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ABSTRACT

In this paper we describe an estimator for the canonical

polyadic (CP) tensor model using order statistics of the resid-

uals. The estimator minimizes in an iterative and alternating

fashion a dispersion function given by the weighted ranked

absolute residuals. Specific choices of the weights lead to

either equivalent or approximate versions of the least squares

estimator, least absolute deviation estimator or least trimmed

squares estimators. For different noise distributions, we

present simulations comparing the performance of the pro-

posed algorithm with the standard least squares estimator.

The simulated performance is equivalent in the Gaussian

noise case and superior when the noise is distributed accord-

ing to the Laplacian or Cauchy distributions.

Index Terms— Tensor decomposition, order statistics,

non Gaussian noise, robust estimation.

1. INTRODUCTION

In recent years, data models have been extended from the

standard one dimensional (vector) and two dimensional mod-

els (matrices) to n-dimensional models. A straightforward

n-dimensional extension of linear and bilinear models is that

of multilinear models. One of the most widely used multilin-

ear model is the canonical polyadic (CP) model, also called

the Candecomp/Parafac model, which has been applied ex-

tensively in psychometrics [1], chemometrics [2], and more

recently, in many other domains such as digital communica-

tions [3], array processing [4] and data mining [5].

If the data array is noisy, then finding the CP model is

equivalent to a multivariate parameter estimation problem,

whose solution can be obtained through maximum likeli-

hood (ML) estimation. In most applications, the noise is

considered to be additive and Gaussian, thus leading to a

least squares problem. Simple gradient descent or alternating

least squares (ALS) techniques [6] can be used to obtain esti-

mates of the parameters and, to assess estimation efficiency,

their variances can be compared with the Cramér-Rao bound

(CRB) [7]. Even though the Gaussian assumption leads to

simple estimation procedures, it leads to poor performances

in the presence of outliers [8], [9]. Outliers and impulsive
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noise can be dealt with in two ways: either by considering

robust estimation procedures [10], which disregard the noise

distribution, or by assuming that the noise follows a known

non Gaussian distribution, with a tail heavier than the Gaus-

sian tail, for example, the Laplacian or Cauchy distributions.

In the robust setting, CP model estimation can be tackled

by applying known robust regression techniques in an alter-

nating fashion. For example, in [11], alternating iteratively

reweighted least squares (IRLS) using Huber influence func-

tions was considered. In [12] alternating least absolute de-

viation (LAD) regression was proposed, while in [13] a ro-

bust PCA method was adapted to CP estimation. Alternat-

ing LAD regression was revisited in [14] and [15]. In [14],

each alternating step was evaluated through a majorization-

minimization technique, and in [15] an IRLS algorithm with

the Tukey loss function and sparse regularization was pre-

sented.

In this paper, we propose an alternating regression ap-

proach based on order statistics for the estimation of the CP

model under non Gaussian additive noise. Instead of focusing

on the LAD cost function, we minimize the dispersion of the

absolute residuals, which is a weighted sum of the absolute

residuals. The weight assigned to each residue depends on its

absolute value rank. Since this cost function can be rewrit-

ten as a sum of weighted quadratic functions (with non con-

stant weights), we propose an alternating regression scheme

based on IRLS, where the reweighting depends on the abso-

lute residuals and their ranks. The main advantage of this ap-

proach is that, if the noise distribution is known, it can achieve

equal or better performance than LAD regression by careful

choice of the weights. Moreover, in the case of known noise

distribution and if the data array size is sufficiently large, the

weights of the IRLS procedure can be approximated by con-

stants depending on the noise distribution and on the residues

rank, not on their values. This leads to a general and simple

least squares based alternating procedure, where the influence

of the noise distribution is taken into account only through

constant predefined weights and not through a specific non

linear function (as in M-estimation for example).

The paper is organized as follows: in Section 2 we present

the CP model estimation problem and its standard solution in

the Gaussian noise case. In Section 3 the alternating robust

estimator based on order statistics and its simplified version



are presented. Simulations comparing its performance with

ALS, LAD regression, and the Cramér-Rao bounds for Gaus-

sian, Laplacian and Cauchy noise are presented in Section 3.

