Amina Guermouche

Nicolas Triquenaux

Benoît Pradelle

William Jalby

Minimizing Energy Consumption of MPI Programs in Realistic Environment

Dynamic voltage and frequency scaling proves to be an efficient way of reducing energy consumption of servers. Energy savings are typically achieved by setting a well-chosen frequency during some program phases. However, determining suitable program phases and their associated optimal frequencies is a complex problem. Moreover, hardware is constrained by non negligible frequency transition latencies. Thus, various heuristics were proposed to determine and apply frequencies, but evaluating their efficiency remains an issue.

In this paper, we translate the energy minimization problem into a mixed integer program that specifically models realistic hardware limitations. The problem solution then estimates the minimal energy consumption and the associated frequency schedule. The paper provides two different formulations and a discussion on the feasibility of each of them on realistic applications.

Introduction

For a very long time, computing performance was the only metric considered when launching a program. Scientists and users only cared about the time it took for a program to finish. Though still often true, the priority of many hardware architects and system administrators has shifted to caring more and more about energy consumption. Solutions reducing the energy enveloppe have been put forth.

Among the different existing techniques, Dynamic Voltage and Frequency Scaling (DVFS) proved to be an efficient way to reduce processor energy consumption. The processor frequency is adapted according to its workload: When the frequency is lowered without increasing the execution time, the power consumption and energy are reduced.

With parallel applications in general, and more precisely with MPI applications, reducing frequency on one processor may have a dramatic impact on the execution time of the application: Reducing processor frequency may delay a message sending, and maybe its reception. This may lead to cascading delays increasing the execution time. To save energy with respect to application deadline, two main solutions exist: online tools and offline scheduling. The former try to provide the frequency schedule during the execution whereas the latter provide it after an offline study. They both require the application task graph (either through a previous execution or by focusing on iterative applications).

Many online tools [START_REF] Kappiah | Just in time dynamic voltage scaling: Exploiting internode slack to save energy in mpi programs[END_REF][START_REF] Rountree | Adagio: making dvs practical for complex hpc applications[END_REF] identify the critical path: the longest path through the graph, and focus on processors that do not execute these tasks. Typically, when waiting for a message, the processor frequency is set to the minimal frequency until the message arrives [START_REF] Rountree | Adagio: making dvs practical for complex hpc applications[END_REF]. Although online tools allow some energy savings, they provide suboptimal energy saving because of a lack of application knowledge.

On the other hand, offline scheduling algorithms [START_REF] Aupy | Reclaiming the energy of a schedule: models and algorithms[END_REF][START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF] provide the best frequency execution of each task. However, none of the existing algorithms consider most current multi-core architectures characteristics: (i) cores within the same processor share the same frequency [START_REF][END_REF] and (ii) switching frequency requires some time [START_REF] Mazouz | Evaluation of cpu frequency transition latency[END_REF].

This paper presents two models based on linear programming which find the execution frequencies of each task while taking into account the mutlicore architecture constraints and characteristics (section 3) previously described. Moreover, we allow the execution time to be increased if this leads to more energy savings. The user provides a maximum performance degradation that she can tolerate. The presented models provide optimal frequency schedule which minimizes the energy consumption. However, when considering large applications and large machines, no current solver can provide a result, even parallel ones. The reason behind this issue is discussed in section 3.

Context and execution model

We consider MPI applications running on a multi-node platform. The targeted architectures consider the following characteristics: (i) the latency of frequency switching is not negligible and (ii) cores within the same processor share the same frequency.

A process, running on every core, executes a set of tasks. A task, denoted T i , is defined as the computations between two communications. The application execution is represented as task graph where tasks are vertices and edges are messages between the tasks. Figure 1 is an example of the task graph running on two processes. One process executes tasks T 1 and T 2 while the other one executes tasks T 3 and T 4 . Before going into more details on the execution model, let us provide an example of the problem we want to solve. Consider the example provided in Figure 2. The application is executed on 3 cores, 2 in the same processor and one in another processor. Tasks T 1 , T 2 , T 3 and T 4 are executed on processor 0 while tasks T 5 and T 6 are executed on processor 1. In order to minimize the energy consumption through DVFS, we make the same assumption as [START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF]: tasks may have several phases and each phase can be executed at a specific frequency. Typically on Figure 2, task T 1 is divided into 3 phases. The first one is executed at frequency f 1 , the second one at frequency f 2 and the last one at frequency f 3 .

As stressed out before, setting a frequency takes some time. In other words, when a frequency is requested, it is not set immediately. Thus, on Figure 2, when frequency f 2 is requested, it is set some time after. One needs to be careful of such situations since a frequency may be set after the task which it was requested from is over.

