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HAEFLIGER STRUCTURES AND SYMPLECTIC/CONTACT STRUCTURES

FRANCOIS LAUDENBACH & GAEL MEIGNIEZ

ABSTRACT. For some geometries including symplectic and contact structures on an n-dimensional
manifold, we introduce a two-step approach to Gromov’s h-principle. From formal geometric
data, the first step builds a transversely geometric Haefliger structure of codimension n. This
step works on all manifolds, even closed. The second step, which works only on open manifolds
and for all geometries, regularizes the intermediate Haefliger structure and produces a genuine
geometric structure. Both steps admit relative parametric versions. The proofs borrow ideas
from W. Thurston, like jiggling and inflation. Actually, we are using a more primitive jiggling
due to R. Thom.

1. INTRODUCTION

We consider geometric structures on manifolds, such as the following: symplectic structure,
contact structure, foliation of prescribed codimension, immersion or submersion to another
manifold. We recall that, in order to provide a given manifold M with such a structure,
Gromov’s h-principle consists of starting from a formal version of the structure on M (this
means a non-holonomic — that is, non-integrable — section of some jet space) and deforming
it until it becomes genuine (holonomic) [6]. In the present paper, we introduce a two-step
approach to the h-principle for such structures.

From the formal data, the first step builds a Haefliger structure of codimension zero on
M, transversely geometric; this concept will be explained below. For each of the geometries
above-mentioned, the first step works for every manifold M, even closed.

The second step, which is working for open manifolds only, regularizes the intermediate Hae-
fliger structure, providing a genuine geometric structure. Both steps admit relative parametric
versions.

An essential tool in both steps consists of jiggling. We recall that Thurston’s work on foli-
ations used his famous jiggling lemma [13]. As A. Haefliger told us [4], Thurston himself was
aware that this lemma applies for getting some h-principles in the sense of Gromov. In a not
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very popular paper by R. Thom [12], we discovered a more primitive jiggling lemma that is
remarkably fitting the needs of our approach.

1.1. Groupoids and geometries. According to O. Veblen and J.H.C. Whitehead [14], a
geometry in dimension n is defined by an n-dimensional model manifold X (often R™) and by
an open subgroupoid I in the groupoid I'(X) of the germs of local diffeomorphisms of X; here
the topology on I'(X) is meant to be the sheaf topology. In what follows, we use the classical
notation I',, := T'(R™). Here are examples of such open subgroupoids.

(1) When n is even, I'*¥™P C I',, denotes the subgroupoid of germs preserving the standard
symplectic form of R".

(2) When n is odd, T'®* C T, denotes the subgroupoid of germs preserving the standard
(positive) contact structure of R™.

(3) For n = p + ¢, one has the subgroupoid nglq C I',, preserving the standard foliation of
codimension ¢ (whose leaves are the p-planes parallel to R?).

(4) When Y is any ¢-dimensional manifold and X = RP x Y, one has the subgroupoid
'Y C T'(X) of the germs of the form (z,y) — (f(z,y),y).

1.2. T-foliations. The next concept goes back to A. Haefliger [3]. For an open subgroupoid I'
of I'(X), a I'-foliation on a manifold E is meant to be a codimension-n foliation on E equipped
with a transverse geometry associated with I" and invariant by holonomy. More precisely, this
foliation is defined by a maximal atlas of submersions (f; : U; — X) from open subsets of F
into X such that, for every 7, j and every x € U; N Uj, there is a germ +;; € I' at point f;(z)
verifying

[file = 5 [file

where [-|,, stands for the germ at . When n = dim E, one also speaks of a I'-geometry on E.

Here are examples related to the previous list of groupoids. The first two have been already
considered by D. McDuff in [8].

(1) A I'*¥™p_foliation on £ amounts to a closed differential 2-form €2 on F, whose kernel is
of codimension n at every point. The closeness of € is equivalent to the conjunction of
the next facts:

- the codimension-n plane field (z € E > ker(2,) is integrable,
- Q is basic! with respect to that foliation,
- (2 is closed on a total transversal.

(2) A Te"foliation on E amounts to a codimension-one plane field P on F defined by an
equation A = 0 where A is a differential form of degree 1, unique up to multiplying by
a positive? function, which satisfies the next conditions:

- the n-form A A (dA)"V/2 is closed and has a codimension-n kernel K, at ev-
ery point x € FE; in particular, the field (z — K,) is integrable, tangent to a
codimension-n foliation denoted by IC;

- K, is a vector sub-space of P, for every z;

- P is invariant by the holonomy of K.

IWe recall that a form « is said to be basic with respect to a foliation F if the Lie derivative Lx« vanishes
for every vector field X tangent to JF; this is the infinitesimal version of the invariance by holonomy.
2Here, we limit ourselves to co-orientable contact structures.
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(3) A Fff}q—foliation on I consists of a flag F C G of two nested foliations of respective
codimensions n and ¢ in FE.

(4) A T'Y-foliation on E consists of a codimension-n foliation and a submersion f: £ — Y
which is constant on every leaf ([3] p. 145).

1.3. Haefliger’s I'-structures. A. Haefliger defined a I'-structure as some class of cocycles
valued in I" (see [3] p. 137). This definition, that makes sense on every topological space and for
every topological groupoid I', allowed him to build a classifying space BI' for these structures
([3] p- 140). A second description ([2] p. 188) is more fitting our purpose when the topological
space is a manifold M and when the groupoid is an open subgroupoid I' in the groupoid of
germs I'(X) of a n-manifold X. Here it is.

A T'-structure on M consists of a pair & = (v, F) where

- v is a real vector bundle over M of rank n, called the normal bundle; its total space is
denoted by E(v); and Z : M — E(v) denotes the zero section;
- F is a germ along Z(M) of T'-foliation in E(v) transverse to every fibre of v.

An important feature of [-structures is that pulling back by smooth maps (in our restricted
setting) is allowed without assuming any transversality: if f : N — M is a smooth map and ¢
is a [-structure on M, f*¢ is the I'-structure on N whose normal bundle is f*v equipped with
the T-foliation F'~*(F), where F is the bundle morphism over f which is a fibre-to-fibre linear
isomorphism.

Let HY(M;T) (vresp. H!(M;T)) denote the space of the I'-structures on M (resp. those
whose normal bundle is v). It is a topological space since I' is a topological groupoid; their
elements are denoted by £ = (v, F). In what follows, we are mainly interested in the case where
dim M = n and v is isomorphic to the tangent space 7M; in that case, the elements are just
denoted F.

In what follows, a I'-structure on M whose normal bundle is the tangent bundle 7M will be
called a tangential I'-structure.

1.4. Underlying formal geometries. For each geometry given above, every I'-structure has
an underlying formal I'-geometry in the sense of Gromov. But, we do not intend to enter
Gromov’s generality. We just describe what they are.

(1) Assume n is even. Given F € H!,,(M;T5™P) one has an associated basic closed 2-
form  on a neighborhood of Z(M) in the total space T'M. Its kernel is everywhere
transverse to the fibres. Therefore, €2 defines a non-singular 2-form w on M by the
formula w, = Qzy)|T,M for every x € M. This is the underlying formal symplectic
structure.

(2) Assume n is odd. Given F € H!,,(M;T%") one has a (n — 1)-plane field @ defined
near Z (M) with the following properties:

- at each point z near Z(M), the plane @, is vertical, meaning that it is contained
in the fibre of T'M passing through z;

- (), carries a symplectic bilinear form, well defined up to a positive factor;

- as a (conformally) symplectic bundle over a neighborhood of Z (M), the plane field
( is invariant by the holonomy of F.



