium is the
dimensionless shear rate α defined as

α = γ̇τc

√
kBT

σLlc
. (3)

It can be noticed that (1) is a generic equation encountered in various fields, including the
KPZ model of surface growth [13] or the Burgers model for turbulence [14]. In the context
of phase separation and coarsening under shear, a similar equation has been addressed by
the renormalization group [15]. Different dynamics were considered with the conclusion
that the linear relaxation term Lh may or may not be relevant at large scales depending
on the space dimensionality and the small-q behavior of the eigenvalues λq.

3



Figure 2. Space-time diagrams of interfacial height whose temporal evolution is
given by equation (1). The black lines are guides to the eyes that emphasize for
shock propagation.

2. Brownian dynamics simulations

The random-forced equation of motion (1) is solved using Brownian dynamics (BD)
simulations. We choose a discretization step along the interface ∆x = 0.002, the total
size of the system being L = 20 (both in units of lc). The time step ∆t is set according
to the Courant–Friedrichs–Lewy condition. We also fix the center of mass of the system
by setting λ0 = 0, in order to remove the nonphysical divergence that may arise when
q → 0. The simulations then proceed from some initial configuration for the interface and
evolve forward in time on the basis of (1). The strategy is to go back and forth in direct
and reciprocal space in order to handle the different terms. Explicitly, a single time step
of the algorithm consists in essentially two parts: (i) Compute the advection according to
the equation ∂th + α√

2
h∂xh = 0 and then (ii) Fourier transform the result and compute

the relaxation and the noise according to ∂th̃q = −λqh̃q(t) + ϕ̃q(t). The inverse Fourier
transform then yields h(x, t) for the next iteration. Typical space-time diagrams are shown
in figure 2.

We first discuss the fluctuations at low shear rate α � 1. In this limit, the variance
can be obtained analytically using a perturbative approach [11] and we find( )

, (4)〈h2〉(α) ≈ 〈 h2〉eq 1 − 0.028α2 + . . . 

4



Figure 3. (a) Variance versus shear rate. The solid black line is equation (4).
(b) Same as (a) but for larger values of α. The dotted line is a guide to the eyes
suggesting a power-law decay ∼ α−1. (c) Spectrum of the interfacial velocity ∂th
in the (q,ω)-plane for α = 100. The black solid line corresponds to the dispersion
relation ω = vpq. (d) Propagation (vp) and advection (va) velocities versus shear
rate.

with 〈h2〉eq the equilibrium variance. As shown in figure 3(a), the equilibrium prediction is
recovered numercially when α → 0 and the agreement between simulations and analytical
calculations is excellent up to at least α ≈ 1. These preliminary results thus validate
our numerical scheme. In the high shear regime α > 1, interfacial fluctuations are rapidly
flattened by the flow (figure 3(b)). One moreover notices a modification in the morphology
of the interface. As can be observed in figure 2, very sharp discontinuities separating
smooth regions emerge when the shear rate increases. These discontinuities, or ‘shocks’,
propagate with a characteristic velocity vp that can be extracted from the spectrum of the
interfacial velocity ∂th. Indeed, the maximum of the spectrum in the (q, ω)-plane defines a
linear dispersion relation ω = vpq—see for instance figure 3(c)3. One can thus wonder how
the propagation velocity vp is related to advection since the shocks are transported by the
flow. A characteristic advection velocity va can be defined from the shear rate and the
variance as va = α〈h2〉1/2. figure 3(d) reveals that both velocities have the same behavior
as the shear rate increases, proving that the characteristic advection velocity coincides
with the velocity of shock propagation.

3 Note that, in the absence of shear, there is no propagation since deformation modes are overdamped.
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Figure 4. PDF of the increments u(∆x) = h(x+∆x)−h(x) with ∆x = 0.004lc (a)
and ∆x = 0.1lc (b). Both u and P (u) are normalized by the variance S2(∆x)1/2

(see text). The color code defined in (b) is shared by both figures. Inset of (a):
log–log plot of the left tail of the distribution. The dotted line is a guide to the
eyes suggesting a power-law with an exponent −5/2.