Moreover, cores within the same processor run at the same frequency. Hence, on Figure 2, when f 1 is first set on processor 0, all the tasks being executed at this time (T 1 and T 3) are executed at frequency f 1 . T 5 is not affected since it is on another processor. To provide the best frequency to execute each task portion, we need to consider all parallel tasks which are executed at the same time on the processor. Our model requires the task graph to be provided (through profiling or a complete execution of the application). Thus, we consider deterministic applications: for the same parameters and the same input data, the same task graph is generated. In order to guarantee that edges are the same over all possible executions, one has to make sure that the communications between the processes are the same. Non deterministic communications in MPI are either receptions from an unknown source (by using MPI Any Source in the reception call), or non-deterministic completion events (MPI Waitany for instance). Any application with such events is considered as non-deterministic, thus falls out of the scope of the proposed solution. Tasks within a core are totally ordered. If a task T i ends with a send event, then the following task T j starts exactly at the end of T i . On Figure 1, task T 2 starts exactly after T 1 ends. On the other hand, when a task is created by a message reception (T 4 on Figure 1), it cannot start before all the tasks it depends on finish (T 1 and T 3) and it has to wait for the message to be received. If the message arrives after the end of the task which is supposed to receive it, the time between the end of the task and the reception is known as slack time. On Figure 3, tasks T 1 sends a message to T 3 but T 3 ends before receiving the messages creating the slack represented by dotted lines.

A task energy consumption E i is defined as the product of its execution time exec i and its power consumption P i . Since the application is composed of several tasks, its energy consumption can be expressed as the sum of the energy consumption of all the tasks. Thus, the goal translates into providing the set of frequency to execute each task. Hence, one can calculate the application energy consumption as:

E = i (E i) = i (exec i × P i) (1)
Minimizing the energy consumption of the application is equivalent to minimizing E in equation (1).

For each task T i , both exec i and P i depend the frequency of the different phases of the task. In addition, tasks are not independent since when executed in parallel on the same processor, the tasks share the same frequency. Moreover, the overall execution time of the application depends on all the exec i and the slack time. To minimize the energy consumption while still controlling the overall execution time, we express the problem as a linear program.

Building the linear program

The following paragraphs describe how the energy minimizatoin problems translates into a linear programming. We first describe the precedence constraints between the tasks, then we describe two formulations which consider the architecture constraints. Finally, we discuss the feasibility of the described solutions.

Precedence constraints

Let T i be a task defined by its start time bT i and its end time eT i . The beginning of tasks is bounded by the precedence relation between them. As already stressed out, a task cannot start before its direct predecessors complete their execution. As explained in section 2, if T i sends a message, its child task T j starts exactly when T i ends since the end of the communication means the beginning of the next task. This translates to:

bT j = eT i bT i Beginning of a task T i eT i End of a task T i bT s i
Beginning of a slack task T s i eT s i End of a slack task T s i exec f i The execution time of a task T i if executed completely at frequency f tT f i The time during which the task T i is executed at frequency f δ f i The fraction of time a task T i spends at frequency f M i j Message transmission time from task T j to task T i Table 1: Task variables On the other hand, when T i ends with a message reception from T k , one has to make sure that its successor task T j starts after both tasks end. Moreover, as pointed out in section 2, when a task receives a message, some slack may be introduced before the reception. Slack is handled the same way tasks are: it has a start and an end time and it can be executed at different frequencies depending on the tasks on the other cores. On Figure 3, the slack after T 3 may be executed at different frequencies whether it is executed in parallel with T 1 or T 2 .

To ease the presentation, we assume that each task T i receiving a message (from a task T k) is followed by a slack task, denoted T s i . The beginning of T s i , denoted bT s i is exactly equal to the end of T i ,

bT s i = eT i (2)
whereas its end time, denoted eT s i , is at least equal to the arrival time of the message from T k . Let M i k denote the transmission time from T k to T i . Thus:

eT s i ≥ eT k + M i k (3)
Note that a task may receive messages from different processes (after a collective communication for example) and equation 3 has to be valid for all of them.

Finally, since T j , the successor task of T i has to start after T i and T k finish, one just needs to make sure that:

bT j = eT s i

In order to compute the end time of a task T i (eT i), one has to evaluate the execution time of T i . As explained above, a task may be executed at different frequencies. Let exec f i be the execution time of T i if executed completely at frequency f . Every frequency can be used to run a fraction δ f i of the total execution of the task. Let tT f i be the fraction of time T i spends at frequency f . It can be expressed as:

tT f i = δ f i × exec f i .
Thus, the end time of a task is:

eT i = bT i + f tT f i
Note that one has to make sure that a task is completely executed:

f δ f i = 1 (4)
Finally, since the power consumption depends on the frequency, let P f i be the power consumption of the task T i when executed at frequency f . Using this formulation, the objective function of the linear program becomes:

min(Ti (f (tT f i × P f i))) (5)
One can just use tT f i in the objective function as it is expressed in equation (5), and the solver would provide the values of tT f i of all tasks at all frequencies. This solution was presented in [START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF]. The provided solution can be used on different architectures than the ones we target in this work. As a matter of fact, nothing constrains parallel tasks on one processor to run at the same frequency, and the threshold of switching frequency is not considered either. Moreover, no constraint on the execution time is expressed. The following paragraphs first describe how the performance is handled then they introduce additional constraints the handle the architecture constraints and execution time.