Finally, conclusions are drawn in Section 5.

In this paper the following notations are used: scalars and

vectors are denoted by lower case x and bold lower case x let-

ters respectively. Matrices are denoted by upper case bold let-

ters X , while tensors by calligraphic letters X . Elements of a

given array are indicated by subscripts X ijk. The Khatri-Rao

product of two matrices X and Y (column-wise Kronecker

product) is denoted by X⊙Y and the tensor product of three

vectors or vector outer product by x⊗ y ⊗ z.

2. CP ESTIMATION AND ALS

The CP model of rank R of a three dimensional real data array

of size I × J ×K, is given by (see e.g. [16]):

X =
R
∑

r=1

ar ⊗ br ⊗ cr, (1)

where ar, br and cr are real vectors of parameters. We as-

sume that the measured data array Y is corrupted by additive

independent and identically distributed (i.i.d.) noise

Y = X + V , (2)

and denote by f(Vijk) the probability density function (PDF)

of the noise. The goal is to estimate ar, br and cr based on

Y . To solve this problem, we can resort to ML estimation.

If we stack all parameters in a single vector θ then the ML

estimator θ̂ is argmaxθ[L(Y ;X )] where L(Y ;X ) is the log-

likelihood function

L(Y ;X ) =

I,J,K
∑

i,j,k

log f [Y ijk −X ijk(θ)]. (3)

In most applications, the noise is assumed to be Gaussian.

As a consequence, log f [Y ijk − X ijk(θ)] = −‖Y ijk −
X ijk(θ)‖2. If the vectors ar, br and cr are stacked in fac-

tor matrices A = [a1 · · · , aR], B = [b1 · · · , bR] and

C = [c1 · · · , cR] and if the data array is unfolded into a

matrix in one of its three modes (dimensions of the tensor)

Y (1), Y (2) or Y (3), then the ML estimator is given as the

minimizer of the following cost function

Υ(A,B,C) = ‖Y (1) −A(C ⊙B)⊤‖2F ,
= ‖Y (2) −B(C ⊙A)⊤‖2F , (4)

= ‖Y (3) −C(B ⊙A)⊤‖2F ,

where ‖ · ‖F is the Frobenius norm. There are multiple ways

of solving this minimization problem. We can find a local

minimum by applying a general purpose joint descent method

(e.g. a gradient method) with respect to the three factors or we

can apply a block descent method. In the second approach, if

we choose the blocks to be exactly the factor matrices, then

each update is the solution of a linear least squares problem.

For iterate k of block descent we have estimates

Âk = Y (1)(Ĉk−1 ⊙ B̂k−1)
†,

B̂k = Y (2)(Ĉk−1 ⊙ Âk)
†, (5)

Ĉk = Y (3)(B̂k ⊙ Âk)
†,

where † denotes the pseudoinverse. This is the standard ALS

algorithm. Contrary to joint descent methods, it does not en-

joy nice local convergence properties, but is still widely used

because of its easy implementation. For these reasons, in the

next section, we will modify this method to tackle robust es-

timation and other types of noise.

3. ALTERNATING ROBUST ESTIMATOR BASED ON
ORDER STATISTICS

In general, when the noise is not Gaussian, the block updates

do not have analytical expressions and we cannot proceed as

in ALS. In [17], the problem of estimation of a location pa-

rameter from i.i.d data was cast as a weighted least squares, by

ordering the samples and evaluating the best linear unbiased

estimator of location, based on mean and covariance of the

ordered data. Its extension to linear regression was proposed

as the minimization of a dispersion function, which takes into

account the order of the residuals [18], [19]. If we consider

the Âk update, we can minimize the following dispersion:

Υ(A) =

I,J×K
∑

i,j

w
[

rk{|E(1)
ij (A)|}

]

|E(1)
ij (A)|, (6)

where E(1)=Y (1)−A(C⊙B)⊤, and w[i], i ∈ {1, .., IJK},

are nonnegative coefficients depending on the ranks of

the absolute residuals when ordered in increasing order,

rk{|E(1)
ij (A)|}. Remark that this dispersion function is a

norm [20] and it is also a convex (non differentiable) func-

tion. Therefore, if the goal was not to develop a simple

modification of ALS, we could use more complex convex

optimization algorithms to solve each block update.