Then, there is a symplectic sub-bundle whose fibre at x € M is S, := Qzq) (the
indeterminancy by a positive factor is irrelevant here). This is the underlying formal
contact structure. Another way to say the same thing consists of the following: S is the
kernel of a 1-form « and there is a 2-form 5 on M such that 8 makes S be a symplectic
bundle; equivalently, it may be said that a A 8 "3 is a volume form.

(3) Assume n = p+q. Given F € H!,(M;T%'), one has an associated foliation G of
codimension ¢ on a neighborhood of Z(M) in the total space TM. The foliation G
defines a p-plane field P on M, whose value at every x € M is P, := T5,) G NT, M.

(4) Assume n > dimY. Given F € H},,(M,TY), one has an associated submersion f from
a neighborhood of Z(M) in the total space TM into Y. The submersion f induces a
formal submersion F from M to Y, that is, a bundle epimorphism from TM to TY
whose value at every x € M is F, := D ;)| T M.

Observe that all these spaces of formal geometries have natural topologies. Our first theorem
yields a converse: for the above geometries, formal I'-geometries lead to I'-structures.

Theorem 1.5. Let I' be a groupoid in the list 1.1 of n-dimensional geometries. Let M be
an n-dimensional manifold, possibly closed. Then the forgetful map from H',,(M;T) to the
corresponding space of formal T-geometries is a (weak?®) homotopy equivalence.

Remarks 1.6.
1) In the case of symplectic/contact geometry, D. McDuff proved theorems of same flavour
using the convez integration technique of Gromov ([8], see also [5] p. 104, 138).

2) Let F € HY,,(M;T). By taking a section s of 7M valued in the domain foliated by F and
generic with respect to F, there is an induced I'-geometry with singularities on M = s(M).
This seems to be a very natural notion of singular symplectic/contact structure. It follows from
Theorem 1.9 that the singular locus may be localized in a ball of M.

1.7. Homotopy and regularization. Our second theorem will allow us to regularize every
parametric family of I'-structures on every manifold M which is open, that is, which has no
closed connected component; this terminology will be permanently used in what follows.

A homotopy (also called a concordance®) between two I-structures (v;, ;) (i = 0,1) on M
is a I'-structure on M X [0, 1] whose restriction to M x 0 (resp. M x 1) equals (v, Fy) (resp.
(v1,F1)). Of course, vy and v must be isomorphic.

A D-structure (v, F) is said to be regular if the foliation F is transverse not only to the
fibres of v but also to Z(M) in E(v). This bi-transversality of F induces an isomorphism
v = 7(Z(M)). In that case, the pull-back Z*(F) is a I-geometry on M, namely the foliation
by points equipped with a transverse I'-geometry.

1.8. The exponential I',-structure. Given a complete Riemannian metric on the n-manifold
M, there is a well defined map
exp: TM — M.

When restricting ezp to a small neighborhood U of Z(M) in TM, we get a submersion to M.
The foliation defined by the level sets of exp|U represents a regular I',,-structure on M, denoted

3Actually7 according to R. Palais ([10] Theorem 15), the considered spaces have the property that a weak
homotopy equivalence is a genuine homotopy equivalence.
4This second word emphasizes the difference with a one-parameter family of I'-structures.
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by Feup € H}y (M;T),). Up to isomorphism (vertical isotopy in T'M), F.,, does not depend on
the Riemannian metric as it is shown by the next construction.

Consider the product M x M and its diagonal A = M. We have two projections p,, pp :
M x M — A, respectively the vertical and the horizontal projection. A small tube U about
A equipped with p, is isomorphic to 7M as micro-bundle. Then, the same tube equipped with
py, defines the I',,-structure F,, .

We recall the fundamental property of the differential of ezp (independent of any Riemannian
metric):
d(exp|Ty M)z = Id : T,M — T, M.
As a consequence, if f: M — Y is a smooth map and v € T, M, one has

(1.1) foewp.(v) = f(x) = df:(v) + o([[v]]).

Theorem 1.9. Let X be an n-manifold, let T' C T'(X) be an open subgroupoid and let M be a

(connected) n-manifold. Assume that M is open (that is, no connected component is closed).
Let

t F DY — HY(M;T)
be a continuous family of tangential I'-structures, parametrized by the compact k-disk (k> 0),
such that for every t € OD*, the U-structure JF; is reqular and tangent to Fo., along Z(M).
Then, there exists a continuous family of concordances

tes Fp:DF — HY (M x [0,1];T)
such that
- .73",5 = pri(F;) for every t € OD*, where pry : M x [0,1] — M is the projection;
- F|(M x 0) = F; for every t € D¥;
- for every t € DF, the D-structure F;|(M x 1) is regular and tangent to Feyy along Z(M).

Remark 1.10. The Smale-Hirsch classification of immersions S — Y (see [11, 7]), where S is
a closed manifold of dimension less than dimY', is covered by Theorem 1.9; in particular, the
famous sphere eversion amounts to the case where S is the 2-sphere, Y = R3 and k = 1. Let
us show it.

Let (f,F) : TS — TY be a formal immersion. Then, thanks to F' we have a monomorphism
F, .78 — f*1Y over Ids. Let v be a complementary sub-bundle to the image of F,; when f
is an immersion, v is its normal bundle. Let S be a disk bundle in v; it is a compact manifold
with non-empty boundary and dim S = dimY. Thus, instead of immersing S to Y one tries
to immerse S to Y if it is done, the restriction to the O-section yields an immersion of S to
Y with normal bundle v. The formal immersion (f, F) : T'S — TY easily extends to a formal
immersion ( fF ) S — Y in codimension 0. Since F': T,5 — T 7)Y 1s a linear isomorphism
for every x € S, the level sets of expy o F is a I'Y -foliation F near Z(S), that is, a T'Y -structure
on S. Moreover, thanks to Equation (1.1), if f is an immersion F is tangent to F..,; here
exp stands for expg. So, Theorem 1.9 applies and yields the wanted immersion (or family of
immersions).

Corollary 1.11. Let T' be a groupoid as in Theorem 1.9 and & = (TM,F) be a tangential
[-structure on a closed manifold M. Then, after a suitable concordance, all singularities (that
is, the points where F is not transverse to Z(M) = M ) are confined in a ball.
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Proof. Let B C M be a closed n-ball. Apply Theorem 1.9 to £|(M \ int B). We are given
a regularization concordance C' of this restricted I'-structure. Since this concordance is given
on a manifold with boundary, it extends to the whole manifold. Indeed, B x [0, 1] collapses to
(B x {0}) U (8B x [0,1]). O

1.12. The classical h-principle for I'-geometries. For a groupoid I' as listed in 1.1 the
h-principle states the following:

If M is an open n-manifold, the space of I'-geometries on M has the same (weak) homotopy
type as the space of formal I'-geometries on M.

This statement follows from Theorems 1.5 and 1.9.