Execution time constraints

The performance of an application is a major concern; whether the energy consumption is considered or not. In this paragraph we provide constraints which consider the execution time of the application. In MPI, all programs end with MPI Finalize which is similar to a global barrier. Let last task i be the last task on core i (the MPI Finalize task). Since the application ends with a global communication, every task last task i is followed by a slack task last slack task i . The difference between the global communication slack and the other slack tasks lies in the end time: the end time of all slack tasks of a global communication is the same (all processes leave the barrier at the same time). Thus, for every couple of cores (i, j):

elast slack task i = elast slack task j (6)
Let total T ime be the application execution time: It is equal to the end time of the last slack task.

total T ime = elast slack task i

However, in some cases, increasing the execution time of an application could benefit to energy consumption. In order to allow this performance loss to a specified extent, the user limits the degradation to a factor x of the maximal performance. Let exec T ime be the execution time when all tasks run at the maximal frequency, and x the maximum performance loss percentage allowed by the user. The following constraint allows performance loss with respect to x: total T ime ≤ exec T ime + exec T ime × x 100 The next sections describe two different formulations. In the first formulation, the solver is provided with all possible task configurations and chooses the one minimizing energy consumption. In the second formulation, the solver provides the exact time of every frequency switch on each processor.

Architecture constraints: the workload approach

In order to provide the optimal frequency schedule, the linear program is provided with all possible task configurations, i.e., all possible of parallel tasks, known as workloads. Then the solver provides the execution frequency of each workload.

Shared frequency constraint

We need to express that tasks executed at the same time on the same processor run at the same frequency. Hence, we first need to identify tasks executed in parallel on the same processor. Depending on the frequency being used, the set of parallel tasks may change. Figure 4 is an example of two different executions running at the maximal and minimal frequency. Only processes that belong to the same processor are represented. In Figure 4a, when the processor runs at f max, the set of couple of tasks which are parallel is: {(T 1 , T 3), (T 1 , T s 3), (T s 1 , T s 3), (T 2 , T 4)} (represented by red dotted lines). When the frequency is set to f min (Figure 4b), the slack after T 3 is completely covered and the set of parallel tasks becomes:

{(T 1 , T 3), (T s 1 , T 3), (T 2 , T 4)}. bW i Beginning of a workload W i eW i End of a workload W i tW f i
The time a workload W i is executed at frequency f dW i The duration of a workload tW f i A binary variable used to say if a workload is executed at a frequency f or not Table 2: Workload formulation variables In order to provide all possible configurations, we define the processor workloads. A workload, denoted W i is tuple of potentially parallel tasks. In Figure 4,

W 1 = (T 1 , T 3), W 2 = (T s 1 , T 3), W 3 = (T 1 , T s 3)
represent a subset of the possible workloads. Note that there are no workloads with the same set of tasks. In other words, once a task in a workload is over, a new workload begins. On the other hand, a task can belong to several workloads (like T 1 in Figure 4a). Recall that our goal in to calculate the fraction of time a tasks should spend at each frequency (tT f i) in order to minimize the energy consumption of the application according to the objective function [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]. Since tasks may be executed at several frequencies, so does a workload. In Figure 5, the workload W 1 = (T 1 , T 3) is executed at frequency f 1 then at frequency f 2 . Thus, since T 1 belongs to both W 1 = (T 1 , T 3) and W 2 = (T 1 , T s 3), the execution time of T 1 at frequency f 1 (tT f1 1) can be calculated by using the fraction of time W 1 and W 2 spend at frequency f 1 . In other words, the execution time of a task can be calculated according to the execution time of the workloads it belongs to. Let tW f i be the fraction of time the workload W i spends at frequency f . Thus:

tT f i = Wj ,Ti∈Wj tW f j (8)
Using the execution time of a workload at a specific frequency (tW f i), one can calculate the duration of a workload, dW i as:

dW i = f tW f i 3.3.

Handling frequency switch delay

Recall that one of the problems when considering DVFS is the time required to actually set a new frequency. Thus, before setting a frequency, one has to make sure that duration of the workload is long enough to tolerate the frequency change since changing frequency takes some time. In other words, if the frequency f is set in a W i , tW f i is larger than a user-defined threshold, denoted T h.