Choice of w[i]. A common choice is the Wilcoxon score

w[i] = [i/(IJK + 1)] [10, p. 61]. When the goal is to be

robust against outliers, then w[i] can be set to zero for large i:

w[i] =

{

1, if i ≤ IJK − h,

0, if i > IJK − h.
(7)

This leads to least trimmed squares [21]. If the noise distribu-

tion is known, then it is possible to weight the residuals using

the score function for the estimation of a location parameter

w[i] = f ′(F−1(ti))/f(F
−1(ti)), (8)



where f ′(x) = df(x)
dx

, F−1(x) is the inverse cumulative dis-

tribution function and ti =
i

2(IJK+1) +
1
2 . This is equivalent

to weight the absolute residuals according to the sensitivity of

the log-likelihood. However, instead of using the true resid-

ual values, we use their corresponding quantile values. When

Υ depends on the ranked residuals and not on the ranked ab-

solute values, this choice is asymptotically equivalent to ML

estimation, and hence asymptotically efficient [18, 19].

IRLS approach: we can rewrite the minimization problem

separately for each row of matrix A. Denoting the i-th row

of A and Y (1) both as column vectors αi and y
(1)
i , the cost

function for the corresponding row becomes

Υ′(αi) =

J×K
∑

j=1

wij(αi)
∣

∣

∣
[y

(1)
i −MAαi]j

∣

∣

∣
, (9)

where wij(αi) = w
[

rk{|E(1)
ij (αi)|}

]

and MA = C⊙B. If

we divide and multiply by the residuals we obtain

Υ′(αi) =

J×K
∑

j=1

wij(αi)

|[y(1)
i −MAαi]j |

[y
(1)
i −MAαi]

2
j . (10)

This cost function can be written as a quadratic cost function

Υ′(αi) = [y
(1)
i −MAαi]

⊤W (αi)[y
(1)
i −MAαi], (11)

where the weighting matrix W (αi) is diagonal

W (αi) = diag

[

wi1(αi)

|[y
(1)
i −MAαi]1|

· · ·
wiJ×K(αi)

|[y
(1)
i −MAαi]J×K |

]

Since the weights depend on αi, we cannot minimize Υ(αi)
directly using least squares. However, if we have a good

initial guess α̂
l−1
i , we can approximate the weights by

W (α̂l−1
i ) and then use the update formula

α̂
l
i = [M⊤

AW (α̂l−1
i )MA]−1MT

AW (α̂l−1
i )y

(1)
i . (12)

These approximations can be iterated, leading to an IRLS
based solution for the block updates. This leads to the al-
ternating IRLS approach decribed in Alg. 1, which we call
alternating robust estimator (ARE).

ARE approximation: if we know the noise distribution, we
can simplify the IRLS procedure further by approximating the
denominator of the weights by the quantile corresponding to
the absolute residual

wij(αi)

|[y(1)
i −MAαi]j |

≈ wij(αi)

F−1
(

t
rk{|[y

(1)
i

−MAαi]j |}

) . (13)

The error of this approximation is expected to be small when
the estimation error is small and the number of samples is
large, so that the denominator is close to the i-th quantile of
the absolute value of the noise.

Algorithm 1 ARE

Require: Y (1), Y (2), Y (3) and initial Â0, B̂0 and Ĉ0.
1: k:=0,
2: while Υ (6) still decreases do

3: Update the rows of Âk with IRLS (12) using B̂k−1 and

Ĉk−1,

4: Update the rows of B̂k with IRLS using Âk and Ĉk−1,

5: Update the rows of Ĉk with IRLS using Âk and B̂k,
6: k:=k+1.
7: end while
8: return Âk, B̂k and Ĉk.

