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Abstract—One of the most important tasks in Cardiac Magnetic 

resonance Cine (CMRC) consists in identifying and describing 

normal and abnormal dynamic heart patterns, a task usually 

performed by physicians. Segmentation and tracking may 

support decisions during a particular treatment, but their 

performance is dependent on the quality of the video. The 

acquired signal, on the other hand, is contaminated with noise 

coming from physiological movements and devices, resulting in 

cardiac blurred boundaries. This paper presents a novel method 

that automatically identifies flow heart patterns by establishing 

similarities between two consecutive frames to which a local jet 

feature analysis has been applied. Once a vector motion field is 

calculated, spatially connected regions with minimal variance are 

found as the sources of movement and different statistics 

objectively estimate movement patterns of these regions. The 

utility of this method is illustrated by comparing the temporal 

series of these regions between normal and abnormal patients. 
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I.  INTRODUCTION  

Cardiovascular disease (CVD) is an important worldwide 
health concern that amounts to a 29.2 % of the total global 
deaths, according to World Health Report in 2003 [1]. 
Magnetic Resonance Cine (MRC) is a non invasive video 
technique that provides cardiac anatomic information with 
good spatial and temporal resolution, allowing the analysis of 
the heart dynamic patterns. These analyses aim to estimate, 
globally, the myocardial function, and specifically, the wall 
motion information. Therefore they are used as an indicator of 
the pathological and normal movements [2]. Overall, these 
analyses are carried out by expert physicians, whereby results 
are highly subjective. Likewise, in the actual clinical routine 
there is no objective measurement upon the cardiac flow, a 
fundamental limitation of this analysis. This may be especially 
useful in early disease detection, case in which the boundary 
between normal and abnormal is quite diffuse, even for expert 
physicians. The point is that any objective measurement must 
take into consideration different variation sources, namely, 
changes of pose and reflection properties of the object, 
acquisition device noise and similar tissue properties of the 
neighboring heart tissues. For instance, in the video, it is really 
difficult to establish a neat border between heart and liver [3, 
4].  

So far different approaches have been proposed to obtain 
dynamic and structural heart patterns. Some of them, based on 
region growing or edge-detection, present difficulties when 
dealing with noise, grey scale variations and low gradients. 
Therefore, a high degree of supervision is required [5]. On the 
other hand, other works have used MR tagged images, a 
technique in which the tissue motion is related to the tag line 
locations or intersections [6]. Active contours or statistical 
models that attempt to track the ventricle movements have been 
also used. These active contours are computationally expensive 
and their performance in noisy conditions is very poor. The 
statistical models are not correlated with any physiological 
phenomenon, a very important issue from the clinical 
standpoint since the objective is not uniquely to follow a 
movement but rather to establish patterns with physiological 
meaning [7, 8]. Finally, even if the tagging technique offers 
appropriate quantitative analysis for some dynamic parameters, 
its clinical use has so far remained limited mainly because its 
performance is very poor when the acquisition process is noisy. 
Besides, the tagging resolution is so low that the physiological 
meaning of the found flow patterns is really difficult to 
establish [8].  



 

 

  

 

 

Figure 1: Local jet features from MRC slices are calculated and stored in a kd-tree by similarity. The motion is estimated by searching a particular pixel in the 
precedent kd-tree. Once the apparent heart motion is obtained, some metrics define the dynamic patterns.

 

The main contribution of this work is the design of a fully 
automatic method which determines the fluid vector field that 
represents the apparent heart motion. The method allows to 
define objective measurements upon the main FOE (Foci of 
Expansion), defined as those locations with minimal motion 
from which line fields are coming out from one of these foci to 
another. This paper is organized as follows: We first briefly 
present the dataset, then Section III introduces the proposed 
method, Section IV demonstrates the effectiveness of the 
method and the proposed metrics, a useful tool to help the 
expert physician. The last section concludes with a discussion 
and possible future works. 

II. DATASET DESCRIPTION 

Ten different cases were herein included to assess the 

proposed method, five normals, three diagnosed with Fallot 

tetralogy and the last two, with acute myocardial infarction. 