∀W i , ∀f : tW f i ≥ T h × tW f i (9)
tW f i is a binary variable used to guarantee that definition (9) remains true when tW f i = 0.

tW f i = 0 tW f i = 0 1 otherwise (10)
The expression of definition [START_REF] Kappiah | Just in time dynamic voltage scaling: Exploiting internode slack to save energy in mpi programs[END_REF] as a mixed binary programming formulation is expressed in the appendix.

Valid workload filtering

The linear program is provided with all possible workloads, then it provides the different tW f j for each workload. However, all workloads cannot be present in one execution. In Figure 4, W 1 = (T 1 , T s 3) and W 2 = (T s 1 , T 3) are both possible workloads, but they cannot be in the same execution, because if W 1 is being executed, it means that T 3 is over (since T s 3 is after T 3) thus W 2 cannot appear later since T s 1 and T 3 are never parallel. Thus, in order to prevent W 1 and W 2 from both existing in one execution, we just need to check whether the tasks of the workload can be parallel or not. Two tasks are not parallel if one ends before the beginning of the second. Since we consider workloads, we focus only on the beginning and end time of the workload itself. Let bW i and eW i be the start time and the end time of the workload W j = (T 1 , . . . , T i , . . . , T n). They are such that:

bW j >= bT i (11
)
eW j <= eT i (12)
Note that although the beginning and the end of the workload are not exactly defined, this definition makes sure that the beginning or the end of a task start a new workload. Moreover, the complete execution of a task are guaranteed thanks to equations (4) and [START_REF][END_REF]. Figure 6 is an example of a workload that cannot exist. Let us assume the execution represented in Figure 6, and let us focus on the workload W 1 = (T 1 , T s 3). Let us also assume that with other frequencies, a possible workload is W 2 = (T 3 , T s 1). As explained above, W 1 and W 2 cannot both exist in the same execution because of precedence constraints. It is obvious from the example that T 3 and T s 1 are not parallel, let us see how it translates to workloads. Since W 2 has to start after both T 3 and T s 1 begins, then it starts after T s 1 (since bT s 1 ≥ bT 3 Figure 6). The same way it ends before eT 3 . But since eT 3 ≤ bT s 1 (as shown in Figure 6) then the duration of W 2 should be negative which is not possible. Thus, we identify workloads which cannot be in the execution as workloads which end before they begin. The duration of a workload is such that:

dW i = 0 eW i < bW i eW i -bW i otherwise (13)
In the appendix (section 6), we proove that if two workloads cannot be in the same execution (because of the precedence constraints), then the duration of at least one of them is 0 (paragraph 6.4.2).

Discussion

The appendix (section 6) provides a detailed formulation of the energy minimization problem using workloads. The formulation shows the use of two binary variables: one to express the threshold constraint and one to calculate the duration of the workload. With these two variables, the formulation is not linear anymore, which requires more time to solve (especially when the number of workloads is important). Moreover, we tried providing all possible workloads of one of the NAS parallel benchmarks on class C on 16 processes (IS.C.16) on a machine equiped with 16 GB of memory. The application task graph is composed of 630 tasks. The generated data (i.e. the number of workloads) could not fit in the memory of the machine. Thus, even with no binary variables, providing all possible workloads is not possible when considering real applications.

In the following section, we provide another formulation which requires only the task graph.

Architecture constraints: the frequency switch approach

As explained earlier, our goal is to minimize the energy consumption of a parallel application using DVFS.

In order to do so, we express the problem as a linear program. We consider that the program is represented as a task graph and each task can have several phases. The difficulty of the formulation is to provide, for each task, the frequency of each of its phases (tT f i) since one has to make sure that parallel tasks must run at the same frequency. In this section, we provide another formulation which considers the time to set a new frequency on the whole processor instead of considering tasks independently and then force parallel tasks to run at the same frequency.

Frequency switch overhead

Let c f jp be the time the frequency f is set on the processor p, j being the sequence number of the frequency switching. Figure 7 represents the execution of four tasks on two cores of the same processor p. In the example, we assume that there are only 3 possible frequencies. The different c f jp are numbered such that the minimum frequency f 1 corresponds to the switching time c f1 1p , c f1 4p , . . ., the frequency f 2 corresponds to the frequency changes c f2 2p , c f2 5p , . . . and so on. A frequency f 1 is applied during a time which can be calculated as c f2 {i+1}p -c f1 ip . This can be translated to: Note that some frequencies may not be set if the duration is zero. In figure 7, frequency f 3 is not set since c f3 31 = c f1 41 .

c f2 {i+1}p ≥ c f1

Handling frequency switch delay

As explained earlier, changing frequency takes some time. Thus, for a change to be applied, its duration has to be longer than the user-defined threshold T h. Let ζ f ip be a binary variable, such that:

ζ f ip = 0 c f {i+1}p -c f ip = 0 1 otherwise (14)
The threshold condition can be expressed as:

c f {i+1}p -c f ip ≥ T h × ζ f ip
We detail how equation (14) is translated into mixed binary programming constraints in the appendix.