Since the approximate weights do not depend directly on
the values of the residuals, they can be calculated in advance
and stored in a table. If we consider w[i] given by the scores
(8), then we can interpret how the residuals are dealt with for
different noise distributions. We shall analyze three cases.

1. An example of impulsive noise distribution is the
Laplacian: fL(x) = (1/2δ2)) exp(−|x|/δ2). For this type of
noise the scores are constant. Since the quantiles increase in
i, the weights decrease for large residuals, showing that most
information is around the median.

2. For Gaussian noise fG(x) = (1/
√
πδ2) exp(−x2/δ2),

the scores are linear on the quantiles. As a consequence, large
residuals have the same importance as small ones, since the
weights are constant. As expected, no gain in performance
should be obtained with ARE, as its iterates are exactly equal
to ALS in this case.

3. Finally, for the heavy-tailed Cauchy distribution,
fC(x) = (1/πδ2){1/[1 + (x/δ)2]}, the weights are almost
constant for small residuals and almost zero for large residu-
als, showing that large residuals are completely discarded.

4. SIMULATIONS

In this section, we show computer results for the ARE ap-
proach and its version with approximate weights (labelled as
ARE approx.). We start showing the overall effect of impul-
sive noise both on ALS and ARE realizations. We generate
a random CP model of size (I, J,K) = (10, 10, 10) with
R = 2. The CP model is then corrupted by Cauchy noise
with δ = 0.005. We run 10 realizations of ALS with differ-
ent random initializations. After convergence, we select the
result giving the least Υ and use it to initialize the ARE and
its approximation, both with weights given by the scores. At
each block update, we execute only one iterate of the IRLS
procedure. The results for the estimation of the factor C are
given in Fig. 1. For ALS, we can see that the impulsive noise
spreads through all elements of the factor, while such a prob-
lem does not appear for ARE.

In what follows we simulate both algorithms under the
three noise distributions previously introduced: Laplacian,
Gaussian and Cauchy. In the three cases, we compare the
results with the ARE approximation for the Laplacian distri-
bution, denoted by LAD approx., since this is equivalent to
LAD estimation which is known to be robust in CP estima-
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Fig. 1. Realization of the ALS and ARE estimators for the
factor C of a rank 2 CP model with dimensions 10× 10× 10.
The data array is corrupted by Cauchy noise.

tion under impulsive non Gaussian noise [12].

The CP model size is (I,K,K) = (10, 10, 10) with R =
4. Different precision values 1

δ
are considered. For each pre-

cision, two random CP models are simulated and 100 differ-
ent realizations of the noise are generated. ALS is initialized
10 times for each realization and ARE is initialized with the
best ALS realization. The realizations of the estimators are
used to evaluate the sum of the averaged squared errors of
all parameters, which is an approximation of the total mean
squared error (MSE). The evaluation of the squared error is
carried out after correction of the permutation and scaling am-
biguities, using the true CP model.

To have a clear view of the efficiency of the estimators
we compare their performance with the trace of Cramér-Rao
bound (CRB) tr [CRB(θ)], which is a lower bound on the
total MSE. Since two tensors are generated, the performance
is compared to the averaged CRB. The CRB for CP model
estimation under specific cases of additive non Gaussian
(Laplacian and Cauchy) noise was studied in [12] where it
was shown that the main difference with the Gaussian case is
a scalar factor. In Appendix A, we show that this is true for
any distribution and that the scalar factor is the CRB for the
estimation of a scalar parameter under non Gaussian noise.

In Fig. 2 the results for the Laplacian distribution are
shown. We can observe that the ARE and ARE approx.
perform better than ALS. This result was already expected,
since ARE is the alternating IRLS version of the maximum
likelihood estimator (the LAD estimator), which in theory is
expected to be efficient for large data arrays.