The images were acquired in a 1.5T Intera scanner (Philips 

Medical Systems, The Netherlands), equipped with 30 mT/m 

gradients, using a dedicated 5 elements phased array cardiac 

coil for every patient, The 4D sequences follow the 

conventional views: short axis, two chambers and four 

chambers. A balance gradient echo sequence (balanced TFE) 

has been used in all cases. The most relevant parameters for 

the short axis view are: slices = 13, slice thickness = 8 mm, 

heart phases = 30, TR/TE = 3.15 ms, flip angle = 60°, matrix = 

256*192, SENSE factor = 1.5, turbo factor = 8. For the two 

chambers view: slices = 2, slice thickness = 8 mm, heart 

phases = 20, TR/TE = 2.7/1.3 ms, flip angle = 60°, matrix = 

256*186, SENSE factor = 1.5, turbo factor = 24. Finally, for 

the 4 chambers view: slices = 2, slice thickness = 8 mm, heart 

phases = 20, TR/TE = 3.2/1.6 ms, flip angle = 60°, matrix = 

256*175, SENSE factor = 1.5, turbo factor = 15. 

III. THE PROPOSED METHOD 

The whole method starts by calculating the Jacobian and 
Hessian matrices for different scales of a slice, using a Local 
Jet Feature approach [9]. The resulting local jet representation 
is then grouped by similarity i.e., foci with minimal variance. A 
kd-tree structure stores the values of local jet for every pixel. 
The motion is estimated by searching a particular pixel in the 
precedent kd-tree (the kd-tree at time t − 1). Such search is 
firstly addressed to the pixel with the closer local jet feature 
Euclidean distance. The kd-tree structure allows orientating this 
search to the pixels with similar local feature description. Once 
this most similar pixel is found, the two associated coordinates 
are used to calculate the motion vector. One main contribution 
of the present work was the design of an objective 
measurement on the obtained vector field: spatially connected 
regions with minimal variance were firstly grouped, i.e. regions 
that maximize the inter-group variance regarding the vectors 
magnitudes and angles. 

 



 

 

  

Figure 2: The flow determined by the different selected clusters on different slices of a cardiac cycle. 

Different statistics were calculated on the obtained regions. The 
apparent heart motion was thus estimated by grouping up 
spatial locations with similar variance, as illustrated in Figure 
1.  

 

A. The Multiscale Local Jet Similarity Space 

Nowadays it is well accepted in the computer vision 

community that relevant information can be determined by 

different strategies that measure correlation or coherence 

through different scales [10, 11]. The strategy herein applied is 

known as local jets and basically consist in obtaining an 

homogenous partition of the frequential spectrum by analyzing 

the image at different scales, which are then characterized by a 

map of partial derivatives of different order (we used here a 

first and second orders but the analysis can be extended to 

higher orders when one might want a finer spectral partition). 

In consequence, the first step in our approach was to obtain a 

collection of spatial derivates at different scales from 

independent slices, as follows 
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where Gσ is the 2d Gaussian function with standard deviation  

σ.  

The Gaussian kernel is here justified because this is the unique 

kernel with a homogeneous scale-space representation 

(linearity and shift invariance in both frequency and space) 

[10]. The multi-scale local jet is given by the collection 

{ }, where r is the derivation order and S= 

σ1,…, σq the selected scales. 

 

Local jets as descriptors have been already used on natural 

images, in which it has been shown that the first eigen 

(singular) vectors obtained by PCA or SVD are quite similar 

to the first derivatives of a 2d Gaussian function [12, 13], 

whereby this representation is quite sparse. Therefore, 

information can be automatically estimated by calculating the 

energy concentrated at each scale. 

Then, local jets are normalized [10]: 
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Where σi+j
 is the scale normalization factor and i+j+1 is the 

number of (i+j)-order derivatives. The following single scale 

distance is used: 

 
                                                                                                   

                                                                              (3)                 

                                                     

B. Data structure 

Once a MRC slice is represented by a multi-scale set of 
features (local jet collection Fij), the next step consists in 
storing the local jet in a kd-tree structure F . This data structure, 
a binary space partition, organizes the whole set of features and 
allows rapid access to them [14], performing nearest neighbor 
(NN) searches in the feature space. This efficient search is 
extensively used to perform operations based on similarity 
between pixels that are not connected in the image space.                                                               

 

                                                                                                    

                                                                                                 



 

 

C. Heart Motion Estimation 

The apparent heart motion is estimated for every pixel x at 

frame t by using the similarity cluster established before. At 

frame t, slice ft, and pixel x, we compute u(ft-1, ft, x), the 

nearest neighbor of the feature vector associated to x in the ft-1 

feature space: 

 

 

Where   is    the x projection in the feature space of f, i.e.,  

                  , and d
F
denotes the feature space distance. Then 

we compute y(ft-1, ft, x), the pixel from ft-1 which is the most 
similar to x from ft: 

 
where d

I
 denotes the distance in the image space. 