Proof. We start with a k-parameter family of formal I'-geometries on M, k > 0, which are
genuine I'-geometries when the parameter ¢ lies in dD*. Then, for every ¢t € D*, the foliation
Fezp is a [-foliation near Z(M). So, Theorem 1.5 applies and yields a k-parameter family of I'-
structures on M which remains unchanged when ¢t € 9D*. Now, since M is open, Theorem 1.9
applies and all the relative homotopy groups of the pair (formal I'-geometries, I'-geometries)
are vanishing. |

The article is organized as follows. In Section 2, we detail the tool that goes back to R.
Thom [12]. The next sections are devoted to the proof of Theorem 1.5 in focusing on the case
of transversely symplectic structures. The existence part is treated in Section 3. The family
of such structures are considered in Section 4; the proof of Theorem 1.5 is completed there
when the groupoid is I'™P. In Section 5, we adapt the proof to the groupoid T'®; the other
groupoids which are considered in Theorem 1.5 could be treated in the same way. Finally, in
Section 6, we solve the problem of regularizing the ['-structures on every open manifold.

2. THOM’S SUBDIVISION AND THOM’S JIGGLING

Reference [12] is the report of a lecture where R. Thom announced a sort of homological
h-principle (ten years before Gromov’s thesis). A statement and a sketch of proof are given
there; the details never appeared. From this text, we extracted an unusual subdivision process
of the standard simplex and a jiggling formula®. Actually, neither statement nor proof nor
formula were written there, only words describing the object, a beautiful object indeed.

Proposition 2.1. Let A™ denote the standard n-simplex. For every positive integer n, there
exist a non-trivial subdivision K, of A™ and a simplicial map o, : K,, — A" such that:

1) (non-degeneracy) the restriction of o, to any n-simplex of K, is surjective;

2) (heredity) for any (n — 1)-face F' of A", the intersection K, NF is simplicially isomorphic
to Ky—1 and 0,|F = 0,4

Proof. Condition 2) implies o, (v) = v for any vertex of A,,. For K;, we may take A' = [0, 1]
subdivised by two interior vertices: 0 < v; < vy < 1 and we define o7 by o1(v1) = 1 and
01 (UQ) =0.

5Thom speaks of “dents de scie” (serrated edge); we keep the word jiggling that W. Thurston introduced in
[13].
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For n = 2, let A, B,C denote the vertices of A2. The polyhedron K, will be built in the
following way: subdivide each edge of Ay as K; subdivides A;; add an interior triangle with
vertices a, b, ¢ so that the line supporting [b, | is parallel to [B, C] and separates A from a, etc.;
join a to the four vertices of [B, C], etc. The simplicial map o5 is defined by a +— A, b +— B, c
C and by imposing to coincide with o; on each edge of A% Condition 1) is easily checked.

This construction extends to any dimension. If K,,_; and o, _; are known, each facet of A"
will be sudivided as K,_;. Then, one puts a small n-simplex 0" in the interior of A™ applying
the same rules of parallelism and separation as for n = 2. Each vertex v of 0" will be joined to
the vertices of the facet F'(v) of A™ in front of v, this facet being sudivided by K,_;. The map
o, maps v to the vertex V' which is opposite to F(v) in A™. O

Remarks 2.2. 1) This subdivision may be iterated r times producing a subdivision K] which
is arbitrarily fine and a simplicial map o] : K] — A" fulfilling the two conditions of Proposition
2.1. More precisely, thinking of o,, as a map from A" to itself, o] will denote its r-th iterate
and K] is defined by the next formula:

(2.1) K= (on )7 (K.

We will call o] an r-folding map.
2) Thanks to heredity, this subdivision of the standard simplex and the r-folding map apply to
any polyhedron.

Actually, the above construction has an unfolding property which is stated in the next propo-
sition.

Proposition 2.3. With the above notations, for every n-simplex T of K", the restriction
or|T is homotopic to o T among piecewise linear maps T — A" which are compatible with
the face operators.

Proof. According to formula (2.1) it is sufficient to prove the proposition for o, = o}

. In
that case, 07! = Id. The homotopy is obvious for n = 1; it consists of shrinking the middle
interval 4! to the barycenter of A! and shrinking its image at the same time. Recursively, the
homotopy of o, is known on the faces of A™. So, it is sufficient to define the homotopy on
the interior small n-simplex 6". As when n = 1, the homotopy consists of shrinking 0" and its

image simultaneously to the barycenter of A™. 0

2.4. First jiggling formula. Let M be an n-manifold and 7M = (T M -+ M) be its tangent
bundle. Choose an auxiliary Riemannian metric on 7M and an arbitrarily small open disk
sub-bundle U so that, for every x € M, the exponential map exp, : U, — M is an embedding.
Take a combinatorial triangulation T" of M so fine that every n-simplex 7 of T' is covered by
exp,(U,) for every x € 7. Let T" be the r-th Thom subdivision of 7" and ¢” : T" — T be the
corresponding simplicial folding map. The r-th jiggling map j© : M — TM is defined in the
following way. For each = € M, the point j"(z) is the unique point in U, such that

(2.2) exp.(j"(x)) = o" (x).
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This formula defines ;" as a piecewise smooth section M — TM. We have the following
properties.

Proposition 2.5. 1) Let 7 be an n-simplex of T, let x be a point in T and let § be an n-simplex
of T" passing through x. Then, j"(8) goes to exp;*(T) as r — oo. The convergence is uniform
forxz er.

2) The map j" is homotopic to the 0-section Z among PL maps which are transverse to the
exponential foliation Fepp on each n-simplex of their domain.

Proof. 1) The diameter of the simplices of 7" goes to 0 as r goes to co. So, for y € 4, the point
J"(y) = e:cp;l (o7 (y)) is close to exp,! (0" (y)). Since " is a surjective simplicial map onto T,
we have the C° closeness of j7(8) and exp,!(7). A similar argument holds for the derivatives.
2) On the one hand, the leaves of F.,, in U are n-discs. We define exp" : U — U, u € [0,1],
to be the map which is the homothety by w in each fibre of exp. It is a homotopy from Idy to
exp|U which restricts to a homotopy from j” to ¢”. On the other hand, according to Proposition
2.3, 0" is homotopic to Id; through PL maps which are non-degenerate on each n-simplex of
their domain, hence transverse to Fegp. O

Remarks 2.6.

1) Any piecewise smooth map defined on an n-manifold M and smooth on each n-simplex of a
triangulation 7" may be approximated by a smooth map with the same polyhedral image. It is
sufficient to precompose with the time-1 map of a small vector field which vanishes at infinite
order along the (n — 1)-skeleton of 7. So, even restricting the concept of I'-structure to the
smooth category, there is no trouble to pull-back a I'-structure by j"; it will be well defined up
to homotopy.

2) In general a jiggling, for instance based on the iterated barycentric triangulation, does not
share the properties stated in Proposition 2.5 (non-degeneracy and P L-homotopy).

2.7. Second jiggling formula. Here, we consider a trivial bundle " of rank n whose base is
an n-manifold M equipped with a coloured triangulation®. Let A" C R™ be a non-degenerate
n-simplex whose vertices are coloured. The colouring defines a simplicial map ¢ : T — A™. We
have a first jiggling j' : M — M x R", x (x, c(a:)) Then, the Thom process defines a r-th
jiggling

(2.3) j'(z) = (z,co0"(z)).

The first item of Proposition 2.5 holds true for this formula: j"(0) tends to {x} x A" when n
goes to 00.

3. EXISTENCE OF TRANSVERSELY SYMPLECTIC I',,-STRUCTURES

In this section we prove a slightly more general statement than the existence part of Theorem
1.5 for the groupoid IY™P: we consider any symplectic bundle of rank n. We are going to use
a more informative notation: a I'Y™P-structure on M will be denoted by ¢ = (v, F,2) where
is a closed 2-form whose kernel is F.