Shared frequency constraints

Once the threshold condition is satisfied, one can calculate the time a task spends at each frequency, i.e tT f i , according to c f jp . On

tT f i = j d f ji
Note that a task is not impacted by a frequency change if it ends before the change or begins after the next change. In other words,

d f1 ij = 0 if eT i ≤ c f1 jp or bT i ≥ c f2 {j+1}p . Otherwise, d f1 ij can be calculated as min(eT i , c f2 {j+1}p) -max(bT i , c f1 jp). d f ji = 0 eT i ≤ c f jp or bT i ≥ c f {i+1}p min(eT i , c f {j+1}p) -max(bT i , c f jp) otherwise (15)

Discussion

The appendix (section 6) provides the complete formulation of the problem using the frequency switch time variables. In addition to the binary variable used to satisfy the frequency switch overhead, for each task and for each frequency switch, five additionnal binary variables are used. Thus, for n tasks and m frequency switch considered, 5 × n × m binary variables are required. Mixed integer programming is NP-hard [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF], thus, with such a number of binary variables, no solution can be provided. When comparing the workload approach and the frequency switch approach, one can notice that the former needs less binary variables and should be able to provide results. However, because all possible workloads have to be provided to the solver, it is as complex because of the memory required. Thus, if a very large memory is available, then the workload solution is the one to be used. And if new faster binary resolution techniques are provided, then the frequency switch solution should be used.

Several heuristics can be assumed in order to reduce the time to solve the problem. First, one can consider iterative applications, and solve the problems for only one iteration then apply it the remaining ones. However, this solution strongly depends on the number of tasks per iterations. We tried this solution on some kernels (NAS Parallel Benchmarks [START_REF] Bailey | The NAS parallel benchmarks[END_REF]) and the solver could not provide any result after several hours.

The most promising heuristic is to consider the tasks at the processor level instead of the core level. Thus, the only architecture constraint which needs to be considered is the frequency overhead one. This study is part of our current work and will be discussed in further studies.

Related Work

DVFS scheduling has been widely used to improve processor energy consumption during application execution. We focus on studies assuming a set of dependent tasks represented as a direct acyclic graph (DAG).

A lot of studies tackle task mapping problem while minimizing energy consumption either with respect to task deadlines [START_REF] Zhang | Task scheduling and voltage selection for energy minimization[END_REF] or by trying to minimize the deadline as well [START_REF] Lee | On effective slack reclamation in task scheduling for energy reduction[END_REF]. When considering an already mapped task graph, studies provide the execution speed of each task depending on the frequency model: continuous [START_REF] Baskiyar | Low power scheduling of dags to minimize finish times[END_REF] or discrete [START_REF] Kimura | Emprical study on reducing energy of parallel programs using slack reclamation by dvfs in a power-scalable high performance cluster[END_REF]. Some studies also provide a set of frequencies to execute a task [START_REF] Gruian | Lenes: Task scheduling for low-energy systems using variable supply voltage processors[END_REF] (executing a task at multiple frequencies is known as VDD-Hopping). In [START_REF] Aupy | Reclaiming the energy of a schedule: models and algorithms[END_REF], the authors present a complexity study of the energy minimization problem depending on the frequency model (continuous frequencies, discrete frequencies with and without VDD-Hopping). Finally studies like [START_REF] Mochocki | A realistic variable voltage scheduling model for real-time applications[END_REF] and [START_REF] Mochocki | Practical on-line dvs scheduling for fixed-priority real-time systems[END_REF] consider frequency transition overhead. Although these studies should provide an optimal frequency schedule, they do not consider the constraints of most current architectures and more specifically the shared frequency among all cores of the same processor.

When considering linear programming formulation to minimize application energy consumption, many formulations have been proposed in the past. When considering single processor, [START_REF] Ishihara | Voltage scheduling problem for dynamically variable voltage processors[END_REF] provides an integer linear programming formulation with negligible frequency switching overhead. The same problem but considering frequency transition overhead was addressed in [START_REF] Xie | Bounds on power savings using runtime dynamic voltage scaling: an exact algorithm and a linear-time heuristic approximation[END_REF]. The author also provide a linear-time heuristic algorithm which provides near-optimal solution.