We obtain the pixel from the set of pixels associated to the 

feature vector u which is the closest to x in the image space. 

Finally, the velocity vector is computed as the difference: 

 
Our method was implemented in C++ language on a standard 

PC (AMD with 2.66 GHz CPU and 3 GB of RAM) takes 

about 10-15 sec to process all slices of a plane. 

D. Computed Measures 

Our fundamental hypothesis is that those places with minimal 

movement constitute a stable source of information of the 

whole flow pattern. Once the vector flow was determined, the 

next measurements were proposed: 

 Flow motion clustering: Similar flows are grouped 

as the sets of points with minimal variance regarding 

the vector magnitude and angle. The number of sets 

depends on the type of description one might want to 

obtain, for instance with k = 2 the two circulatory 

circuits are repaired, i.e., left and right. With k = 4 we 

observe the principal fluid directions, mostly in the 

left part of the circulatory circuit. A larger number 

produces more clusters but with no physiological 

meaning. 

 Global and local statistic measures: computing 

simple statistics either globally or in a small 

neighborhood, results in a saliency map of the flow 

pattern. This saliency map corresponds to heart 

segmentation, when this is locally considered, and to 

a tracking of the Center of mass, when the analysis is 

global. In both cases, these patterns (as it will be 

illustrated later) show very different appearance. 

IV. EXPERIMENTAL RESULTS 

The method parameters were adjusted to obtain the best 
performance and then set to the following values: NN = 1 with 

a local jet order of 2 and σ = 5. Typical results of computing 

motion estimations for the three planes are shown in Figure 
2(upper sequence). After visual evaluation, the expert 
determined that the proposed method achieved a very realistic 

motion simulation during a cardiac cycle. Figure 2 (lower 
sequence) shows the flow determined by the different selected 
clusters on every slice of a cardiac cycle. On the other hand, it 
is possible to use the saliency map built up from the computed 
flow (magnitude and norm) and determine a center of mass of 
this flow or global heart trajectory, as showed in Figure 3. This 
trajectories can be used as dynamic patterns to identify or        
grouping different kinds of movement. The RMSE computed 
from global trajectories demonstrated a minimal error between 
similar movements as illustrated in Table 1, for instance, the 
difference among normal flows is 0.04 in average, while the 
difference with Fallot tetralogy is 20.51 and the difference with 
infarction movement is 23.023. This difference suggests that 
this measure could be used as indicator of some abnormal 
movements. 

Figure 3: Mean trajectories of CoM heart movement computed since the 
saliency map. In this figure it is possible to observe the characteristic of global 
motion computed from saliency map and the strong differences between the 
three kinds of movements. 

 

TABLE I. Root Mean Squared Error for the three evaluated 
movements. These averages have been calculated from the 
differences between the signals and the mean representative 
signal to every movement of the cardiac cycle. 

Mean Signal RMSE 
Normal 

RMSE  
Fallot 

RMSE 
Infarction 

Mean 
Normal 

0.04 20.57 23.16 

Mean Fallot 20.51 3.89 10.27 

Mean 
Infarction 

23.023 8.81 3.82 

 



 

V. CONCLUSIONS 

We have introduced a new method to analyze the heart 

dynamics by estimating the apparent motion. We obtain a 

robust representation which captures some important heart 

dynamic and static features, for instance the most important 

topological elements that represent both places with minimum 

coherent movement (fluid sources) and with largest change 

rate (they represent the fluid lines). Experiments demonstrated 

that this can be used to characterize fluid patterns and establish 

a base normal line, as confirmed by an expert in the domain. 

Measures presented in this work constitute a first 

approximation to understanding the complex dynamic heart. 

From this kind of analyzes, we expect that it is possible to set 

up a collection of descriptors which allow to accurately 

describe motions patterns and quantify its semantics. The 

presented procedure could be extended to other type of 

medical imaging problems, or may be used to segment the 

wall of the heart with better accuracy by taking advantage of 

the temporal information. On the other hand, the combination 

of our method with statistical approaches would allow tracking 

of specific heart areas. 
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