6A triangulation T' of dimension n is coloured when each vertex has a colour in {0,1,...,n} such that two

vertices of the same simplex have different colours. The first barycentric subdivision of any traingulation is
coloured.
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Theorem 3.1. Let v = (E — M) be a symplectic bundle of even rank n over a manifold M of
dimension < n+ 1. Then there exists a I'Y™P-structure & on M whose normal bundle v(§) is
isomorphic to v as a symplectic bundle.

Moreover, if a real cohomology class a € H*(M,R) is given, & can be chosen so that the
cohomology class [Z*Q)] equals a, where Q is the closed 2-form underlying &.

We think of this problem as a lifting problem that we attack by obstruction theory. Let us
explain how it works. As for any groupoid of germs, there are a classifying space” BI'¥™ and
a canonical isomorphism

[™R(M) 2 [M, BT™]
where [—, —] stands for the set of homotopy classes of maps.

This classifying space is the source of two maps. The first one is § : BI®Y™ — BSp(n): if
f: M — BISY™ classifies a I'¥Y™P-structure £ = (v, F,{2) up to concordance, 5o f classifies
its normal bundle v. The second one is x : BI'Y™ — K(R,2), where the target is the
Eilenberg-MacLane space classifying the functor H?(—,R): the composed map ko f classifies
the cohomology class of the closed 2-form Z*Q). Finally, the pair (3, k) defines a map

TP BT — BSp(n) x K(R,2)

For Theorem 3.1, we are given a map M — BSp(n) x K(R,2) and we have to lift this map to
BIs¥™p_ Since M is (n—+1)-dimensional, Theorem 3.1 is a direct corollary of the next statement
(the (n — 1)-connectedness would be sufficient for Theorem 1.5).

Theorem 3.2. (Haefliger, McDuff) The homotopy fibre of 7™, denoted by Fr*¥™P  is
n-connected.

A. Haefliger ([3], Section 6) showed that the (n — 1)-connectedness of this homotopy fibre
is a consequence of the h-principle. D. McDuff ([8], Theorem 6.1) proved the n-connectedness
thanks to the convex integration technique.

3.3. What do we have to prove for Theorem 3.27 We have to prove that the k-th
homotopy group 7 (F7¥™P) vanishes when k& < n. An element of this group is represented by
a I™P_structure £ = (", F,2) on the k-sphere with the following properties:

- The normal bundle is trivial as a symplectic bundle; this means that its underlying
symplectic bilinear form is the standard form w, of R™ on each fibre.

- The 2-form €, which is defined in a neighborhood of the 0-section Z(S*) in SF x R™, is
assumed to be exact.

Let (p1,p2) denote the two projections of S¥ x R™ onto its factors. Recall that the kernel of
Q) is the tangent space to the codimension-n foliation F and that F is transverse to the fibres
of P1.

We have to extend this structure ¢ over the (k + 1)-ball D*! or, equivalently, to show that
it is homotopic to the trivial structure &, := (", Fy, €y) where Qp = p3 wp.

According to Moser’s Lemma with k parameters [9], there exists a vertical isotopy of S*¥ x R™,
keeping Z fixed, which reduces us to the case where the germ at Z(x) of the form induced by
Q on p;'(x) equals wy for every x € SF. After this last reduction, let U be a tube S*¥ x B

"The contravariant homotopy functor I'Y™P(—) satisfies the axiom of gluing (Mayer-Vietoris) and wedge
sumy; so, the classifying space exists according to E. Brown’s Theorem [1].
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in the domain of €2, where B™ is an n-ball of small radius. Now, Theorem 3.2 directly follows
from the next lemma, as we will see just after its statement.

Lemma 3.4. Given the above-mentioned data, there exist a section s : S* — U, a neighborhood
W of s(S*) in U and an ambient diffeomorphism 1 such that:

(1) 4 is the time-1 map of a vertical isotopy (1); set Wy := (W);
(2) ¢ sends the pair (W,Q) to (Wy,Q);
(3) the isotopy 1y is Hamiltonian with respect to wy in each fibre.

Here, “vertical” means that the isotopy preserves each fibre of p;.

Remarks 3.5.

1) The statement holds true for every symplectic vector bundle of rank n, equipped (near the
0-section) with two forms exact forms €2 and €y which define I'}Y™P-foliations and induce the
same symplectic form on each fibre.

2) Moreover, the two first items are valid for a pair of I',-foliations without any transverse
geometry.

PROOF OF THEOREM 3.2. Since v is vertical, sg := 1pos is a section of the trivial bundle " over
S"™. Also, recall the 0-section Z. Then, we have a sequence of homotopies of ['Y"P-structures
on SF:

- a first homotopy from Z*Q2 to s*(2;

- then, a homotopy from s*Q to s§€2y defined by the isotopy ();

- a last homotopy from sy to Z*€).

The last structure obviously extends to the (£ + 1)-ball. O

PROOF OF LEMMA 3.4. We limit ourselves to £k = n; for k < n, it is the same argument by
replacing the base S* with an n-dimensional base S¥ x D", Let B" := py(U) and let A™ be a
non-degenerate and coloured n-simplex in the interior of B™.

Take a decreasing sequence

0> > Ep > > e,

When « is a strict closed k-face of A™, let N(«) denote the closed eg-neighborhood of « in R™.
Set
N(A™) .= A"UN(«a)

where the union is taken over all faces of A™. For a suitable choice of the sequence (g;) we may
arrange that :

(1) N(a)N N(B) =0 if a and B are two disjoint faces;

(2) if anf # 0 and if a and S are not nested, then N(«) N N () is interior to N(a N fB);

(3) N(A™) C B™.
Now, take a coloured triangulation 7" of the base S", its Thom subdivision 7" and the associated
jiggling j" given by formula (2.3). We are going to construct bi-foliated bozes associated with
each simplex of T" whose plaques are respectively contained in the leaves of F and in the fibres
of p1; moreover the boundary of a box has a part tangent to F and another part tangent to
the fibres. Let 7 be a k-simplex of T"; with 7, the colouring of T associates some face 7+ of
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A" C B"™. The box B(7) is defined in the following way. Its base p;(B(7)) equals star(r), the
star of 7 in T7. In the fibre over the barycenter b(7), we take the domain N(71). Finally, B(7)
is the union of all plaques of F passing through N(7+1) and contained in p;'(star(r)). If the
diameter of the base is small enough, that is, if the order r of the subdivision is large enough,
the holonomy of F over the base is C° close to Identity. Therefore, each plaque in B(7) cannot
get out of U; thus, it covers the base.

Look at two faces 7 and 7" of the same simplex o of T". Assume first that 7 and 7’ are
disjoint. Apply the above condition (1) to 7+ and 7/+; then, by the holonomy argument, if r is
large enough, the boxes B(7) and B(7') are disjoint. Assume now that 7 and 7’ are not disjoint
but not nested. Then, by (2), we have

B(r)nB(7') c B(tN7).

Nevertheless, if 7 and 7" do not belong to the same n-simplex and if dstar(7) N dstar(7') # 0,
then B(7) and B(7') could intersect badly. This is corrected next way.

Again, for r large enough, the leaves of F meeting j"(7) intersect the fibre over b(7) in N (7).
This guaranties that j"(7") is covered by the interior of the boxes. From now on, r is fixed.
For 1 > n > 0, the n-reduced box associated with 7 is defined by

B,(r) == B(r) N py (1 —n)star(r))

where the homothety is applied from the barycenter b(7). Fix n > 0 small enough so that
the n-reduced open boxes still cover the jiggling. Now, we are sure that B,(7) and B, (7’) are
disjoint once 7 and 7’ are disjoint.