The work presented in [START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF] is the closest to the work presented in this paper. In [START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF], the authors present a linear programming formulation of the minimization energy problem where tasks can be executed at several frequencies. Both slack energy and processor energy consumption are considered in the minimization and a loose deadline is considered. In a similar way, [START_REF] Ma | Energy-optimization scheduling of task dependent graph on dvs-enabled cluster system[END_REF] provides a scheduling algorithm and an integer linear programming formulation of the energy minimization problem on heterogeneous systems with a fixed deadline. The formulation is very close to the one described in [START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF], but the authors also considered communication energy consumption. However, they do not consider slack time and its power consumption when solving the problem. In [START_REF] Liu | Adaptive energy-efficient scheduling algorithm for parallel tasks on homogeneous clusters[END_REF] the authors use an integer linear programming formulation of the problem where only task with slack time are slowed down, whereas other tasks are run at maximal frequency. The program is used to compute the best frequency execution of a task.

Although previous studies provide different solutions and formulations for DVFS scheduling, few of them consider current architecture constraints. While some previous studies consider frequency transition overhead [START_REF] Xie | Bounds on power savings using runtime dynamic voltage scaling: an exact algorithm and a linear-time heuristic approximation[END_REF][START_REF] Kim | Task-level dynamic voltage scaling for embedded system design: Recent theoretical results[END_REF], none of them consider the fact that cores within the same processor run at the same frequency. This paper describes a mixed linear programming formulation that guarantees that parallel tasks on the same processor run at the same frequency. Moreover, it shows that it is possible to relax the deadline if it leads to energy saving. The goal of this paper was to provide a study on how energy minimization problem of a parallel execution of an MPI-like program can be addressed and formulated when considering most current architecture constraints. In order to do so, we used linear programming formulation. Two different formulations were described. Their goal is to minimize the energy consumption with respect to a user-defined deadline by providing the optimal frequency schedule. Both solutions use a number of binary variables which is proportional to the number of tasks. Used as they are, these formulations should provide an optimal solution but are costly in terms of memory and resolution time, despite the use of fast parallel solvers like gurobi [START_REF]Gurobi Optimization[END_REF].

We are currently working on introducing heuristics to relax the architecture constraints by building tasks on the processor level instead of the core level. Using such heuristics seems to drastically reduce the time needed to solve the problem.

Appendix

This appendix summarizes the set of constraints of both formulations described in paragraphs 3.3 and 3.4. We start by describing how each non linear constraint which appears in sections 3.3 and 3.4 is expressed. For a more complete description and explanation, the reader can refer to [START_REF] Bisschop | optimization modeling. paragon decision technology[END_REF].

Expressing non linear constraints

Section 3 presents different non continuous variables (definitions 10, (13) and (14), (15)). In this section, we briefly explain how this kind of expressions translates to inequalities using binary variables.

1. If-then statement with 0-1 variables: Expressing conditions like:

x = 0 x = 0 1 otherwise
(for instance, definition 10) requires the use of a large constant M such that:

x ≤ M × x (16)
x ≥ x ×

Thus, when x = 0, (17) forces x to be equal to 0 and when x = 0, (16) is used to set the value of x to 1.

Note that, equation [START_REF] Ishihara | Voltage scheduling problem for dynamically variable voltage processors[END_REF], which guarantees that tW f i ≥ T h × tW f i makes (17) useless (since T h >). Thus, [START_REF] Mochocki | Practical on-line dvs scheduling for fixed-priority real-time systems[END_REF] is never used in the set of constraints.

2. If-then statement with real variables: Expressing formulas like: z = 0 y < x y -x otherwise (definition (13) for instance) is similar to the previous formulation in the sens that it requires the use of a big constant M . A binary variable bin is used such that when y -x ≤ 0, bin = 0.

y -x ≤ M × bin (18) x -y ≤ M × (1 -bin) (19)
Thus, when y ≤ x, (18) is always valid regardless the value of bin. Hence, [START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF] forces bin to be equal to 0. Similarly, when y ≥ x, equation (18) forces bin to 1.

Once bin is defined, z can be expressed as:

y -x ≤ z ≤ M × bin (20) y -x + z ≤ 2 × (y -x) + M × (1 -bin) (21)
Thus, when y ≤ x, bin = 0 (from [START_REF] Mochocki | A realistic variable voltage scheduling model for real-time applications[END_REF]) and (20) forces z to be 0 (since all variable are positive) and (21) is always valid. Similarly, when y ≥ x, bin = 1 (from [START_REF] Rountree | Bounding energy consumption in large-scale mpi programs[END_REF]) and (20) and (21) become:

y -x ≤ z ≤ M z ≤ y -x
Thus y -x ≤ z ≤ y -x which makes z = y -x.

3. Maximums: Maximums can be expressed by reformulating the definition as:

z = max(x, y) = x + 0 x ≥ y y -x otherwise
Let w be such that:

w = 0 x ≥ y y -x otherwise
We can express w by using (20) and (21).

4. Minimums: Expressing minimums is based on the same idea than expressing maximums:

z = min(x, y) = x -(x -y) 0 x ≤ y x -y otherwise
We do not detail how minimums are expressed, since it is done the same way as maximums.