3. Shock singularities

The singularities of the interface profile are reminiscent of the shocks observed in the
context of Burgers turbulence [14,16]. The Burgers equation is a simplified 1D version of
the Navier–Stokes equation; it provides a useful benchmark to test theoretical issues such
as scaling and multifractality in turbulence. The random-force-driven Burgers equation is
in every respect similar to the equation (1), excepted that the linear relaxation term reads
Lh = ν∂xxh, with ν the kinematic viscosity4. It was shown that the distribution of velocity
gradients is of particular interest since it is characterized by anomalous scaling exponents
[17–20]. Here we consider the statistical properties of the height gradients, or increments,
that we define as u(∆x) = h(x + ∆x) − h(x). A typical set of probability distribution
functions (PDF) for the random variable u is shown on figure 4. The distribution is
Gaussian at equilibrium (α = 0), but becomes asymmetric as soon as the flow is switched
on. Indeed, regions with positive slopes are flattened by the flow although regions with
negative slopes are increasingly favorable—eventually leading shock singularities. The
rare fluctuations (corresponding to the left tails of the distributions) are strongly non-
Gaussian and seem to lead to a power law at small scales (see inset of figure 4(a)). The
situation differs at larger scales since rare events seem to be exponentially distributed (see
figure 4(b)), presumably due to the averaging over several shocks.

To get further insight, we focus on the moments of the increment distribution defined
by Sp = 〈|u(∆x)|p〉. Following an analysis that is common in the field of turbulence [14],

4 In the context of the Burgers equation, the viscosity ν is only taken into account in order to ensure numerical
stability. The statistical properties are then obtained in the limit ν → 0.
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Figure 5. Normalized structure functions Sp as a function of the increment
∆x, for p = 3 (a) and 4 (b). (c) Scaling exponents ζ2, ζ4 and ζ6 versus α.
(d) Scaling exponents as a function of the order p of the moment. The full black
line corresponds to the equilibrium law ζp(0) = p/2.

one can expect the moments to scale as

Sp ∼ ∆xζp , (5)

with ζp a scaling exponent. Note that the order p of the moment does not need to be an
integer. We first check that, at equilibrium, the second moment scales as S2(α = 0) ∝ ∆x
when ∆x � 1. We then plot higher moments normalized by S2(α = 0)p/2 as function
of S2(α = 0), in accordance to the extended self-similarity method [21]—see for instance
figures 5(a) and (b). The scaling exponents ζp(α) are then extracted by fitting the curves
(see figure 5(c)) and the results are summarized in figure 5(d) that shows the evolution
of ζp as a function of the order p. At thermal equilibrium (α = 0) the PDF is Gaussian
and we find ζp(0) = p/2, as expected for Brownian fluctuations. The scaling exponents
ζp (with p � 3) then strongly deviate from the p/2 law as the shear rate increases and
eventually saturate to a value close to unity when α 	 1. This saturation is also observed
theoretically for Burgers turbulence, where it is interpreted in terms of bifractality [14]
and experimentally for a deformable material line in 2D turbulence [22].

4. Transition from Gaussian to non-linear phenomenology

The analysis of increments reveals a cross-over from a Gaussian to a nonlinear behavior,
the transition being triggered by the shear rate. Two questions then naturally arise: (i) is
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Figure 6. ‘Phase diagram’ describing the transition from Gaussian to nonlinear
dynamics.

there a critical shear rate above which the phenomenology switches from Gaussian to
nonlinear and (ii) are all the spatial scales affected in the same way? To answer these
important issues, let us consider the kinetic energy density ec of the interface. The latter
can be defined from the interfacial relaxation velocity u = ∂th as ec = u2/2. From (1) one
immediately gets the following time evolution equation

∂tec +
α√
2
∂x (hec) = uLu − α√

2
ec∂xh + φ , (6)

with φ = u∂tϕ the noise term. Besides the usual contributions from advection (∂xhec)
and relaxation (uLu), there is an additional forcing term which is proportional to the
local slope ∂xh. If the slope is negative (resp. positive), this contribution plays the role of
a source (resp. sink) term. As such, it accounts for the exchange of kinetic energy from
regions with positive slopes towards regions with negative slopes. This term thus outlines
how the nonlinearities actually modify the spectral properties of the interface.