The desired open set W is the union VoU---UV,U---UV,,_1, where V) denotes the interior of
the n-reduced boxes associated with each k-simplex; the section s is any smooth approximation
of 5" valued in W. We are ready to perform the isotopy. It is done step by step, in the boxes
associated with the vertices of T" first, then with the edges etc. For = € star(r), lifting the
segment [z, b(7)] to F yields a holonomy diffeomorphism between fibres of box

(3.1) (hol F)!) . B(1), — B(T)pen)

which is an wg-symplectomorphism since €2 is closed. Similarly, we have the holonomy of F
which also give an wg-symplectomorphism. The steps are numbered from 0 to n.
If v is a vertex in 7", we define ¢/° in B, (v) by the next formula. For z € B, (v) and z = p;(2),

(3.2) V9(2) = (hol Fy)* o (hol F)(z).

Since the reduced boxes are disjoint, this formula simultaneously applies to the reduced boxes
associated with all vertices. By shrinking the segment [x, v] to [z, x4+ t(v — x)] and by replacing
v with z + t(v — x) in formula (3.2), we define an interpolation between 1°(z) and z. As
a consequence ¥° is the time-1 map of a vertical isotopy of embeddings (¢Y) which is easily
checked to be symplectic. Since the components of the domain of (¢/?) are contractible, this
is actually a Hamiltonian isotopy® which therefore extends to a global Hamiltonian isotopy
supported in U, still denoted by (?). Let F; (resp. Q1) be the direct image of F (resp. ) by
¥?: all reduced boxes are transported in this way, becoming B},(T) for each 7 € T". Observe
that JF is horizontal in the reduced new boxes associated with vertices.

8The infinitesimal generator X; of an wg-symplectic isotopy satisfies that +(X;)wp is a closed 1-form; it is said
to be Hamiltonian if this form is the differential of a function.
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The next step (numbered 1) deals with the edges. Let e be an edge in 7" with end points
vo, v1. For z € Bl(e) and z = py(2), define ¢*(z) by:

(3.3) P!(2) = (hol Fo)iiy o (hol F1)29) (2).

Observe that ¢'(2) = 2z when z € B} (v;), i = 0,1; indeed, this box covers the barycenter b(e)
and JF; is horizontal there. Moreover, 1! is the time-1 map of a symplectic isotopy (¢} ) relative
to the reduced boxes of the vertices; this isotopy, called the step-1 isotopy, follows from an
interpolation formula analogous to the one defining (¢?).

If e and € are two edges, after condition (2), the domain where their n-reduced boxes could
intersect is contained in a domain where JF is horizontal and, hence, 1)} = Id on this domain.
Therefore, 1} is well defined on the union V; of closed n-reduced boxes associated with the
vertices and edges. Unfortunately, it is not a Hamiltonian isotopy of embeddings; some vertical
loops in V; may sweep out some non-zero wp-area. Thus, it could not extend to an ambient
vertical symplectic isotopy.

CLAIM. 1) There is a real combinatorial cocycle j = ug, of the triangulation T™ such that, for
each triangle T, the real number < p, T > measures the wy-area swept out by the loop {z} x (O1+)
through the isotopy (¥}) for every x € (1 — n)star(7); in particular, this area does not depend
on x.

2) When Q) is exact, ju is a coboundary.

3) There is an ambient vertical wo-symplectic isotopy (gt)te[o,u: supported in U, which is
stationary on Vo and such that pig:q, = 0.

The third item, together with the first item, means that the step-1 isotopy (¢}) becomes
Hamiltonian when F; stands for the foliation tangent to ker g;€2; instead of ker ;.

The proof of the claim is postponed to the end of the section. We first finish the proof of
Lemma 3.4 by applying the claim in the next way.

After the step-0 isotopy, the cocycle g, is calculated and the Hamiltonian isotopy (g;) is
derived. Let F; denote the foliation tangent to ker g*Qy; let B% (1) == (g,) " (B;(7)). Now, the
straightening formula 3.3 of the box B%(e) is applied F, instead of F;. The associated isotopy
(1) becomes wy-Hamiltonian. Hence, it extends to a vertical isotopy supported in U, denoted
likewise, which is wg-Hamiltonian on each fibre U,. This finishes step 1 of the isotopy.

The next steps of the induction are similar, except that the question of being a Hamiltonian
isotopy is not raised again since, up to homotopy, every loop in W is already contained in
Vo U V. In the end of this induction, we have a proof of Lemma 3.4 by taking ¢ = 7. U

PROOF OF THE CLAIM.

1) Let e be an edge of T"; its end points are denoted vy and v;. Let x be a point in the
base of B,(e). Set v := {z} x e*. We first compute the wy-area swept out by the vertical arc
(w%)_l () through the step-1 isotopy. Denote this area by A(z, €); any other arc with the same
end points would give the same area.

There are two natural “squares”, C' and Cj, appearing for this computation. The square C'
(resp. Cp) is generated by the holonomy of F; (resp. JFy) over [b(e), x] with initial vertical arc
et in the fibre Upe)- They have common horizontal edges: f; := e X vit for i = 0,1. Orient
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et from vy to vi; so, v and (w%)fl () are oriented by carrying the orientation of et by the
respective holonomies; and also Cy and C' are oriented by requiring {b(e)} x et to define the
boundary orientation. Then, we have

(3.4) Az, e) = /CQO — /CO Q.

The second summand is 0 by construction. Similarly, we have fc Q, = 0. So, if A is any
primitive of €y — )y, we derive

(3.5) A(z,e) = —/ dA .
c
We now use a specific choice of primitive. Recall the zero-section Z : " — U. For t € [0, 1],

let ¢; denote the contraction (z,v) + (x,tv) and let ¢ : U x [0,1] — U be the corresponding
homotopy from Z o p; to Idy. This yields the next formula:

(3.6) O — Qg =d {p’;e + /0 1L(at) () — QO)}

where 6 is a primitive of the exact form Z*(); (observe that Z*Q)y = 0); the integral is just the
mean value of a one-parameter family of 1-forms. This primitive of 2; — {2 also reads

1
(3.7) Ay :=pi0 +/ ;L (v0y)(21 — Qo) ,
0

which vanishes on every vertical vector since €2, and )y coincide on the fibres. Orient 3, as the
horizontal lift of [b(e), z] and (5, as the opposite of the oriented horizontal lift. We have

(3.8) /CdA0:/1A0+/AO.

Now, we consider a triangle 7 in 7" and we look at the wgp-area A(z,d7) swept out by
{x} x (07)* when x belongs to (1 — §)star(r). The vertices of 7 are denoted by v;, i = 0, 1,2,

cyclicly ordered; the oriented edges are e; := [v;_1,v;] where j — 1 is taken modulo 3. There
are two particular horizontal lifts of [b(e;), z], denoted by f;; with k = j or j — 1 depending
on whether its origin is (b(e;),v;) or (b(e;),vj—,). If k = j — 1, it is oriented as [b(e;), z]; if

k = 7, it has the opposite orientation. By summing up the area swept out by each edge of
{x} x (07)*, we have

(3.9) A(z,07) =< Ao, 11 + P21 + Ba2 + Bo2 + Boo + Pro >

where the bracketing stands for the integration over chain.
Since Q1 — € vanishes on (1 — n)star(7) x {vi"}, we have

< Ao, Bisi + Biv1,i >=< Ao, [b(e;), b(eir1)] ¥ v >

By summation, we have

(3.10) A(z,07) = Z < Ao, [ble;), bleiy)] X vt >
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which implies that A(z, 97) does not depend on z. The combinatorial cochain p is now defined
by the next formula:

(3.11) <, T >= Z < Ao, [ble;), blegr)] x v > .