5. Expressing several conditions: In definitions like [START_REF] Ma | Energy-optimization scheduling of task dependent graph on dvs-enabled cluster system[END_REF], several conditions can force the value of a variable.

w = 0 x ≤ y or z ≥ u 0 otherwise
Translating such definitions into inequalities requires the use of one binary variable for each condition and one binary variable to express the "or".

Let bin1, bin2 be such that: bin1 = 1 if z -u ≥ 0 0 otherwise and bin2 = 1 if x -y ≤ 0 0 otherwise These two definitions can be expressed using (16) and [START_REF] Mochocki | Practical on-line dvs scheduling for fixed-priority real-time systems[END_REF].

Finally bin3 is a binary variable which is equal to 1 if bin1 or bin2 are equal to 1 and 0 otherwise:

bin3 = 1 bin1 + bin2 ≥ 1 0 otherwise (22)
Since bin1, bin2 and bin3 are binary variables, (22) can be easily expressed as:

bin1 ≤ bin3 (23) bin2 ≤ bin3 (24) bin3 ≤ bin1 + bin2 (25)
Thus, when bin1 and bin2 are 0, (25) forces bin3 to be 0 whereas when bin1 or bin2 are equal to 1, (23) and 24 forces bin3 to be equal to 1.

Objective function

Minimizing the energy consumption of a program described as a set of tasks is the objective function of the linear programming formulations described above. For a task T i with a power consumption at a frequency f , P f i and executed at frequency f during tT f i , the energy consumption of the whole program for its whole execution time is:

min(Ti (f (tT f i × P f i)))

Task constraints

Let T i , T i+1 , T i+2 , T j be four tasks such that: T i , T i+1 , T i+2 are consecutive and on the same processor. T i ends with a message sending creating T i+1 which ends with a reception from T j which generates T i+2 as shown in Figure 8. 16), (17) and (9), we express definition [START_REF] Kappiah | Just in time dynamic voltage scaling: Exploiting internode slack to save energy in mpi programs[END_REF] as: 16), (17), (20) and (21) and γ i as the binary variable, we express definition (13) as:

eT i = bT i + f tT f i f δ f i = 1 bT i+1 = eT i bT s i+1 = eT i+1 eT s i+1 ≥ eT j + M i+1 j eT s i+1 ≥ bT s i+1 bT i+2 = eT s i+1 tT f i = δ f i × execT f i 6.4
i ≥ bT j eW i ≤ eT j tT f i = Wj Ti∈Wj tW f j dW i = f tW f i Using (
tW f i ≥ T h × tW f i tW f i ≤ M × tW f i Using (
eW i -bW i ≤ M × γ i bW i -eW i ≤ M × (1 -γ i) , γ i ∈ {0, 1} eW i -bW i ≤ dW i ≤ M × γ i eW i -bW i + dW i ≤ 2 × (eW i -bW i) + M × (1 -γ i)

Proof of workload duration

We want to proove that if two workloads W and W are possible, but they violate the precedence constraint between the tasks, then the duration of at least one of them is zero. We provide the proof for workloads with a cardinality equals to 2 since the proof remains the same for larger workloads.

Let W = (T i , T j) and W = (T i , T j) such that T i preceeds T i and T j preceeds T j . We want to prove that dW = 0 or dW = 0. Lemma 1. Let W = (T i , T j) and W = (T i , T j). If bT i ≥ eT i and bT j ≥ eT i , then dW = 0 or dW = 0.

Proof. Let us proove lemma 6.4.2 by contradiction. Let us assume that dW = 0 and dW = 0.

From definition [START_REF] Kappiah | Just in time dynamic voltage scaling: Exploiting internode slack to save energy in mpi programs[END_REF]: dW = 0 ⇔ eW ≥ bW dW = 0 ⇔ eW ≥ bW From constraints [START_REF] Kim | Task-level dynamic voltage scaling for embedded system design: Recent theoretical results[END_REF] Thus bW ≥ eW which by definition [START_REF] Kappiah | Just in time dynamic voltage scaling: Exploiting internode slack to save energy in mpi programs[END_REF] implies that dW = 0 which leads to a contradiction.