Fig. 3 shows the results for the Gaussian distribution.
Since both ARE methods are strictly equivalent to ALS we
obtain the same results for all these estimators. Note also
that their performance is very close to the CRB. The LAD
estimator gives the worst performance since it rejects some
information contained in the large residuals.

The performance results for the Cauchy distribution are
presented in Fig. 3. We can confirm once more, the well-
known fact that LAD based estimators are more robust than
least squares estimators, when dealing with impulsive noise.
This fact was already verified for CP model estimation in [12].
However, we can note that if we have information on the noise
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Fig. 2. Total MSE for the estimation of a rank 4 CP model
with dimensions 10× 10× 10. The data array is corrupted by
Laplacian noise.
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Fig. 3. Total MSE for the estimation of a rank 4 CP model
with dimensions 10× 10× 10. The data array is corrupted by
Gaussian noise.
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Fig. 4. Total MSE for the estimation of a rank 4 CP model
with dimensions 10× 10× 10. The data array is corrupted by
Cauchy noise.

distribution (through its scores), we can increase the perfor-
mance even further using ARE, without increasing substan-
tially the complexity.



5. CONCLUSIONS

We have proposed an alternating regression estimator of CP
model parameters, based on order statistics. The algorithm is
a simple weighted ALS, whose weights depend on the ranks
of the residuals. By using information about the noise distri-
bution, we have shown that the algorithm can be superior or
equivalent to standard approaches such as ALS and alternat-
ing LAD. We focused on a parametric approach, where the
noise distributions are known. In future work, we can focus
on nonparametric approaches, for example, using an adaptive
strategy to estimate jointly the CP model and the score func-
tion used to evaluate the weights [22].

A. CRAMER-RAO BOUND FOR THE CP MODEL
UNDER NON GAUSSIAN ADDITIVE NOISE

The Cramér-Rao bound is given by the inverse of the Fisher
information (FI) matrix I , whose elements are given by

Iij = E

[

∂L
∂θi

∂L
∂θj

]

, (14)

For two elements of the factor A, say Air and Ai′r′ , the cor-
responding element of the FI matrix is

E

[

∂L

∂Air

∂L

∂Ai′r′

]

=
∑

jkj′k′

∂X ijk

∂Air

∂X i′jk

∂Ai′r′
E

[

f ′(Eijk)

f(Eijk)

f ′(Ei′j′k′)

f(Ei′j′k′)

]

where E = Y −X . Since the noise samples are independent

and E

[

f ′(Eijk)
f(Eijk)

]

= 0, we have

E

[

∂L

∂Air

∂L

∂Ai′r′

]

=







0, if, i′ 6= i,

If
∑

jkj′k′

BjrCkrBj′rCk′r, otherwise,

(15)
where If =

∫

R
[f ′(v)]2/f(v) dv is the FI for the estimation

of a location parameter of a distribution f(y − x). Similar
expressions can be found for the FI related to factors B and
C. Using the independence assumption and the fact that the
score function has zero mean, we obtain the following crossed
FI elements related to factors A and B:

E

[

∂L
∂Air

∂L
∂Bjr′

]

=
∑

jki′k′

∂X ijk

∂Air

∂X i′jk′

∂Bjr′
E

[

f ′(Eij′k)

f(Eij′k)

f ′(Ei′jk′ )

f(Ei′jk′ )

]

= IfAirBjr′
∑

k

CkrCkr′ . (16)

The crossed FI elements related to A and C and to B and C
have similar expressions. Both expressions (15) and (16) indi-
cate that the only difference between FI matrices for different
noise distributions is the scale factor If , which is related to
the CRB for the estimation of a scalar parameter x of a distri-
bution f(y − x). This fact was partially shown in [12] and it
can be understood as a particular case of the behavior of the
CRB in additive noise models [23] (cited in [12]).

Acknowledgment

The authors would like to thank Souleymen Sahnoun for his
help in the evaluation of the performance bounds.

REFERENCES

[1] R. A. Harshman, “Foundations of the Parafac procedure,”
UCLA papers in phonetics, vol.16, pp. 1-84, 1970.