If an arbitrary primitive A of 2 — Q) is used, the above formula becomes

(3.12) <pam>= <A {b(e)} X [u 0] > + < A [b(er), blei)] x v >

Indeed, a change of primitive consists of adding a closed 1-form; and the integral of this on the
polygon P considered in formula (3.12) is zero since P bounds a 2-cell.”

2) Since T" is a finite simplicial set, we only have to prove that < u, ¥ >= 0 for every
2-cycle X of T". Here, the exactness of €2 is used. Summing formula (3.12) over all triangles
of ¥ yields a sum of integrals of A over horizontal polygons in regions where dA = 0 (one
polygon for each vertex of ¥). So, these integrals are null. Therefore, there exists a combina-
torial 1-cochain «v of T" such that y = 0"« where 0* stands for the combinatorial co-differential.

3) We are going to use this 1-cochain « in order to correct 2y by a certain vertical isotopy.
Let e be an oriented edge in 7" with origin v_ and extremity v,. The value a(e) is used in the
following way. In the fibre over b(e), we find an wo-Hamiltonian isotopy (g )+cjo,1], compactly
supported in Uy and fixing (Vj)p(e), such that the area swept out by the arc . := b(e) x [vE, vy]
is —a(e).!? Observe that the Hamiltonian function is not required to vanish in the fixed domain,
but only to be constant on each connected component of the fiber (V). over b(e).

So, the infinitesimal generator X, of the desired isotopy (g;) is chosen in finitely many fibres.
By a suitable partition of unity there is an extention which is Hamiltonian in each fibre, com-
pactly supported and vanishing in V4. Note that the Hamiltonian has to be constant in each
connected component of the fibre (14),, but these constants may vary with x.

The 2-form ¢7€2; — €5 has a primitive associated with the isotopy, named the Poincaré
primitive,

1
(3.13) A= / g (X)) dt.

0
Since X; vanishes on Vj, the 1-form A vanishes over here and we have:
(3.14) < A, v >= —af(e).

Now, A+ A is a primitive of g;{2; — Q. According to formula (3.12), the combinatorial cochain
Hgra, associated with the 2-form ¢7€); vanishes and the claim is proved. 0

9The cochain w1 is a cocycle. Regarding the second item, this fact is not important and left to the reader.
Note that the previous calculation uses a local primitive of 2 only.

0In dimension n = 2, this is possible only if [A(e)| is less than the wy-area of Up(ey. This last condition is
satisfied when r is large enough.
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4. PARAMETRIC FAMILY OF TRANSVERSELY SYMPLECTIC I',,-STRUCTURES

In this section, we prove the parametric version of Theorem 1.5 for the groupoid I'" = I'}Y™P.
We emphasize that the required connectedness of the homotopy fibre F7%™P depends only on
the dimension of M and not on the number of parameters in the family. Indeed, there is no
integrability condition with respect to the parameter.

We consider the same setting as in Theorem 3.1: v = (E — M) is a bundle of even rank
n over a manifold M of dimension < n + 1 equipped with a k-parameter family (w;),cpr of
symplectic bilinear forms w; on E. It is understood that £ is positive.

Theorem 4.1. Assume there is a family (&);cop+ of I¥™P-structures, namely a family (€24)iconk
of closed 2-forms defined near the zero section Z of E, such that € induces w; on the fibres of
v for every t € ODF 11,

Then, this family extends over the whole D* such that Q induces w; on the fibres of v for
every t € DE. Moreover, the family of cohomology classes [Z*],cpr may be arbitrarily chosen
among those which extend the boundary data.

Proof. We start with a cell decomposition C of M fine enough so that, for every ¢t € 9D* and
every cell C' € C, there is a fibred isotopy ¢, of Ejc such that (1;).£ = 0;€, where 6; is a
linear symplectic trivialization of (vc,w;), depending smoothly on ¢ € D¥, and where Qy stands
for the pull-back of wy by the projection C' x R® — R™.

The theorem will be proved by induction on an order of the simplices of C for which their
dimension is a non-decreasing function. Skipping the intermediate dimensions we jump to the
(n 4 1)-cells. So, we are reduced to consider the n-trivial bundle over S and a family (£2;) of
exact 2-forms on a small disc bundle U about the zero section Z, which induce the standard
form wy on each fibre U,, = € S™, (here a parametric version of Moser’s lemma is applied again).
This family fulfills the condition that €, = Qg for every t € dD*. Let T be a triangulation of
S™ and let T be a Thom subdivision whose order r is large enough so that the same jiggling
J"(TT) fits the proof of Lemma 3.4 for every ¢ € DF; since the considered family is compact,
such an r certainly exists.

Each step of that proof may be performed with parameters using this fixed jiggling. Here it
is worth noticing that the vertical isotopy given by Lemma 3.4 is stationary when €2, = ), in
particular when t € D*. O

The proof of Theorem 1.5 is now completed for the groupoid I'5Y™P. [l

5. TRANSVERSELY CONTACT I',,~-STRUCTURES

Here, we prove a theorem which implies Theorem 1.5 for T'-structures. Given an odd
natural integer n, a manifold M and a vector bundle v = (E — M) of rank n, we recall that a
reomt_gtructure on M with normal bundle v = (E — M) is given by & = (A, K), where A is a
1-form and K is a codimension-n foliation, both defined near the 0-section Z in FE, such that:

- AAdA™ induces a germ of volume form on E, for every x € M,

11 other words, the symplectic normal bundles equal (v, wt)ecomk-
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- ker(AAdA™T ) = TK;
- kerA contains TKC and is invariant by the holonomy of K.

Theorem 5.1. Assume M is a manifold of dimension not greater than the rank of the vector
bundle v. Let (o, 3) be formal contact data, that is, a section o of v* and a section B of
A2v* such that o A 5%1 is a non-vanishing section of N"v. Then, there exists a T -structure
¢ = (A, K) on M with normal bundle v such that, for all x € M, the next two conditions are
fulfilled:

(5.1) { kerAz () N v, = ker a(x)

(dA)Z(x) = B(x).

Moreover, this statement holds true in a relative parametric version.

Proof. For simplicity, we do not formulate any homotopy statement at the level of classifying
spaces. Nevertheless, the strategy of proof is similar to the one we used for I'*Y™P-structures.
Even, it is simpler since every contact isotopy is Hamiltonian.

Let us first consider the non-parametric version. The construction of £ is performed step by
step over each cell of a cell decomposition of M. We are looking on the last n-cell " only. Let
C = de" x [0,1] = S"! x [0,1] be a collar neighborhood of the boundary, on which we are
given a I'®®*-structure £ = (A, K) which fufills (5.1).