The competition between nonlinear forcing and relaxation can be quantified by the
dimensionless number M

M =
α√
2

∣∣∣∣ec∂xh

uLu

∣∣∣∣ . (7)

If M < 1 the phenomenology is essentially Gaussian, whereas nonlinear effects dominate
when M > 1. In order to understand how spatial scales are affected, we consider a
single deformation mode h(x, t) = hqei(qx−ωt). The number Mq at a given wavelength q
can be estimated if one assumes that hq follows an initial equilibrium distribution with
〈|hq|2〉 ∼ 1/(1 + q2). We then find that Mq ∼ αF (q) with F (q) = q2/(1 + q2)3/2. The
function F (q) is bounded: 0 � F (q) � Fmax, the extremal value Fmax ∼ O(1) being
reached for qmax ∼ O(1). As a consequence, we predict that there exists a critical shear rate
αc ∼ O(1) below which the dynamics is purely Gaussian. Above αc, there is an increasing
range of scales q− < q < q+ that are affected by nonlinear effects—see figure 6. Note also
that larger scales are affected before the smaller ones at high shear since q− ∼ α−1/2 and
q+ ∼ α in the limit α 	 1.
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Figure 7. (a) PDF of the vertical displacement P (h) versus shear rate. (b) Values
of the maxima of the PDF versus shear rate. The full red line corresponds to
equation (8).

As an illustration of this scenario, we compute the probability distribution functions
P (h) for the local height h of the interface. The PDF are shown in figure 7(a) for different
values of α. The distributions are Gaussian at low shear but split into two symmetric
parts above a certain threshold. The most probable position then switches from h = 0 to
h = ±hmax as shown in figure 7(b). Close to the threshold αc ≈ 0.51, the bifurcation is
characterized by a power-law (α > αc)

hmax = A (α − αc)
β , (8)

with A ≈ 0.10 and β ≈ 0.50. At higher shear rates α 	 αc, |hmax| seems to saturate to
|hmax| ≈ 0.2〈h2〉eq. Note that the bifurcation is expected to be difficult to observe using
confocal microscopy since it would occur below the diffraction limit (〈h2〉eq ≈ 1µm in
the experiment of Derks et al [7]). Still, other techniques such as light scattering [23] are
much more efficient to detect thermally excited surface waves and could thus be used to
highlight this scenario of symmetry breaking.

5. Discussion

To summarize, we have analyzed the statistical properties of an interface in a Couette
flow for a wide range of shear rates. Our study reveals strong similarities with Burgers
turbulence. This is especially striking since the relaxation equation (1) was derived for
overdamped fluctuations in the limit of vanishing Reynolds number, whereas turbulence
and the Burgers equation are studied in the limit of high Reynolds number. As a matter of
fact, a renormalization group (RG) analysis carried out recently [15] has shown that the
relevance of the different terms in (1) depends essentially on the spatial dimensionality
d and on the asymptotic behavior of λq. Here, we have λq ∼ q (for length scales below
the capillary length), so that the critical dimension is dc = 3 [15]. Since d = 2 in this
work, the linear relaxation term flows to zero in RG recursion relations so that the linear
contribution is actually irrelevant. The RG analysis thus provides a plausible explanation
to the fact that the two models, although appropriate in opposite limits (small versus
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large Reynolds number), exhibit similar statistical properties. Note that this conclusion
is specific to d = 2 and might not hold for higher spatial dimensionality (e.g. d = 3).

Still, the derivation of the time-evolution equation (1) is based on several simplifying
assumptions [11]. First, only the lowest-order nonlinearity is retained, namely, the
advection of height deformation by the flow. In principle, higher-order terms can be
determined as well (even if the calculations might become quite cumbersome), but they
are expected to be less and less relevant as the shear rate increases (at least as far as
the second moment is concerned). The second point is that equation (1) is derived in
the limit of vanishing Reynolds number, but it is known that inertial effects can be
destabilizing at small but finite Reynolds number (see [12] and references therein). It
would thus be interesting to study the competition between both nonlinearities, arising
respectively from advection and fluid inertia. Thirdly, it is implicitly assumed in (1) that
the thickness of both fluid layers is much larger than the capillary length: L1, L2 	 lc.
It was recently shown in the opposite limit L1, L2 � lc that the coupling between flow
and interfacial fluctuations can have major repercussions on the dynamics of wetting [24].
Taking confinement into account would therefore be another interesting opening.

In conclusion, the main predictions of this work regard the phenomenology transition
from Gaussian to nonlinear as the shear rate increases. Below a critical shear rate
αc ∼ O(1), the statistics show only slight deviations from Gaussian: this justifies a
posteriori the perturbative calculations of [11]. On the other hand, above αc, the shear
affects in a nonlinear manner the modes with wavelengths comparable to the capillary
length, in agreement with the handwaving argument presented in [7]. Finally, one can
note that the nonlinear phenomenology, usually referred as the Burgers phenomenology,
can extend far below the high Reynolds number regime. Our findings might thus shed new
light on driven soft matter systems, ranging from shock waves in 2D microfluidics [25,26]
to shock-wave formation [27] or capillary-like phenomena [28] in granular flows.
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