[2] A. Smilde, R. Bro, and P. Geladi, Multi-way analysis: appli-

cations in the chemical sciences, John Wiley & Sons, 2005.

[3] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind
PARAFAC receivers for DS-CDMA systems,” IEEE Trans.

Sig. Proc., vol. 48, no. 3, pp. 810–823, 2000.

[4] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel
factor analysis in sensor array processing,” IEEE Trans. Sig.

Proc., vol. 48, no. 8, pp. 2377–2388, 2000.

[5] M. Mørup, “Applications of tensor factorizations and decom-
positions in data mining,” Data Mining and Knowledge Dis-

covery, Wiley, vol. 1, no. 1, pp. 24–40, 2011.

[6] P. Comon, X. Luciani, and A. L. F. De Almeida, “Tensor de-
compositions, alternating least squares and other tales,” Jour-

nal of Chemometrics, vol. 23, no. 7-8, pp. 393–405, 2009.

[7] X. Liu and N. D. Sidiropoulos, “Cramér-Rao lower bounds for
low-rank decomposition of multidimensional arrays,” IEEE

Trans. Sig. Proc., vol. 49, no. 9, pp. 2074–2086, 2001.

[8] S. F. Møller, J. von Frese, and R. Bro, “Robust methods for
multivariate data analysis,” Journal of Chemometrics, vol. 19,
no. 10, pp. 549–563, 2005.

[9] S. Engelen and M. Hubert, “Detecting outlying samples in a
parallel factor analysis model,” Analytica chimica acta, vol.
705, no. 1, pp. 155–165, 2011.

[10] P. J. Huber, Robust statistics, Springer, 2011.

[11] P. Paatero, “Least squares formulation of robust non-negative
factor analysis,” Chemo. Intel. Lab. Syst., vol. 37, no. 1, pp.
23–35, 1997.

[12] S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Ger-
shman, “Robust iterative fitting of multilinear models,” IEEE

Trans. Sig. Proc., vol. 53, no. 8, pp. 2678–2689, 2005.

[13] M. Hubert, J. Van Kerckhoven, and T. Verdonck, “Robust
PARAFAC for incomplete data,” Journal of Chemometrics,
vol. 26, no. 6, pp. 290–298, 2012.

[14] E. C. Chi and T. G. Kolda, “Making tensor factorizations
robust to non-Gaussian noise,” arXiv:1010.3043, 2010.

[15] H.-J. Kim, E. Ollila, V. Koivunen, and H. V. Poor, “Robust
iteratively reweighted lasso for sparse tensor factorizations,”
in IEEE Work. on Stat. Sig. Proc. (SSP), 2014, pp. 420–423.

[16] P. Comon, “Tensors: a brief introduction,” IEEE Signal Pro-

cessing Magazine, vol. 31, no. 3, pp. 44–53, 2014.

[17] E. H. Lloyd, “Least-squares estimation of location and scale
parameters using order statistics,” Biometr., pp. 88–95, 1952.

[18] J. Jureckova, “Nonparametric estimate of regression coeffi-
cients,” The Annals Math. Stat., pp. 1328–1338, 1971.

[19] L. A. Jaeckel, “Estimating regression coefficients by minimiz-
ing the dispersion of the residuals,” The Annals Math. Stat.,
pp. 1449–1458, 1972.

[20] J. W. McKean and R. M. Schrader, “The geometry of robust
procedures in linear models,” Journal of the Royal Statistical

Society. Series B (Methodological), pp. 366–371, 1980.

[21] P. J. Rousseeuw and A. M. Leroy, Robust regression and out-

lier detection, vol. 589, John Wiley & Sons, 2005.

[22] J. D. Naranjo and J. W. McKean, “Rank regression with esti-
mated scores,” Statistics & probability letters, vol. 33, no. 2,
pp. 209–216, 1997.

[23] A. Swami, “Cramér-Rao bounds for deterministic signals in
additive and multiplicative noise,” Signal Processing, vol. 53,
no. 2, pp. 231–244, 1996.