Since the forma data («, 3) extend over e”, there is a trivialization of v over e", (p1,p2) :
Ele™ — " x R", in which (a(z), f(x)) is independent of x € e”. On R™ equipped with («, 5),
we may think of £ as a closed differential form with constant coefficients; by taking a primitive,
we have a unique contact form «g such that :

(5.2) { @0(0) =

d&o(O) = ﬂ
We derive a trivial T -structure & = (Ag, Ko) on e, such that
Ao = p3(ao)
5.3
>3) s it

Hence, K, is the horizontal foliation. Now, there is a Moser type lemma!? which we are going
to present below. This allows us to perform some vertical isotopy which reduces to the case
where, in a small tube U about the zero section and for every point x € C', we have

(54) A|U$ = A0|Uz

Lemma 5.2. Let (at)te[(),l] be a path of contact forms in a manifold V™. Let L be a hypersurface
in V. It is assumed that the Reeb vector field R, of oy is never tangent to L. Then, we have
the following:

1) The next equation whose unknown is X; can be solved near L:
(55) LXzOét + éét =0.
2) Let (at),c(0) be a path of germs in (R**10) of contact forms. Ifker a;(0) is independent

of t, then these germs are isotopic.

12The statement comes from Eliashberg-Mishachev’s book [5] where the proof is left to the reader. We only
add the relative and parametric version.
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3) The previous statements hold true with parameters and in a relative version.

Proof. 1) The vector X; decomposes as X; = Y, + Z; with Y; € keray and Z; = ay(X;) R;.
Let us recall that R; generates in each point the kernel of day. So, Equation (5.5) becomes the
following system:

(5.6) { Ry - (ay(Xy)) + cu(Ry) = 0

L(Y;) (dat\kerat) + d(at(Xt))\kerat + dt|kerat =0

Fix t € [0,1]. The first equation of this system is a differential equation along the orbits of
R; whose unknown function is oy (X;). It has a unique solution if a;(X;) is imposed to equal 0
along L (here the transversality assumption is used). So, the component Z; of X, is determined.
Once a;(X}) is known, the second equation of (5.6) has a unique solution since the form induced
by da; on ker o is symplectic.

2) Here L is the hyperplane which is the common kernel of the contact forms in the considered
path. Replace the germs with genuine representatives. Following the solution of 1), we have
X:(0) = 0 for every t € [0,1]. Therefore, the flow ¢; of X; keeps the origin fixed. It is well
defined on some neighborhood of the origin up to t = 1 and it is the identity on L. We deduce
from Equation (5.5) that the following is satisfied near the origin for every t € [0, 1]:

(5.7) i (Lx,ap + dy) = 0,

and the latter is obtained by derivating in time the next equation
(5.8) pray = ag.

So, the desired isotopy is obtained by integrating X;.

3) Considering the equations which are solved, this claim is clear. 0

We continue the proof of Theorem 5.1. In order to derive (5.4) from Lemma 5.2, we use
x € C as a parameter and, in each fibre £, we consider o, = tA|p, + (1 — t)AO‘Ez. Due to the
formal data, oy is a contact form near the origin of E, for every t € [0, 1].

After this Moser type reduction, we have to state and prove a similar lemma as Lemma 3.4.
Actually, it is not useful to write it down explicitely since it is the same: the holonomy maps
are contactomorphisms; thus, in each fibre of a box the vertical isotopy preseves the contact
distribution ker Ay N E,. So, it is Hamiltonian with respect to Ag|E,'3. Therefore, it extends
globally since extending such an isotopy amounts to extend its Hamiltonian function; so, no
obstruction is encountered. This finishes the proof of the non-parametric version.

For the relative parametric version of Theorem 5.1, we have to consider a family (av,, B.)uen*
which is underlying a family of I'®"-structures when u € dDF. Thanks to the relative para-
metric version of Lemma 5.2, it is allowed to follow word for word the proof we gave for I'$Y™P.

O

13The Hamiltonian function of a vertical isotopy of contactomorphisms whose infinitesimal generator is Xy
is (in our setting) the time depending function z € U — Ag(Xy)(2).
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Remark 5.3. The other geometric groupoids I' considered in Theorem 1.5 could be treated
in the same way as contact structures. Indeed, a Moser type Lemma and the extension of
['-isotopies with compact support are valid for these geometries.

6. OPEN MANIFOLDS

This section is devoted to the proof of Theorem 1.9. Let us recall the setting: I' is an open
subgroupoid of the structural groupoid I'(X) of a model n-manifold X (see Section 1); M is an
open manifold of dimension n and ¢ € H!,,(M;T) is a [-structure on M whose normal bundle
is TM, the tangent space to M. Let E denote the total space and Z : M — E denote the
0-section. The associated I'-foliation defined near Z(M) in E is denoted by F = F,. We recall
a topological fact about the open manifolds whose proof is available in [5] p. 41.

Proposition 6.1. Given an open n-manifold M, there exists an (n — 1)-polyhedron K C M,
called a spine of M, so that the inclusion is a homotopy equivalence. More precisely, for any
reqular neighborhood V' of K, there exists a compressing isotopy of embeddings f; : M — M, t €
[0, 1], from Idys to an embedding f, : M — V', which is stationary on a neighborhood of K and
such that t' >t implies fy (M) C fi(M).

We are going to prove the next statement from which Theorem 1.9 will be easily derived.

Theorem 6.2. Let K C M be an (n — 1)-dimensional polyhedron in an n-manifold M (open
or closed). Let &, s € DF, be a k-parameter family of T'-structures on M with normal bundle
TM. When s € OD*, it is assumed that the associated foliation Fs is tangent to Fe, along
Z(M). Then, there exist an open neighborhood V of K in M and a k-parameter family & of
[-structures on M x [0, 1] (that is, concordances of & ) such that:

- f_s’V X {O} = &\V;’

- &V x {1} is regular and its associated foliation is tangent to Feyp;

- & = pl(&|V) for every s € OD*, where p; denotes the projection M x [0,1] — M.

In other words, (&) is a family of regularization concordances on a neighborhood of a K,
relative to the boundary of the parameter space.

6.3. Proof of Theorem 1.9 from Theorem 6.2. Here, M is an open manifold. A spine K
of M may be chosen (Proposition 6.1) and Theorem 6.2 applies to these data: K C M, (&) epk-
So, we have a family &, of regularization concordances on some neighborhood V of K in M,
relative to OD*. We have to extend this family to a family fs of regularization concordances
over the whole of M, still relative to OD*. We may assume there exists p close to 1 so that &
is regular on M when ||s|| € [p, 1].

We first insert the family of concordances described as follows, where ¢ € [0, 1] is the param-
eter of the concordance:

- for [|s|]| < p, we put the concordance t — f;&;, where (f)icp,1] is the isotopy of embed-
dings given by Proposition 6.1;
- for p <||s|| < 1, we put the concordance t — f(*

)58.

At the end of these concordances and when ||s|| > p, the structures are regular on M. Then,
we continue with the concordances f;&; when ||s|| < p; these ones are stationary when ||s|| = p.

1—|ls|
1—p t
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So, it is allowed to extend them by the stationary concordances when p < ||s|| < 1. Of course,
the previous piecewise description can be made smooth if desired. U

6.4. Proof of Theorem 6.2 without parameters (k = 0).

We start with a I'-structure £ on M. Let F be its associated I'-foliation defined in some small
neighbohood U of Z(M). Let £" (resp. F*) be the underlying I',,-structure (resp. I',-foliation)
of £ (resp. F) where the transverse geometry is forgotten.

The proof will consist of two steps: in the first step, we will make a specific regularization
of £€* by some T',-concordance over M x [0, 3]; in the second step, the geometric T'-structure of
the concordance will be defined only over a small neighborhood of K x [0, 3]. Finally, we get
the I'-regularization of ¢ near K.