Frequency switch approach

Note that we do not detail how the threshold condition is handled since it is done the same as for the workloads.

c f {i+1}p ≥ c f ip c f {i+1}p -c f ip ≥ T h × ζ f ip c f {i+1}p -c f ip ≤ M × ζ f ip tT f i = j d f ij
Expressing definition [START_REF] Ma | Energy-optimization scheduling of task dependent graph on dvs-enabled cluster system[END_REF] as inequalities requires the use of (20) and (21) for the maximum and the minimum such that:

y f ij = max(bT i , c f jp) = bT i + w f ij such that: w f ij = 0 if bT i is the maximum c f jp -bT i otherwise z f ij = min(eT i , c f {j+1}p) = eT i -g f ij such that: g f ij = 0 if eT i is the minimum c f {j+1}p -eT i otherwise
Let α f ij be the binary variable used for the maximum and β f ij the one used for the minimum. By replacing the corresponding variables in [START_REF] Rountree | Adagio: making dvs practical for complex hpc applications[END_REF] and [START_REF] Xie | Bounds on power savings using runtime dynamic voltage scaling: an exact algorithm and a linear-time heuristic approximation[END_REF], we obtain the following inequalities for the maximum:

c f jp -bT i ≤ M × α f ij bT i -c f jp ≤ M × (1 -α f ij) , α f ij ∈ {0, 1} c f jp -bT i ≤ w f ij ≤ M × α f ij c f jp -bT i + w f ij ≤ 2 × (c f jp -bT i) + M × (1 -α f ij)
and the following for the minimum:

eT i -c f {j+1}p ≤ M × β f ij c f {j+1}p -eT i ≤ M × (1 -β f ij) , β f ij ∈ {0, 1} eT i -c f {j+1}p ≤ g f ij ≤ M × β f ij eT i -c f {j+1}p + g f ij ≤ 2 × (eT i -c f {j+1}p) + M × (1 -β f ij)
Finally, using (23), (24) and (25) and the binary variables ψ f ij , φ f ij and ρ f ij as bin1, bin2 and bin3 respectively and using [START_REF] Rountree | Adagio: making dvs practical for complex hpc applications[END_REF] and [START_REF] Xie | Bounds on power savings using runtime dynamic voltage scaling: an exact algorithm and a linear-time heuristic approximation[END_REF], d ij can be expressed as:

φ f ij ≤ ρ f ij ψ f ij ≤ ρ f ij ρ f ij ≤ φ f ij + ψ f ij z f ij -y f ij ≤ d f ij ≤ M × (1 -ρ f ij) z f ij -y f ij + d f ij ≤ 2 × (z f ij -y f ij) + M × ρ f ij

Figure 1 :

 1 Figure 1: Task graph

Figure 2 :

 2 Figure 2: Frequency switch latency 1

Figure 3 :

 3 Figure 3: Slack time

Figure 4 :

 4 Figure 4: Workloads

Figure 5 :

 5 Figure 5: Workloads and tasks execution

Figure 6 :

 6 Figure 6: Negative workload duration for impossible workloads

 i th frequency switch on processor p. The frequency f is the one setd f ijThe amount of time a frequency f is set for the task i for the frequency switch j Table 3: Frequency switch formulation variables

Figure 7 :

 7 Figure 7: Frequency switches example

Figure 7 ,

 7 initially, tasks T 1 and T 3 run in parallel at frequency f 1 . The time T 3 spends at frequency f 1 is c f2 21 -c f1 11 whereas T 1 is executed twice at f 1 . It spends (c f2 21 -c f1 11) + (eT 1 -c f1 41) at frequency f 1 . Let d f ij be the time the task T i spends at frequency f after the frequency switch j. Back to Figure 7, d f1 11 = c f2 21 -c f1 11 and d f1 14 = eT 1 -c f1 41 . tT f1 1 becomes tT f1 1 = d f1 11 + d f1 14 . The above translates to:

Figure 8 :

 8 Figure 8: Task configuration

6. 5 . 1

 51 Additional variables ζ f ip : A binary variable used to say if a workload is executed at a frequency f or not y f ij : The maximum between bT i and c f jp w f ij : A variable used to express y f ij . It is equal to 0 if bT i is the maximum, and c f jp -bT i otherwise α f ij : A binary variable used to verify whether bT i ≥ c f jp z f ij : The minimum between eT i and c f {j+1}p g f ij : A variable used to express z f ij . It is equal to 0 if eT i is the minimum, and eT i -c f {j+1}p otherwise β f ij : A binary variable used to verify whether eT i ≤ c f {j+1}p ψ f ij : A binary variable used to check if bT i -c f {i+1}p ≥ 0 φ f ij : A binary variable used to check if eT i -c f ip ≤ 0 ρ f ij : A binary variable used to check if ψ f ij or φ f ij are true M : A large constant 6.5.2 Constraints

 and (12): But bT i ≥ eT i and bT j ≥ eT i , thus:bW ≥ bT j ≥ eT j ≥ eW (27) bW ≥ bT i ≥ eT i ≥ eW(28)If we consider (27), (28) and (26):bW ≥ bT i ≥ eT i ≥ bW ≥ eW

	bW ≥ bT i	
	bW ≥ bT j	
	eW ≤ eT i	(26)
	eW ≤ eT	

j and bW ≥ bT i bW ≥ bT j eW ≤ eT i eW ≤ eT j