1sT SsTEP. Fix a small ¢ > 0. As in Thurston [13], we consider a one-parameter family F;,
t € [0, 3], of n-plane fields on U with the following properties:

— P, is transverse to the fibres for every t.

— P, is tangent to F when ¢ € [0,1 + ¢].

— P, is tangent to F,, when t € [2,3].
Such a plane field exists by barycentric combination in the convex set of the plane fields trans-
verse to the fibres of 7M.

Let T be a triangulation of M containing a subdivision of K (also called K') as a sub-complex
and fine enough with respect to the open covering {exp,(U,) | + € M} in order that formula
(2.2) makes sense. We now consider the Thom jiggling given by formula (2.2); its order r is
chosen so that the n-simplices of j"(T") are transverse to P; for every t € [0, 3].

The first piece of the concordance, when t € [0, 1 + ¢], actually a I'-concordance, consists of
moving the zero section from Z to 3" by traversing the reverse homotopy of the one described
in the proof of Proposition 2.5 2) and being stationary when ¢ € [1,1 + ¢]. The concordance
of I-structure is given by pulling & back by this homotopy of maps M — U (look at Remark
2.6 1) about smoothness).

We now describe the second piece of the concordance, when ¢ € [1,2]. We consider the
codimension n-plane field P in U x [0, 3] defined by

(6.1) P(z,t) == P,(z) ® R,

It is tangent to F x [0,1 + €] and to Fuyp X [2,3]. The trace of P on each (n + 1)-cell of
J"(M) x [1,2] is one-dimensional. So, this trace is integrable. Thus, there is a C°-small smooth
approximation of P, relative to ¢ € [0,1]U[2, 3] and still denoted by P, which is integrable near
§7(M) x [1,2]. Now, the pair (j7(M) x [1,2], P) defines a concordance of T',-structure. This
finishes the second piece.

The third piece of the concordance when t € [2, 3] consists of keeping the foliation F.,, and
applying the homotopy from j" to the 0-section Z as mentioned in Proposition 2.5 2). On the
whole, we built a specific regularization concordance of the underlying I',-structure £*, which
is near to be good for our purpose.

We need more of good position. Let K" denote the (n — 1)-dimensional complex which is the
r-th Thom subdivision of K. Let K" be the image of Z(K") x [0, 3] along the concordance built
above. This is an n-complex whose n-cells are not transverse to P. When ¢ € [1,2], the only
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reason for non-transversality is that K" and P share the d,-direction. Let K it (Tesp. KT
denote the restriction of K" over M x [t,t'] (resp. M x {t}).

CLAIM. There exist a subdivision t; = 1,t|, ..., t;,t;,....;tx = 3 and a small vertical isotopy, its
time-one map being denoted by 1, such that:

(i) @ZJ|I~([Z = Id for everyi=1,...,N;
(ii) for every n-cell ¢ of K[, | (resp. K '+1])’ its image 1(c) is transverse to P.

[t [t t;
PROOF OF THE CLAIM. Define ¢; := ¢NU x {t}. The time subdivision is chosen so that,
for every n-cell ¢ in K7, the hyperplane Hy(z) := T,(c;) + Pi(z) varies very few in TU when ¢
traverses [t;,t;11] and x runs in ¢;. Let ¢} be the middle of this interval. Thus there exists a
vertical vector field X along ¢ which remains linearly independent of Hy(z) when t € [t;, t;11]
and x € ¢;. If x belongs to several n-cells, X (z) is chosen linearly independent of the finitely
many corresponding hyperplanes.
Let x : [ti,tiv1] — [0,€¢] be a small smooth non-negative function with a positive (resp.
negative) derivative on (t;,t;) (resp. on (t,,t;11)). Briefly said, the wanted map ¢ reads in
affine notation:

(6.2) reag—Y(r)=a+ xt)X(x).

It is easily checked that the cells 1(cy, ) and ¥(cj 4,,,)) have the required transversality prop-
erty. 0

The image of K" by this small jiggling, which keeps K 0,1] fixed, will be still denoted by K”.
The n-cells of K, 1,5 are transverse to P.
The cellulation K" collapses'* successively to K 0,2 afterwards to K f0,1) and finally K™ x {0}.

Indeed, the second collapse is clear for the prismatic cellular decomposition of K [’”1 5 The two
others are also clear for the considered complexes have an almost prismatic decomposition,
some prisms being pinched to cones at their base or top.

2ND STEP.
We now focuse on K E"O ) on which K" collapses. Since the cells of K E"l 3] of positive dimension

are transverse to the foliation P, the collapse K" Ny K EEM] extends to a collapse of pair
(63) (Krvp) \l (Kﬁ),l]7P) :
Let N(K") denote a small neighborhood of K" in U x [0,3]. From the sequence of elementary
collapses, one derives step by step an embedding of pairs
(6.4) ®: (N(K"),P) = (Ux[0,1+¢), Fx[0,1+¢))

1A simplicial complex L collapses to K if there is a sequence of elementary collapses Lq \ Lgy1 starting
with L and ending with K. An elementary collapse means that L, is the union of Lgy; and a simplex o so

that o N Lq41 is made of the boundary of o with an open facet removed. This definition extends to cellular
decompositions.
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which induces the inclusion N(Kj, ) <= U x [0,1+¢). Since F is a I'-foliation, ]5|N([~{,«) is so
by pulling back through ®. Therefore, ®* (.7-' x [0,1+ 5)) is a regularization concordance of the
[-structure which is induced near K. 0

This last process associated with collapses is named inflation in Thurston’s article [13].

6.5. Relative parametric version of Theorem 6.2. Here, the data consist of a family
(&) sepr of T-structures whose normal bundle is the tangent bundle 7M. It is assumed that,
for every s € D, the associated foliation F; is tangent to F,,, along the O-section Z (M), and
hence &, is regular. Without loss of generality, we may assume &, is regular when 1 > ||s|| > p
for some p close to 1. The proof just consists of two remarks.

1) The previous proof (see 6.4) works directly for our k-parameter family of data if we do not
take care of the boundary condition. Indeed, observe that a common order of Thom jiggling
may be chosen for all s € D* since the family of n-plane fields P,; we have to look at is
compact. So, if the jiggling is vertical enough its n-simplices are transverse to Ps; for every
(s,t) € D* x [0,3]. The 0-parameter process applies for every s € D* and yields a regularization
in a fixed neighborhood V' of K. Precisely, we have formulas (6.3) and (6.4) depending on the
parameter s € DF, yielding regularization concordances ®* (-7:5 x [0,1+ 5))

2) We may assume that P, is tangent to F; for every s € {1 > ||s|| > p} and ¢t € [0, 3].
Moreover, we are free to complete the vertical jiggling over the whole of [0, 1].

Let p' € (p,1). For ||s|| € [p,p'], set A(s) := %. Thanks to the previous jiggling, we are
allowed to continue the collapse 6.3 by adding the collapse K, 0,1] Ny f([To,,\(s)]' The composed
collapse yields a regularization concordance of the form &7 (]—"S x [0, A(s) + ¢ )

For ||s|| = p/, notice that A(s) = 0 and Kj = K. For ||s|| € [¢,1], set pu(s) := 11__”5,”. Recall
that ®, is the time-one map of an isotopy of embeddings ®* : N(K") — U x [0,3], u € [0, 1],
®Y = Id. We finish with the regularization concordance (CI>§(S))*(]:S x [0,3]). When |[|s]| = 1,

this is the trivial concordance F x [0, 3]. So, the relative version is proved. 0]
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